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Predicting the single-proton and single-neutron potentials in asymmetric nuclear matter
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We discuss the one-body potentials for protons and neutrons obtained from Dirac-Brueckner-Hartree-Fock
calculations of neutron-rich matter, in particular their dependence upon the degree of proton/neutron asymmetry.
The closely related symmetry potential is compared with empirical information from the isovector component of
the nuclear optical potential.
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I. INTRODUCTION

Lately we have been concerned with probing the behavior
of the isospin-asymmetric equation of state (EOS). With our
recent work on neutron radii and neutron skins [1], we have
explored applications of the EOS at densities typical for normal
nuclei.

It is also important to look into systems that are likely to
constrain the behavior of the EOS at higher densities, where the
largest model dependence is observed. Supernova explosions
and neutron star formation/stability are phenomena where the
nuclear EOS plays a crucial role. The symmetry energy de-
termines the proton fraction in neutron stars in β equilibrium,
and, in turn, the cooling rate and neutrino emission. Models
of prompt supernova explosion and systematic analyses of
neutron star masses provide often conflicting information
on the “softness” of the EOS and its incompressibility at
equilibrium.

On the other hand, collisions of neutron-rich nuclei, which
are the purpose of the Rare Isotope Accelerator (RIA), provide
a unique opportunity to obtain terrestrial data suitable for
constraining the properties of dense and highly asymmetric
matter. Such reactions are capable of producing extended
regions of space/time where both the total nucleon density and
the neutron/proton asymmetry are large. Isospin-dependent
Boltzmann-Uehling-Uhlenbeck (BUU) transport models [2]
include isospin-sensitive collision dynamics through the el-
ementary pp, nn, and np cross sections and the mean field.
The latter is a crucial isospin-dependent mechanism, and is
the focal point of this paper. The contribution to the mean field
from the neutron/proton asymmetry can be measured through
isospin-sensitive observables [3]. In summary, this is a timely
and exciting topic, which is stimulating new effort, on both the
experimental and the theoretical sides.

At this time, it is fair to say that the model dependence
of the isospin asymmetric EOS is rather large. In fact, even
the qualitative behavior of some predictions is controversial,
as is the case, for instance, with the density dependence of
the symmetry energy, upon which isospin diffusion in heavy-
ion collisions is found to depend sensitively [4]. Thus any
additional constraint is desirable and should be fully explored.
As discussed in Ref. [5], nucleon-nucleus optical potential
information can be exploited to constrain the strength and the
energy dependence of the single-neutron and single-proton
potentials in asymmetric nucler matter. The basic idea is that,

even though infinite nuclear matter is an idealized system, the
single-nucleon potentials should bear a clear signature of the
optical potential in the interior of the nucleus.

In this paper we will concentrate specifically on predictions
of the single-neutron and single-proton potentials and the
closely related symmetry potential. For previous work on
various aspects of the EOS in asymmetric matter we refer
the reader to the bibliography of Ref. [7]. Unless otherwise
specified, we use the Bonn-B potential [6] and the relativistic
Brueckner-Hartree-Fock (DBHF) model outlined in Ref. [7].
We will compare with other predictions from the literature
as well as empirical optical potential information. We will
point out the large model dependence of predictions for
those observables that depend sensitively on the difference
between neutron and proton properties in asymmetric matter.
Additional experimental constraints are therefore important.
Moreover, microscopic, parameter-free approaches are the
best way to gain deeper insight into the isospin-dependent
properties of nuclear matter.

II. THE SINGLE-NUCLEON POTENTIALS

A. Momentum dependence

For the single-particle potential, we use the prescription of
Refs. [8,9]. In the case of unequal Fermi levels for protons and
neutrons, that prescription gives, schematically

Ui(k) = Re


∑

q<kn
F

〈kq|Gin|kq − qk〉 +
∑
q<k

p

F

〈kq|Gip|kq − qk〉



(1)

where i = n/p for neutron/proton, and k refers to states below
and above the Fermi momentum.

We begin by examining the momentum dependence of
Un/p, the single neutron and single-proton potential in neutron-
rich matter. In Fig. 1, we show Un/p as a function of the
momentum and for different values of the asymmetry param-
eter, α = (ρn − ρp)/(ρn + ρp), with ρn and ρp the neutron
and proton densities. The total nucleon density considered in
the figure is equal to 0.185 fm−3 and corresponds to a Fermi
momentum of 1.4 fm−1, which is very close to our predicted
saturation density.
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FIG. 1. The single-neutron (upper panel) and single-proton
(lower panel) potential as a function of the nucleon momentum for
three different values of the asymmetry parameter. The average Fermi
momentum is 1.4 fm−1.

For increasing values of α, the proton potential becomes
increasingly attractive while the opposite tendency is observed
in Un. This reflects the fact that the proton-neutron interaction,
the one predominantly felt by the single proton as the
proton density is depleted, is more attractive than the one
between identical nucleons. Also, as it appears reasonable, the
dependence on α becomes weaker at larger momenta.

In Fig. 2 we show the DBHF results in comparison with
those from (nonrelativistic) conventional Brueckner-Hartree-
Fock (BHF) calculations. We make the comparison to show
the considerable difference between the two sets of results as
well as to check that our BHF predictions are in qualitative
agreement with other studies based on the conventional
Brueckner G-matrix approach. An older work based on that
approach can be found, for instance, in Ref. [10], where
separable representations of the nucleon-nucleon interaction
are adopted. More recent calculations have been reported
in Ref. [11], where the CD-Bonn potential [12] is used in
conjunction with the BHF approximation.

The role of the momentum dependence of the symmetry
potential in heavy-ion collisions was recently examined [13]
and found to be important. Symmetry potentials with and with-
out momentum dependence and yielding similar predictions
for the symmetry energy can lead to significantly different
predictions of collision observables [13].

B. Asymmetry dependence and the symmetry potential

Regarding Un/p as functions of the asymmetry parameter α,
one can easily verify that the following approximate relation
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FIG. 2. Comparison between DBHF and BHF predictions of
the single-neutron (upper panel) and single-proton (lower panel)
potential. The value of the asymmetry parameter is fixed to 0.4 and
the average Fermi momentum is 1.4 fm−1.

applies:

Un/p(k, kF , α) ≈ Un/p(k, kF , α = 0) ± Usym(k, kF )α (2)

with the ± referring to neutron/proton, respectively. Figure 3
displays the left-hand side of Eq. (1) for fixed density and
nucleon momentum and clearly reveals the linear behavior of
Un/p as a function of α.

Although the main focus of Fig. 3 is the α dependence,
predictions are displayed for the Bonn A, B, and C potentials
[6]. These three models differ mainly in the strength of the
tensor force, which is mostly carried by partial waves with
isospin equal to 0 and thus should fade away in the single-
neutron potential as the neutron fraction increases. Reduced
differences among the three models are in fact observed in Un

at the larger values of α.
Already several decades ago, it was pointed out that the real

part of the nuclear optical potential depends on the asymmetry
parameter as in Eq. (2) [14]. Thus, the quantity

Un + Up

2
= U0, (3)

which is obviously the single-nucleon potential in absence
of asymmetry, should be a reasonable approximation to
the isoscalar part of the optical potential. The momentum
dependence of U0 (which is shown in Fig. 1 as the α = 0 curve),
is important for extracting information about the symmetric
matter EOS and is reasonably agreed upon [4,15–22].
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FIG. 3. The single-neutron (upper panel) and single-proton
(lower panel) potential as a function of the asymmetry parameter
for fixed average density (kF = 1.4 fm−1) and nucleon momentum
(k = kF ).

On the other hand,

Un − Up

2α
= Usym (4)

should be comparable with the Lane potential [14], or the
isovector part of the nuclear optical potential. (Notice that in
the two equations above the dependence upon density, mo-
mentum, and asymmetry has been suppressed for simplicity.)
We have calculated Usym as a function of the momentum,
or rather the corresponding kinetic energy. The predictions
obtained with Bonn A, B, and C are shown in Fig. 4. They are
compared with the phenomenological expression [14]

ULane = a − bT , (5)

where T is the kinetic energy, a ≈ 22−34 MeV, b ≈
0.1−0.2 MeV. We include in the figure predictions near
saturation density (kF = 1.3 fm−1), and at a lower density
(kF = 1.1 fm−1). The latter may be more appropriate when
comparing with nuclear data. The differences between the
upper and lower parts of Fig. 4 indicate that the density
dependence is strongest at low momentum, as is reasonable.
Furthermore, the model dependence is larger at the higher
density. For completeness, we also show BHF predictions
for the isovector potential, see Fig. 5. These are obtained
with our standard choice for the NN potential, Bonn B, and
at the same two densities considered in the previous figure.
Comparison with the corresponding Bonn-B predictions from
Fig. 4 reveals that the DBHF and the BHF predictions are very
close. This can be understood noticing that the single-neutron
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FIG. 4. The symmetry potential as a function of the nucleon
kinetic energy close to saturation density (upper panel) and approxi-
mately one-half of saturation density (lower panel). The predictions
obtained with Bonn A, B, and C are compared with empirical
information from nuclear optical potential data (shaded area). See
text for details.

and the single-proton potentials become more attractive by
approximately the same amount in the BHF model, see Fig. 2,
and thus their difference shows only minor variations. (We
would not suggest, however, that the two models are equally
valid, as other constraints clearly point to the DBHF model as
more realistic.)

We observe that the strength of the predicted symmetry
potential decreases with energy, a behavior which is consistent
with the empirical information. The same comparison is done
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FIG. 5. As in Fig. 4, with the BHF model and the Bonn B
potential. The corresponding Fermi momenta are indicated inside
the figure.
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FIG. 6. The proton and neutron effective mass as a function of the
asymmetry parameter and for fixed average density (kF = 1.4 fm−1).

in Ref. [5] starting from a phenomenological formalism for
the single-nucleon potential [23,24]. There, it is shown that
it is possible to choose two sets of parameters which lead
to similar values of the symmetry energy but exactly opposite
tendencies in the energy dependence of the symmetry potential
as well as opposite sign of the proton-neutron mass splitting.
As a consequence of that, these two sets of parameters lead
to very different predictions for observables in heavy-ion
collisions induced by neutron-rich nuclei [24]. This fact
suggests that the parameters of the single-nucleon potential
in asymmetric matter are weakly correlated to observables
such as the energy per particle or the symmetry energy,
where proton and neutron contributions are averaged together.
Constraints from “differential” or relative observables, namely
those specifically sensitive to the difference between proton
and neutron properties, are thus very much needed [24].

The effective masses for proton and neutron corresponding
to the single-nucleon potentials of Fig. 1 are shown in Fig. 6 as a
function of α. The predicted effective mass of the neutron being
larger than the proton’s is a trend shared with microscopic
nonrelativistic calculations [10]. In the nonrelativistic case,
one can show from very elementary arguments based on the
curvature of the single-particle potential that a more attrac-
tive potential, as the one of the proton, leads to a smaller
effective mass. In our DBHF effective-mass approximation,
we assume momentum-independent nucleon self-energies, US

and UV , with a vanishing spacial component of the vector
part. In such limit, following similar calculations of symmetric
matter [25], the one-body potential is written as [7]

Ui(p) = m∗
i

E∗
i

US,i + UV,i, (6)

where E∗
i = √

(m∗
i )2 + p2,m∗

i = mi + US,i , and i = n or p
for neutrons or protons, respectively. Defining for convenience
U0,i = US,i + UV,i , the expression above becomes a two-
parameter formula which requires the fitting of two constants,
just like in the nonrelativistic case. Now, since the single-
proton potential is more attractive (see Fig. 1), and both the
neutron and proton potentials tend to the same limit at high
momenta, it is easy to see from Eq. (6), or rather its derivative,
that the proton effective mass obtained in this way must be
smaller than the neutron’s.
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FIG. 7. Contribution from the asymmetry to the average potential
energy per neutron (upper panel) and proton (lower panel). Average
density as in the previous figures.

Before closing, we also show for completeness the average
potential energy per neutron/proton, where the momentum
dependence has been integrated out, see Fig. 7. This is
the proton/neutron potential energy contribution to the total
energy per particle which then appears in the EOS. Actually,
what we show in Fig. 7 are the average potential energies
from which the part coming from the symmetric EOS has
been subtracted out, that is, just the contribution from the
asymmetry to the interaction potential energy,

〈�Un/p〉(ρ, α) = 〈Un/p〉(ρ, α) − 〈U (ρ, α = 0)〉. (7)

Clearly, the contribution from the asymmetry, in both the
momentum-dependent and the momentum-averaged poten-
tials, turns out to be large and positive for neutrons, large
and negative for protons. This component of the mean field
will then be effective in separating the collision dynamics
for neutrons and protons by making more neutrons unbound
than protons (or, by making the neutrons more energetic,
if already unbound). This effect can be discerned through
observables such as the neutron/proton differential flow in
heavy-ion collisions [3].

III. CONCLUSIONS

We have focused on some of the properties of neutrons and
protons in neutron-rich matter. This is a topic of contemporary
interest. Its relevance extends from the dynamics of colliding
nuclei to nuclear astrophysics.

Different models may be in fair agreement with respect to
averaged properties of the EOS, and yet produce very different
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predictions of properties such as the symmetry potential and
the closely related single-nucleon potentials and effective
masses. Clearly, more stringent constraints are needed for the
isospin-dependent properties of the EOS.

Very good transport model calculations are available
from the literature [2,3]. However, a considerable amount
of phenomenology is often involved in the input of these
models (for instance, the mean field is based on some
phenomenological interaction [13,26] and/or the elementary
cross sections are obtained from empirical data). We calculate
all of the above ingredients microscopically and internally
consistent with respect to the two-body force. We are presently
studying the dependence on density and asymmetry of the
in-medium isospin-dependent nucleon-nucleon cross sections

with the purpose of obtaining a convenient parametrization as
a function of energy, density, and asymmetry. Our microscopic
information (both elementary cross sections and mean field)
can be a valuable input for transport model calculations of
heavy-ion dynamical observables. This combined effort will
complement new data to be taken at RIA and eventually shed
light on the less known aspects of the nuclear equation of state.
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