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We propose a simple model to describe cluster-shell competition. Introducing only one parameter (�) to
the wave function makes it possible to describe the asymptotic transition of two valence neutrons in 10Be
(α + α + n + n) from a di-neutron to independent particles when the contribution of the spin-orbit interaction
is taken into account. Similarly in 12C, a transition from a 3α configuration to a 2α + 4N configuration is
represented, and we show a strong contribution of the spin-orbit interaction in the ground state. We investigate
further this transition from the cluster state (α + 16O) to the shell-model state (16O + four nucleons) in 20Ne. In
these examples, the wave functions for cluster-breaking states are prepared in the same general way.
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I. INTRODUCTION

Nuclear systems consisting of protons and neutrons have
been known to show various aspects of quantum many-body
systems. One of the standard pictures for the nuclear structure
is the shell-model point of view, where nucleons construct
self-consistent mean fields and perform independent-particle
motions. Here, a strong spin-orbit interaction contrary to the
atomic systems has been known to be a key mechanism in
fully explaining the observed magic numbers [1,2].

One of the other important aspects of nuclear structure
is the cluster structure. The α particle, which corresponds
to the doubly closed shell of the lowest s shell in the shell
model, is strongly bound. Since relative α-α interaction is
weak, α particles can be subunits of the nuclear structure in
certain light nuclei. This molecular viewpoint was introduced
even before the shell model [3], and cluster structure has been
extensively studied for more than four decades [4–6]. Recently,
theoretical and experimental investigations have proceeded
further to study neutron-rich nuclei, and the cluster structure
with valence neutrons has become one of the main subjects
concerning the structure of exotic nuclei [7,8].

If each α cluster is expressed as the lowest (s1/2)4 configura-
tion, then each α cluster is a spin-zero system, and noncentral
interactions do not contribute to the system. However, the
dissolution of the α cluster occurs when noncentral interactions
act strongly. Therefore, studying cluster-shell competition for
a unified understanding of the nuclear structure is intriguing.
Recently, we demonstrated this kind of cluster-shell com-
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petition in light nuclei by asking how the cluster structure
dissolves when the shell-model-like model space is introduced
in addition to the cluster model space [9]. By using an extended
version of antisymmetrized molecular dynamics (AMD) [10],
namely, AMD superposition of selected snapshots (AMD
triple-S) [11], it is now feasible to prepare cluster states and
α-breaking (shell-model-like) states in the same way and to
calculate such mixing of these states by using a common
effective interaction. The binding energies of 8Be, 10Be, and
10B become larger by adding shell-model-like basis states, but
the amount of the increase is only about 2 MeV, and the α + α

structure is essentially a dominant configuration in the ground
state. However, an increase in the binding energy from the
3α-cluster state due to the spin-orbit interaction is very large
in 12C (about 6 MeV).

Currently, microscopically calculating the cluster-
shell competition is possible. However, the next question
we must ask is, how we can simplify the model and
establish a new picture as a general concept of the nuclear
structure? For example, how can the effect of the spin-orbit
interaction, which is the key quantity for this transition, be
implanted in the wave function, and what is the order parameter
for the transition from the cluster state to the shell state?
In this paper, therefore, we propose a simple model to
describe cluster-shell competition. By introducing only one
parameter �, it is possible to describe a transition in 12C, for
example, and to study the strong contribution of the spin-orbit
interaction in the ground state. We begin our discussion of the
results with a transition of the two valence neutrons in 10Be
(α + α + n + n) from a di-neutron to independent particles,
with the contribution of the spin-orbit interaction.

This paper is organized as follows: in Sec. II, formulation
is summarized; and in Sec. III, numerical results for light
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nuclei, cluster-shell competition are presented. The conclusion
is given in Sec. IV.

II. FRAMEWORK

The total wave function is fully antisymmetrized as

� = P πP J
MK�, (1)

� = A[(ψ1χ1)(ψ2χ2) · · · ·], (2)

and projection onto a good parity P π and angular momentum
P J

MK is numerically performed. The Slater determinant �

consists of A nucleons, and each nucleon ψiχi (i = 1–A) has a
Gaussian form the same as many conventional cluster models,

ψi =
(

2ν

π

) 3
4

exp
[−ν(�r − �zi

/√
ν)2 + �z2

i /2
]
, (3)

and the oscillator parameter b = 1/
√

2ν is common to all
nucleons to exactly remove the center-of-mass kinetic energy.
Here, {χi} represent the spin-isospin eigenfunctions, and the
spin direction is defined parallel to the z axis. When we assume
the presence of an α cluster(s), it is expressed by assuming a
common �zi value for four nucleons (proton spin up, proton
spin down, neutron spin up, and neutron spin down).

If {�zi} are real numbers, the wave function corresponds
to the Brink-Bloch wave function [4], and the spin-orbit
interaction vanishes for the Nα systems. However, in the
present case, they are allowed to be complex parameters. The
real and imaginary parts of �zi represent the expectation values
of the position and momentum of the single particle, that
is, 〈�r〉 = Re [�zi]/

√
ν and 〈 �p〉 = 2

√
νh̄ Im [�zi]. We introduce

a “general rule” to take into account the spin-orbit interaction,
which will be applied to 10Be, 12C, and 20Ne, where the
dissociation of one (Brink-Bloch) cluster to a “quasicluster”
is expressed by introducing a parameter �. Suppose that
a nucleus consists of a quasicluster C ′

1 and α clusters
{C2, C3, . . . , Cm}. The Gaussian-center parameters �zi/

√
ν for

nucleons in α clusters are real numbers. However, for the
nucleons in the quasicluster, in addition to the real part of
Re [�zi/

√
ν] = �S1 (i ∈ C ′

1), the imaginary part is introduced,
which expresses the momentum components of the nucleons.
The direction of the imaginary part of the Gaussian-center
parameter is introduced for each nucleon as

�zi/
√

ν = �S1 + i�
(�ei

spin

) × �S1, (4)

where �ei
spin is the unit vector for the intrinsic-spin orientation,

and � is an order parameter of the dissolution of the cluster.
The contribution of the spin-orbit interaction vanishes at
� = 0, and it acts attractively or repulsively if � is positive or
negative, respectively. This can be understood in the following
way: the spin-orbit interaction is intuitively interpreted as
(�r × �p) · �s and this is equal to (�s × �r) · �p, where �r, �p, and
�s represent the position, momentum, and spin of the nucleon,
respectively. Therefore, if the nucleons in the quasicluster have
the momentum components parallel to �s × �r , the spin-orbit
interaction acts attractively; and if they have momentum
components antiparallel to �s × �r , it acts repulsively, although

the spin-orbit interaction is a two-body operator in the actual
calculation.

The Hamiltonian operator Ĥ has the form

Ĥ =
A∑

i=1

t̂i − T̂c.m. +
A∑

i>j

v̂ij , (5)

where a two-body interaction v̂ij includes the central part, the
spin-orbit part, and the Coulomb part. For the central part, we
use the following Volkov No. 2 effective N -N potential [12]:

V (r) = (W − MP σP τ + BP σ − HP τ )

× [
V1 exp

(−r2
/
c2

1

) + V2 exp
(−r2

/
c2

2

)]
, (6)

where W = 1 − M,M = 0.60, and B = H = 0.125. For the
spin-orbit term, we introduce the G3RS potential [13] as

Vls = V0
(
e−d1r

2 − e−d2r
2)

P (3O) �L · �S, (7)

where d1 = 5.0 fm−2, d2 = 2.778 fm−2, V0 = 2000 MeV, and
P (3O) is a projection operator onto a triplet odd state. The
operator �L stands for the relative angular momentum and �S
is the spin ( �S1 + �S2). All of the parameters of this interaction
were determined from the α + n and α + α scattering phase
shifts and the binding energy of the deuteron [14]. The original
Volkov No. 2 potential gives the bound state for the n-n system,
but it is eliminated by introducing B and H parameters.

III. RESULTS

A. π orbit versus di-neutron correlation in 10Be

We begin this section by discussing a simplified model
to describe the cluster-shell competition with 10Be (α + α +
n + n). The ground state of 10Be has a large β deformation
due to the α-α clustering of the core. We have shown that
all of the low-lying states are well described by introducing
molecular orbits with |K|π = 3/2−, 1/2−, and 1/2+ around
two α’s along the z axis [15,16].

Next, we have further discussed a triaxial deformation of the
yrast states [17]. If the valence neutrons perform single-particle
motions as eigenstates of the K quantum number, the system is
axial symmetric; however, the distortion of the single-particle
motion occurs when the spin-orbit interaction between the
core and the valence neutrons decreases, as in weakly bound
systems. When the wave functions of the valence neutrons
deviate from the jj-coupling-like orbits and approach the
SU(3) limit, a di-neutron configuration with spin zero becomes
more important, and the system becomes a three-body-like
(α + α + di-neutron) triaxial shape. In this case, the K value of
each valence neutron is no longer a good quantum number, and
the ratio B(E2: 2+

2 → 2+
1 )/B(E2: 2+

1 → 0+
1 ) calculated with

the Davydov-Filippov model [18] and our model coincide at
around γ = 19◦, suggesting a mixing of the triaxial component
in 10Be. The drastic increase of this interband transition
probability occurs if the spin-orbit interaction is artificially
weakened. Therefore, the spin-orbit interaction is considered
the driving force for the valence neutrons to restore single-
particle motion, and the neutron is rotated around the core.
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FIG. 1. Coordinate system for 10Be. R1 and R2 represent the
distance between α clusters and between an α cluster and a di-neutron
cluster, which are taken along the z and x axes, respectively.

In this paper, we show that introducing only one parameter
� makes it possible to describe the situation, namely, the
asymptotic transition of the two valence neutrons from
the di-neutron configuration (α + α + di-neutron cluster) to
independent particles in 10Be. The coordinate system for 10Be
is defined as shown in Fig. 1. In Fig. 1, R1 and R2 represent
the distance between the α clusters and between the α cluster
and the di-neutron cluster, which are shown along the z and
x axes, respectively. Each α cluster is described by assigning
common values for the Gaussian-center parameters {zi} of
the four nucleons (spin-up proton, spin-down proton, spin-up
neutron, and spin-down neutron). The di-neutron is similarly
described by assigning common values for Gaussian-center
parameters of the spin-up and spin-down neutrons, which are
placed on the x axis. The oscillator parameter b = 1/

√
2ν is

set equal to 1.46 fm.
Importantly, the valence neutrons with spin up and spin

down that make up the di-neutron cluster are pushed up to the
p shell due to the Pauli principle between the neutrons and the
α clusters, when the value of R2 is small enough. In the present
case, since the neutrons are placed on the x axis, they occupy
px orbits (x exp[−νr2]) around the origin. This situation can
be explained as it was in Ref. [4]: the spin-up neutron in the
α cluster and the valence neutron with the spin up placed on the
x direction are described as exp[−νr2] and exp[−ν(�r − �X)2]
( �X has only the x component), and rearranging the linear
combinations of these orbits is possible, when the wave
function is antisymmetrized. Then, at the limit of | �X| → 0,
one orbit exp[−νr2] + exp[−ν(�r − �X)2] corresponds to
exp[−νr2], and the other {exp[−νr2] − exp[−ν(�r − �X)2]}/
| �X| to x exp[−νr2].

When the values of the Gaussian centers of the spin-up
and spin-down valence neutrons are in common, the neutrons
construct a spin-zero system, and the spin-orbit interaction
between the core and the di-neutron vanishes. However, even
if the spatial positions of these two neutrons are in common,
one can describe the single-particle motion (rotation by the
α-α axis) of the valence neutrons by introducing imaginary
parts of the Gaussian centers. This orbit is similar to the π

orbit in terms of the molecular-orbit model [14,19], where the
spin-orbit interaction contributes strongly. The parameters of
Gaussian centers for the valence neutrons are given as

�z/√ν = R2(�ex + i��ey) (8)

for the spin-up neutron, and

�z/√ν = R2(�ex − i��ey) (9)

FIG. 2. Energy of the 0+ state of 10Be as a function of parameter
�. The α-α distance R1 is 3 fm, and the solid, dotted, and dashed
lines correspond to the cases of R2 = 0.5, 1, and 2 fm, respectively.

for the spin-down neutron. Here, R2�ex is the spatial position
of the Gaussian center, the imaginary parts (R2��ey and
−R2��ey) express the momenta of the neutrons, and �ex

and �ey are unit vectors of the x and y axes. Since the
directions of the spin and real part of �z are introduced along
the z- and x-axis, respectively, the imaginary part of �z is
introduced along the y axis to take into account the spin-orbit
interaction, which has the form of �s · (�r × �p). In other words,
by introducing these imaginary parts, we can mimic the
spherical harmonics. Namely, when � is equal to 1, the wave
function for the spin-up neutron {exp[−νr2] − exp[−ν(�r −
�z/√ν)2]}/ |�z| corresponds exactly to the shell-model wave
function of (x + iy) exp[−νr2] ∼ rY11 exp[−νr2], and the
wave function for the spin-down neutrons corresponds
to (x − iy) exp[−νr2] ∼ rY1−1 exp[−νr2], at the limit of
R2 → 0. In this case, the directions of the spin and orbital parts
of the angular momentum become parallel, and the spin-orbit
interaction acts attractively. When the spin-orbit interaction
works, the di-neutron is no longer a cluster with S = 0, and
two neutrons occupy orbits in time reversal with each other,
although the spatial positions still somehow overlap. In this
case, the di-neutron is a “quasi” cluster, and � is a parameter
used to describe the cluster-shell competition. When the value
of � is equal to 1, the wave function of the neutron corresponds
exactly to the jj-coupling orbit around the left α cluster if the
rotation radius R2 is small enough, and � equal to zero is the
di-neutron limit.

The energy of the 0+ ground state of 10Be as a function
of parameter � is shown in Fig. 2. In this figure, the α-α
distance R1 is 3 fm, optimal for the ground state [15,16], and
the solid, dotted, and dashed lines correspond to the cases
of R2 = 0.5, 1, and 2 fm, respectively. When the position
of the di-neutron is close to the α cluster, the value of R2

is small, and the motion of each valence neutron is as a
single-particle motion around the α-α core. The minimal �

values for the solid and dotted lines are 0.3–0.4. The optimal
energy of about −57.2 MeV is consistent with our previous
result based on the molecular-orbit approach [15]. However,
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FIG. 3. Spin-orbit (solid line) and kinetic (dotted line) energies
for the 0+ state of 10Be as a function of parameter �. R1 and R2 are
3.0 and 1.0 fm, respectively. The kinetic energy is shifted to zero at
� = 0.

the exchange effect of one neutron between α clusters (mixing
of the 5He + 5He configuration) is missing in the present case;
this effect is known to decrease the kinetic energy with respect
to the z axis by about 1 MeV. On the contrary, when the case
valence neutrons are located far from the core, the spin-orbit
interaction does not work strongly, and the di-neutron system
does not receive the driving force for the single-particle
motion. As shown in the dashed line, the optimal value of
� decreases to about 0.2, and the di-neutron becomes the
dominant component.

In Fig. 3, the spin-orbit (solid line) and the kinetic (dashed
line) energies for the 0+ state of 10Be are shown as a
function of parameter �. Here, R1 and R2 are 3.0 and 1.0 fm,
respectively. The kinetic energy is shifted to zero at � = 0.
The spin-orbit interaction contributes strongly with increasing
�. However, not only does the absolute value of the spin-orbit
interaction increase, but the kinetic energy also increases with
the increasing � value. The contribution of the spin-orbit
interaction, which is attractive, is almost saturated around � =
0.5, and the decrease of the energy is monotonic; however, the
increase in the kinetic energy becomes quadratic. The optimal
� value is therefore obtained as a cancellation of these two
components, and the sum of these becomes minimum around
� ∼ 0.4, close to the optimal value for the total energy.

In the present model, � can be taken as a negative value,
and we can describe states where the spin-orbit interaction acts
repulsively. In Refs. [15,16], such a state appears as a highly
excited state, where the dominant configuration of the valence
neutrons is (|Kπ | = 1/2−)2; however, the state has not been
observed yet. In Fig. 2, the energy of the 0+ state with negative
� is also shown, and the energy increases as an increase
of |�|.

B. π orbit versus α correlation in 12C

Many successful calculations for 12C have been made
by assuming the 3α configuration [20–22], and the second
0+ state just above the 3α threshold has been well described

FIG. 4. Coordinate system for 12C. Three α clusters have an
equilateral triangular configuration on the xz plane. R1 represents
the distance between two α clusters on the z axis and, the remaining
α cluster is placed on the x axis.

by the cluster models. However, the breaking effect of the α

cluster is also known to be important, especially for the ground
state [9,23,24] in explaining the observed electromagnetic
properties. If one of the α clusters is broken, the configuration
is α + α + 4N , and picture is close to “the molecular-orbit for
four nucleons around the α + α core” [25]. If the spin-orbit
interaction is very strong and two α clusters are broken,
the configuration is α + 8N and the picture approaches the
jj-coupling shell model. In Ref. [9], we have shown that by
incorporating the breaking effect of only one of the α clusters,
the effect of the spin-orbit interaction can be incorporated
to some extent. Therefore, in this paper, we investigate this
cluster-shell mixing using the current model, where one α

cluster is changed to a quasicluster due to the spin-orbit
interaction.

Three α clusters are introduced as having an equilateral
triangular configuration on the xz plane as shown in Fig. 4;
this is known to be the dominant configuration for the ground
state when the spin-orbit interaction does not work. In Fig. 4,
R1 represents the distance between two α clusters on the z

axis and the remaining α cluster is placed on the x axis.
We introduce � for the α cluster on the x axis. Similar to
Eqs. (8) and (9), the �z parameters of the spin-up proton and
spin-up neutron are changed so that the imaginary parts have
a positive value

�z/√ν = (
√

3R1/2)(�ex + i��ey), (10)

and those for the spin-down proton and spin-down neutron are
changed to have the imaginary parts with a negative value

�z/√ν = (
√

3R1/2)(�ex − i��ey). (11)

Due to the Pauli principle, these nucleons are automatically
excited to the p shell. This parametrization and setup of the
coordinate space could be called a “general rule” for preparing
cluster-breaking wave functions. First, we put the cluster to be
broken on the x axis. Next, we change the Gaussian centers of
nucleons in this cluster from R�ex to R(�ex + i��ey) for the spin-
up nucleons, and to R(�ex − i��ey) for the spin-down nucleons,
where R is some radius and � is an “order parameter” of
cluster-shell competition. Since the directions of the spins are
defined along the z axis, the spin and orbital parts of the angular
momenta become parallel, and the spin-orbit interaction acts
attractively with an increasing �. The oscillator parameter
(b = 1/

√
2ν) is set equal to 1.46 fm.
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FIG. 5. Energy of the 0+ state of 12C as a function of parameter
�. Solid, dotted, and dashed lines correspond to the cases of R1 =
2.0, 2.5, and 3.0 fm (respectively), and � is introduced for one α

cluster on the x axis.

The energy curve of the 0+ state of 12C as a function of
parameter � is shown in Fig. 5, where the solid, dotted, and
dashed lines represent the cases of R1 = 2.0, 2.5, and 3.0 fm,
respectively. When the � value is zero, the total spin of the
system is also zero; the spin-orbit interaction does not work,
and the dotted line (R1 = 2.5 fm) gives the lowest energy.
However, when � becomes a finite value, one α cluster on
the x axis is changed to a “quasi α”, and four nucleons start
to perform independent motions around the remaining two α

clusters located on the z axis, such that the picture is close
to molecular-orbital motion around the α-α core. In this case,
the solid line (R1 = 2.0 fm) gives the lowest energy, and the
decrease of this energy in comparison with � = 0 is more than
5 MeV.

In Fig. 6, the spin-orbit (solid line) and the kinetic (dashed
line) energies for the 0+ state of 12C are shown as a function
of parameter �. Here, R1 is 1.0 fm, and the kinetic energy is
shifted to zero at � = 0. The same as in 10Be, the spin-orbit
interaction strongly contributes with increasing �; however,
the kinetic energy also increases rapidly with an increasing
� value. Therefore, the optimal � value is obtained as a
cancellation of these two components, and the sum of these
becomes minimum around � ∼ 0.4, close to the optimal value
for the total energy.

To obtain the optimal � value, solving the frictional cooling
method in AMD [10] only for the y components of the
imaginary parts of the four valence nucleons rotating around
α-α is also a convenient way:

d(�zk)y
dτ

= −Im

(
∂〈H 〉
∂(�z∗

k)y

)
i (k = 1 ∼ 4). (12)

The energy decreases as the imaginary time τ increases, and
an optimal � value is obtained. The form of Eq. (12) is similar
to the equation in AMD triple-S [11]; however, in this case,
the equation is reinterpreted as the equation for cluster-shell
competition.

FIG. 6. Spin-orbit (solid line) and kinetic (dotted line) energies
for the 0+ state of 12C as a function of parameter �. R1 is 1.0 fm, and
the kinetic energy is shifted to zero at � = 0.

In the present analysis, breaking only one α cluster has
been taken into account, and the relation between the present
model and the jj-coupling shell model is explained as follows:
when we take the limit of R1 = 0 and � = 1, one α cluster
occupies the (s)4 configuration and the other α-cluster occupies
the (pz)4 configuration, and four nucleons in a quasi-α cluster
occupy the p3/2 orbits, in terms of the shell model. Therefore,
the difference between the present model and the lowest
configuration of the jj-coupling shell model is the treatment of
the one α cluster which occupies the (pz)4 configuration. If we
properly dissolve this α cluster into four independent nucleons,
the wave function becomes identical to that of the jj-coupling
shell model. However, to do this, we need to introduce two
quasi-α clusters, and this will be a next step to be performed
in near future.

C. Case of σ orbit

We have discussed how the nucleons rotate by the α-α axis.
Although it is not directly related to cluster-shell competition,
we next introduce a simplified model for the valence neutrons
located on the symmetry axis. If a neutron is placed on the
α-α axis, a so-called σ orbit in terms of molecular-orbit [14,19]
occurs. Since two α clusters already exit on this axis, the
neutrons are pushed up to the sd shell. In this case, the two
valence neutrons reduce the kinetic energy by enhancing the
α-α distance (up to around 4 fm) [15,16,26]. This intruder state
[(1/2+)2 for the two neutrons] is the dominant configuration
of the second 0+ state of 10Be [15].

If the two valence neutrons are staying along the α-α
axis, the spatial parts of the wave functions are the same and
the system becomes spin zero, thus the spin-orbit interaction
vanishes. Actually, even in the case where only one valence
neutron occupies the α-α axis (Kπ = 1/2+), the spin-orbit
interaction vanishes. This is because the rotation radius of the
neutron around the α + α core becomes zero, even though
the neutron participates in the rotation of the whole system.
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Mathematically, this means that the orbital part of the wave
function of the neutron along the α-α axis has only the real
part and therefore an eigenstate of time-reversal operator, thus
the matrix element of the spin-orbit operator whose spatial
part �L is time odd becomes zero. If the distribution of a
neutron deviates from the α-α axis as in the π orbit, the
wave function acquires a component of the imaginary part
during the projection process of the K quantum number, and
the spin-orbit interaction can be taken into account (if it is
not di-neutron with spin zero). This has been the situation
in traditional molecular-orbital models [14,27], where 1/2+
orbit is estimated to be too high in energy, and the models are
unable to explain the well-recognized level inversion in the
ground state of 11Be [28].

We introduce a simplified model to describe the deviation
of the σ orbit due to the spin-orbit interaction. We consider
the 1/2+ state of 9Be in the following discussion, where
there is only one valence neutron around two α clusters. The
coordinate space is the same as in Fig. 1; however, R2 is defined
along the negative direction of the z axis. One valence neutron
with spin up which occupies the original σ orbit is simplified
by giving the Gaussian center as

�z/√ν = −R2�ez. (13)

The oscillator parameter b = 1/
√

2ν is set equal to 1.46 fm.
The neutron stays on the z axis, and since two α clusters are
already staying on this axis, because of the Pauli principle,
the neutron is pushed up to the sd shell. Next, we prepare
a wave function with the deviation from the z axis. When
the wave function deviates, a rotational motion by the z axis
is possible, and the orbital angular momentum around the
α-α axis (K) becomes finite. Therefore, the spin must be
flipped down to have Kπ = 1/2+ totally. Unfortunately, this
deviation cannot be described as an asymptotic transition of a
single Gaussian wave packet, and linear combination of two
Gaussians is necessary, contrary to the case of the π orbit.
Therefore the single-particle orbit φ of the neutron can be
expressed by introducing mixing angle � as

φ = cos(�π/2)ψ(−R2�ez)|↑〉 − sin(�π/2)ψ(R2�ex)|↓〉,
(14)

where, ψ(−R2�ez) expresses the Gaussian wave packet whose
center �z/√ν is equal to −R2�ez, and |↑〉 and |↓〉 are spin
parts. At the limit of R1, R2 → 0, the first term corresponds
exactly to the shell-model wave function of r2Y20 exp[−νr2]
|↑〉 ∼ z2 exp[−νr2]|↑〉, and the second term corresponds
to r2Y21 exp[−νr2]|↓〉 ∼ (x + iy)z exp[−νr2]|↓〉 after the K
and parity projections (the parity projection for the 9Be
system generates one node along the z axis for the valence
neutron, since the α-α-core part mainly has the positive-parity
component).

The energy of the 1/2+ state of 9Be as a function of the
mixing angle of these two wave functions � is shown in
Fig. 7, where the R1 and R2 values are 3 fm and 1.5 fm,
respectively. The solid and dotted lines are calculated with
and without the spin-orbit interaction, respectively. When the
spin-orbit interaction is switched on, the solid line shows that
the energy is minimum around � ∼ 0.2, and the decrease in

FIG. 7. Energy of the 1/2+ state of 9Be as a function of parameter
�. The solid and dotted lines represent the case with and without the
spin-orbit interaction. The coordinate space is the same as Fig. 1,
however, R2 is defined along the negative direction of the z axis. R1

and R2 are 3 fm and 1.5 fm, respectively.

energy due to the spin-orbit interaction is more than 2 MeV; the
decrease does not happen in the case of the dotted line without
the spin-orbit interaction. If the wave function becomes pure
(x + iy)z exp[−νr2]|↓〉, because the directions of the spin and
orbital parts of angular momentum become antiparallel, and
the spin-orbit interaction acts repulsively, then the energy of
the solid line in Fig. 7 is higher than that of the dotted line
around � = 0.8–1.0.

It is shown that the neutron-orbit surely deviates from the
pure σ orbit. This deviation is also proved by the energy
surface for the 1/2+ state of 9Be in Ref. [14]. Actually,
calculation based on the molecular-orbit model [26] shows
that the contribution of the spin-orbit interaction due to the
deviation of the σ orbit is stronger if two valence neutrons are
present. It is essential in accounting for the disappearance of
the N = 8 magic number in the ground state of 12Be, where the
lowering of the (1/2+)2 state due to the spin-orbit interaction
is about 4.5 MeV.

D. d5/2 orbits versus α correlation in 20Ne

We have developed a model to describe the deviation of the
orbit from the cluster structure due to the spin-orbit interaction,
and this model can be applied to heavier systems. For example,
although numerous calculations exist within the model space
of 16O + α or 12C + α + α for 20Ne [29–31], from the
shell-model point of view, four nucleons are located in the
d5/2 orbits and the spin-orbit interaction acts strongly [32,33].
This effect cannot be taken into account with the cluster model
space. Later, hybrid models [34,35] and AMD [36,37] were
applied to express both cluster structure and single-particle
motions of nucleons around the 16O core. Therefore, applying
the present model to describe single-particle motion as a
deviation of the orbits from an α cluster and establishing a
simple picture of cluster-shell competition is intriguing.
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FIG. 8. Energy of the 0+ state of 20Ne as a function of parameter
�. R1 is 1 fm, and the solid, dotted, and dashed lines correspond to
the cases of R2 = 1, 2, and 3 fm, respectively.

In our model, four of the α clusters form a tetrahedron
configuration, which corresponds exactly to the doubly closed
shell of the p shell at the limit of relative distance R1 equal
to zero. One remaining α cluster is located on the x axis. The
α-α distance of the 4α-tetrahedron is parametrized as R1, and
the distance between the last α cluster on the x axis and center
of mass of the 4α tetrahedron is R2. Now we introduce our
“general rule” for preparing a cluster-breaking wave functions
for 20Ne. Since we take into account the breaking effect of
the last α cluster, we place the α cluster on the x axis, and we
change the Gaussian centers of the nucleons in this cluster from
R�ex to R(�ex + i��ey) for the spin-up nucleons and to R(�ex −
i��ey) for the spin-down nucleons, so as to make the directions
of the spin and orbital parts of the angular momentum parallel,
in the same manner as 12C, that is,

�z/√ν = R2(�ex + i��ey) (15)

for the spin-up proton and neutron and

�z/√ν = R2(�ex − i��ey) (16)

for the spin-down proton and neutron. Because of the Pauli
principle, these nucleons are automatically excited to the
sd shell. When � is zero, the orbits of nucleons in this
α cluster become a wave function of x2 exp[−νr2] at the
limit of R1, R2 → 0; and with increasing � value, the
orbits approach (x + iy)2 exp[−νr2] ∼ r2Y22 exp[−νr2] for
the spin-up proton and neutron, and (x − iy)2 exp[−νr2] ∼
r2Y2−2 exp[−νr2] for the spin-down proton and neutron, and
the spin-orbit interaction acts attractively.

In this subsection, Majorana exchange parameter M and
oscillator parameter of the Gaussian wave packet b = 1/

√
2ν

are changed to 0.62 and 1.6 fm, respectively. The energy curves
of the 0+ state of 20Ne are shown in Fig. 8, where R1 is fixed
to 1 fm and the solid, dotted, and dashed lines correspond to
R2 = 1, 2, and 3 fm, respectively. When the R2 value is 3 fm,
the dashed line shows the minimal point around � = 0.1,
and the 5α cluster is essentially the dominant configuration.
However, with a decreasing R2 value, the optimal � value

FIG. 9. Spin-orbit (solid line) and kinetic (dotted line) energies
for the 0+ state of 20Ne as a function of parameter �. R1 and R2 are
1.0 and 2.0 fm, respectively. The kinetic energy is shifted to zero at
� = 0.

gradually increases; and in the case of R2 = 1 fm, the solid
line shows the minimal point around � = 0.5, and the energy
curves become rather flat. Since the energies of these three
minimal points are close to each other, the real ground state lies
somehow in between the cluster and shell-model states. When
we diagonalize the Hamiltonian consisting of the three states,
which are the lowest points of each line [� = 0.5 (solid), � =
0.3 (dotted), and � = 0.1 (dashed)], the calculated energy
(−159.2 MeV) is lower than the energy calculated using the
cluster states (R2 = 1, 2, 3, 4, 5 fm, � = 0) by 2.4 MeV and
lower than the energy of the shell-model limit (R2 = 1 fm,
� = 1.0) by 6.1 MeV.

In Fig. 9, the spin-orbit (solid line) and the kinetic (dashed
line) energies for the 0+ state of 20Ne are shown as a function
of parameter �. R1 and R2 are 1.0 and 2.0 fm, respectively,
and the kinetic energy is shifted to zero at � = 0. The same as
in 10Be and 12C, the spin-orbit interaction contributes strongly
with increasing �; however, the kinetic energy also increases
rapidly with an increasing � value. Therefore, the optimal
� value is obtained as a cancellation of these two components,
and the sum of these energies becomes minimum around
� ∼ 0.4, close to the optimal value for the total energy.

IV. CONCLUSION AND FURTHER OUTLOOK

Microscopically calculating the cluster-shell competition
recently became possible, and in this paper, we further
introduced a model to describe the competition in a simple way
as a general concept of the nuclear structure. The spin-orbit
interaction is the key quantity for transition from cluster states
to shell states; and the effect is now implanted in the wave
function by introducing the parameter �. The parametrization
of the wave function and the setup of the coordinate space
we introduced could be called a “general rule” for preparing
cluster-breaking wave functions.
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We have shown that describing the asymptotic transition
of the two valence neutrons in 10Be (α + α + n + n) from
a di-neutron configuration to independent-particle motions is
possible, by which the contribution of the spin-orbit interaction
is taken into account. Similarly, in 12C and 20Ne, transitions
from an α-cluster configuration to the molecular-orbit picture
or the shell-model picture are represented by introducing
one parameter, and a strong contribution of the spin-orbit
interaction in the ground states has been taken into account.
The present analysis takes into account the breaking of only
one α cluster. To prepare the jj-coupling configuration of
12C, for example, dissolving one more α cluster into four
independent nucleons is necessary, and introducing two quasi-
α clusters will be a next step of the framework.

As a remaining problem, it is necessary to introduce some
extensions of cluster breaking into the traditional cluster
models for the expression of the tensor interaction. In the
1960s, a microscopic α-α potential was derived based on the
meson theory [38,39], and appearance of the cluster structure
was explained by saying that the contribution of one pion
exchange potential vanishes from the direct terms when each α

cluster is described as a (0s)4 configuration. This idea has been
generalized as a threshold rule and proposed as a mechanism
for explaining the appearance of various cluster structure [40].
However, recently, many microscopic calculations to directly

take into account the tensor term have been started [41–44],
and a strong contribution in 4He is discussed there. Therefore,
now it is necessary to show that the interaction between two
4He nuclei is still weak, even if the model space is extended
and tensor contribution can be incorporated. Although the
tensor interaction strongly contributes to each 4He nucleus
and 4He nuclei are no longer simple α clusters with the
(0s)4 configuration, the tensor interaction may not act strongly
enough to change the relative motion between two 4He nuclei
and the cluster structure may survive. Projecting out the
relative coordinates of the two 4He nuclei to estimate the tensor
contribution for the relative motion is a difficult task, thus,
establishing a simple picture to describe “broken α clusters”
is desirable.
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