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It has been suggested recently [N. K. Timofeyuk, R. C. Johnson, and A. M. Mukhamedzhanov, Phys. Rev. Lett.
91, 232501 (2003)] that charge symmetry of nucleon-nucleon interactions relates the asymptotic normalization
coefficients (ANCs) of proton and neutron virtual decays of mirror nuclei. This relation is given by a simple
analytical formula that involves proton and neutron separation energies, charges of residual nuclei, and the range
of their strong interaction with the last nucleon. The relation between mirror ANCs, if understood properly, can
be used to predict astrophysically relevant direct proton capture cross sections using neutron ANCs measured
with stable beams. In this work, we calculate one-nucleon ANCs for several light mirror pairs, using microscopic
two-, three-, and four-cluster models and compare the ratio of mirror ANCs to the predictions of the simple
analytic formula. We also investigate mirror symmetry between other characteristics of mirror one-nucleon
overlap integrals, namely, spectroscopic factors and single-particle ANCs.
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I. INTRODUCTION

The asymptotic normalization coefficient (ANC) for one-
nucleon virtual decay A → (A − 1) + N is one of the fun-
damental characteristics of a nucleus A. It determines the
magnitude of the large distance behavior of the projection
of the bound state wave function of the nucleus A onto the
binary channel (A − 1) + N . The recent interest in studying
the one-nucleon ANCs is due to the role they play in nuclear
astrophysics for predicting cross sections of nonresonant
capture reactions at stellar energies. The ANCs provide overall
normalization of the astrophysical S factors of such reactions.
Since the same ANCs play a crucial role in other peripheral
processes such as transfer reactions, they can be measured in
laboratories and used to predict nonresonant capture processes
at low stellar energies [1].

To determine relevant to astrophysics proton ANCs from
transfer reactions, the use of radioactive beams is often
required, which generally involves more difficult and less
accurate experiments than those possible with stable beams.
At the same time, stable beams can often be used to determine
neutron ANCs associated with mirror virtual one-neutron
decays. This has been noticed some time ago in Refs. [2,3],
where the one-nucleon ANCs of the mirror pairs 8B-8Li and
12N-12B were studied in a microscopic approach. In these
works, the calculated ANCs themselves depended strongly
on the choice of the nucleon-nucleon (NN) force, but the ratios
of ANCs for mirror pairs were practically independent of the
choice of the NN force. This property of the ANC ratios could
be used to predict proton capture rates at astrophysical energies
from information about mirror ANCs obtained from transfer
reactions with stable beams. A first experiment that uses the
idea of Ref. [2] to deduce the ANC of 8B from the 8Li ANC
has been already performed [4].

Recently, it has been pointed out that the ANCs for
mirror virtual decays AZN → A−1ZN−1 + n and ANZ →
A−1NZ−1 + p are related if the charge symmetry of NN

interactions is satisfied [5]. This link is approximated by
a simple analytical formula which is a consequence of the
relation between the on-shell amplitudes of mirror virtual
decays. These on-shell amplitudes, called vertex constants,
are equivalent to the coupling constants in particle physics [6].

A link between mirror ANCs also follows from the single-
particle model of nuclei if charge symmetry is valid both
for single-particle potential wells and for mirror one-nucleon
spectroscopic factors. As shown in Ref. [5], predictions of
such a single-particle model are close to the predictions
of the simple analytical formula, derived from consideration
of mirror vertex constants, if nucleon separation energies are
relatively large. This agreement deteriorates with decrease in
separation energies and for weakly bound s states with nodes;
the difference between the two different estimates for the ratio
of mirror ANCs can reach ∼15−20%.

At present, more accurate but simple approximations relat-
ing mirror ANCs are not available. Therefore, numerical calcu-
lations using theoretical structure models are very important.
In the present paper, we try to improve our understanding of
the relation between mirror ANCs by performing calculations
within a microscopic cluster model (MCM). This model
considers the many-body nature of atomic nuclei and takes
into account differences in nuclear structure arising because
of charge symmetry breaking due to the Coulomb interaction.
We expect that MCM will be more accurate than the two
different approximations from Ref. [5]. We calculate one-
nucleon overlap integrals for some mirror light nuclei and
concentrate mainly on mirror ANCs, but other properties of
overlap integrals, such as spectroscopic factors, rms radii,
and single-particle ANCs, and their mirror symmetry are
investigated.

In Sec. II we give definitions for ANCs and their expressions
via nuclear wave functions, show the approximations for the
ratio of mirror ANCs, derived in Ref. [5], and discuss their
validity. In Sec. III we briefly describe our microscopic cluster
model and the ANCs associated with it. The results obtained in
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microscopic calculations are discussed in Sec. IV. A summary
and conclusions are presented in Sec. V.

II. OVERLAP INTEGRALS AND ANCS FOR MIRROR
VIRTUAL DECAYS

The ANC Clj for the one-nucleon virtual decay A → B +
N , where B = A − 1, is defined via the tail of the overlap
integral Ilj (r)

Ilj (r) = 〈χ 1
2 τ {[Yl(r̂) ⊗ χ 1

2
]j ⊗ �JB }JA

|�JA〉 (1)

between the many-body wave functions �JA and �JB of
nuclei A and B. Here l is the orbital momentum, j is the total
relative angular momentum between B and N, τ is the isospin
projection, χ 1

2 τ is the isospin wave function of nucleon N,
and r is the distance between N and the center-of-mass of B.
Asymptotically, this overlap behaves as

√
A Ilj (r) ≈ Clj

W−η,l+1/2(2κr)

r
, r → ∞, (2)

where κ = (2µε/h̄2)1/2, ε is the one-nucleon separation en-
ergy, η = ZBZNe2µ/h̄2κ, µ is the reduced mass for the B + N

system, and W is the Whittaker function. According to Ref. [6],
the ANC Clj , multiplied by the trivial factor ilπ

1
2 (h̄/µc), is

equal to the on-shell amplitude (or vertex constant) of the
one-nucleon virtual decay A → B + N . This vertex constant
can be written as a matrix element that contains the many-body
wave functions of the nuclei A and B. Therefore, the ANC
Clj can also be represented by the same matrix element as
follows [2,7]:

Clj = −2µ
√

A

h̄2

× 〈
χ 1

2 τ

[[[
ϕl(iκr)Yl(r̂) ⊗ χ 1

2

]
j
⊗ �JB

]]
JA

||V̂||�JA
〉
,

(3)

where1

ϕl(iκr) = e− πi
2 (l+1+η)Fl(iκr)/κr, (4)

Fl is the regular Coulomb wave function at imaginary
momentum iκ , and

V̂ =
B∑

i=1

VNN (|r i − rA|) + 	VCoul = V̂N + 	VCoul,

(5)

	VCoul =
B∑

i=1

eieA

|r i − rA| − ZBeAe

r
. (6)

Here ei (eA) is the charge of the i-th (A-th) nucleon, ZB

is the charge of the residual nucleus B, and VNN is the
two-body nuclear NN potential. If the separated nucleon is

1We found a mistake in the phase factor of the function ϕl(iκr)
in Refs. [2,5,7]. The corrected phase factor is given in Eq. (4) of
the present work. This mistake does not influence the previously
published ANCs, spectroscopic factors, or shapes of overlap integrals.

a neutron, ϕl(iκr) = i−ljl(iκr), and jl(iκr) is the spherical
Bessel function.

It has been shown in Ref. [5] that the ratio

R =
(

Cp

Cn

)2

, (7)

where Cp and Cn are proton and neutron ANCs for mirror
nucleon decays, can be approximated as follows:

R ≈ R0 ≡
∣∣∣∣ Fl(iκpRN )

κpRN jl(iκnRN )

∣∣∣∣
2

. (8)

Here κp and κn are determined by the proton and neutron
separation energies εp, and εn, and RN is the radius of the
nuclear interior to the choice of which the ratio R0 is not
strongly sensitive.

The approximation (8) has been derived in Ref. [5] using
Eq. (3) for mirror decays and assuming that the contribution
from r > RN is negligible. This is true for neutron ANCs since
rapid decrease of the short-range nuclear N − B potential cuts
off the contributions from large r. However, for proton ANCs,
an additional term 	Vcoul is present in the matrix element (3),
and at r > RN it can be written as

	Vcoul =
∞∑

λ=0

λ∑
µ=−λ

MλµYλµ(r̂)

rλ+1
− ZBe2

r
, (9)

where

Mλµ = 4πe

B∑
i=1

eir
′
i

λ
Y ∗

λµ(r̂ ′
i ) (10)

is the operator of the electromagnetic moment of multipolarity
λ for the core B and r ′

i = r + r i − rA is the radius-vector of
i-th nucleon with respect to the center-of-mass of the core B.
Equations (9) and (10) are easily obtained by the partial wave
expansion of |r ′

i − r|−1. One can see that the monopole λ = 0
term disappears in Eq. (9). However, slowly decreasing λ �= 0
terms that behave as r−2, r−3, and so on are still present. The
contribution from these terms has been ignored in derivation
of Eq. (8) in Ref. [5]. However, this contribution may be
noticeable if electromagnetic moments of the core B are large.
As has been mentioned in Ref. [5], the contribution from λ �= 0
increases the ratio R.

There are other assumptions leading to Eq. (8), namely,
that differences in mirror wave functions inside the nuclear
interior due to Coulomb interaction are not important and
that charge symmetry of strong interactions is valid [5]. In
fact, because of the stronger Coulomb interactions in Z > N

nuclei, the magnitude of their wave functions are smaller in the
nuclear interior as compared to the wave functions of Z < N

nuclei. This should lead to decrease of R, which may become
more noticeable for very small proton separation energy.
Besides, if any nodes are present in the overlap Ilj (r) then
the contributions from r > RN to Clj , determined by Eq. (3),
may become larger. This can introduce further uncertainties
into approximation (8) because differences in mirror proton
and neutron wave functions in the r > RN region are important
because of the Coulomb effects. It is possible, however, that all
different factors may compensate each other so that, finally,
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approximation (8) could be accurate enough to be used in
practical purposes in the absence of more advanced detailed
calculations.

A different approximation for R can be obtained if the
overlap integral Ilj (r) is thought of as being a normalized
single-particle wave function times the spectroscopic fac-
tor S. In this case Cp(n) = √

Sp(n)bp(n), where bp(n) is the
single-particle proton (neutron) ANC. If charge symmetry
is assumed both for the mirror single-particle wells and the
mirror spectroscopic factors, then the ratio R is equal to the
single-particle ratio

R ≈ Rs.p. ≡ (
bc.s.

p

/
bc.s.

n

)2
, (11)

where bc.s.
p and bc.s.

n are calculated for exactly the same
nuclear potential well. The accuracy of approximation (11) is
determined by the following factors: (i) the two-body potential
model does not include effects of long-range contributions
from nonmonopole λ �= 0 terms in 	VCoul, (ii) the single-
particle potential wells for mirror pairs may differ because
of slightly different matter distributions in their cores, and
(iii) the spectroscopic factors for mirror pairs may be not
exactly the same.

Below, to understand better the validity of these approxi-
mations, we perform calculations of R for some light nuclei
based on a microscopic cluster model.

III. ONE-NUCLEON ANCS IN A MICROSCOPIC
CLUSTER MODEL

The cluster wave function for nucleus A consisting of
core B and nucleon N can be represented as follows:

�JAMA =
∑

lSJBω

A
{
χ 1

2 τ

[[
g

JB

ωlS(r) ⊗ [
�JB

ω ⊗ χ 1
2

]
S

]]
JAMA

}
, (12)

where A = A− 1
2 (1 − ∑A−1

i=1 Pi,A) and the operator Pi,A per-
mutes spatial and spin-isospin coordinates of the i-th and
A-th nucleons. In this work, �JB

ω is a wave function of
nucleus B with the angular momentum JB defined either in
a translation-invariant harmonic-oscillator shell model or in a
multicluster model. The quantum number ω labels states with
the same angular momentum JB , and S is the channel spin. The
relative wave function g

JB

ωlS(r) = g
JB

ωlS(r) Ylm(r̂) also depends
on JB and is determined from the solution of the Schrödinger
equation for �JAMA with some chosen NN potential. Below,
we omit JB and ω in relative functions, overlap integrals, and
their characteristics for simplicity of notations.

The main advantage of a microscopic cluster model (MCM)
is that it is able to provide the correct asymptotic behavior
for the overlap integral between A and B. At large distances,
r → ∞, where the antisymmetrization between the external
nucleon and the core is negligible, this overlap behaves as

IlS(r) ≈ A− 1
2 glS(r) ≈ A− 1

2 ClS

W−η,l+1/2(2κr)

r
. (13)

We achieve this type of behavior by using the microscopic
R-matrix approach [8] and determine the ANC Cls from the
asymptotic behavior of the relative wave functions correspond-
ing to the ω state components [9].

The MCM has been formulated in the lS coupling scheme,
and the transition to the lj coupling scheme is given by the
standard transformation

Clj =
∑

S

(−)JB+ 1
2 −SŜĵW

(
JB

1

2
JAl; Sj

)
ClS, (14)

where W is the Racah coefficient and x̂ = (2x + 1)1/2. The
same transformation is applicable to overlap integrals Ilj and
IlS .

The MCM should provide more reliable ratios R for mirror
ANCs than the approximations (8) and (11). Indeed, unlike in
Eq. (8), the differences in the internal structure of mirror nuclei
due to the Coulomb interaction are taken into account in the
MCM. Also, determining the ANC directly from the tail of the
overlap means that all the nonmonopole contributions from
	VCoul are present in the proton ANCs. The effects of core
excitations are included as well. On the other hand, the MCM
does not appeal to the concept of single-particle structure
of nuclei, and it does not need the hypothesis about charge
symmetry for mirror single-particle potential wells and mirror
spectroscopic factors. Charge symmetry for these quantities
can still be studied within the MCM by investigating mirror
spectroscopic factors, defined as norms of the MCM overlap
integrals

Slj = A

∫ ∞

0
drr2[Ilj (r)]2, (15)

and the single-particle ANCs blj = CljS
−1/2
lj . The latter is

possible because the overlap integrals Ilj (r), divided by the
square root of their spectroscopic factors Slj , are normalized
functions of only one degree of freedom and they play the
same role as single-particle wave functions generated by
some effective local single-particle potential. Comparison
between single-particle ANCs blj for mirror nuclei may
help us understand if mirror symmetry of the effective local
single-particle potential wells is valid.

IV. RATIO OF MIRROR ANCS IN THE MCM

A. Mirror ANCs with charge-independent NN interactions

First of all, we calculated ANCs for several nuclei assuming
that NN interactions in mirror states are exactly the same. This
assumption does not allow us to simultaneously reproduce the
experimental neutron and proton separation energies in mirror
states. However, it enables us to explore the validity of the
approximations (8) and (11). In principle, any NN potential
could be used for these purposes because according to Eq. (8)
the ratioR should not depend on the NN potential. However, in
practice only few potentials can be used in microscopic cluster
model calculations. In this work, we use the best effective NN
interactions adapted for such calculations, namely, the Volkov
potential V2 [10] and the Minnesota (MN) potential [11]. The
two-body spin-orbit force [12] and the Coulomb interaction
are also included.

In this section, we considered three mirror pairs:
8B(2+)-8Li(2+), 13N( 1

2
−

)-13C( 1
2

−
), and 17F( 1

2
+

)-17O( 1
2

+
),

which have been previously studied in Refs. [9,13–15] in
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FIG. 1. Ratio RMCM/R0 (solid curves connecting black symbols) and RMCM/Rs.p. (dashed curves connecting open symbols) for different
values of the Majorana parameter m of the Volkov potential V2 (a) and for different parameter u of the MN force (b) Proton separation energies
corresponding to each calculation are shown above upper horizontal axes. Grey symbols correspond to different channel spin S in the 8B-8Li
mirror pair.

the α + 3He + p (α + t + n), 12C + p (12C + n), and
16O + p (16O + n) microscopic cluster models. We calculated
the ANCs for these mirror pairs for several values of the
parameters m and u of the V2 and MN interactions chosen
to provide a range of theoretical separation energies covering
the experimental separation energies. For each value of m
and u, we calculated the ratio RMCM = (CMCM

p /CMCM
n )2,

using theoretical separation energies and compared it to the
analytical value R0 and single-particle estimate Rs.p. given by
Eqs. (8) and (11). The ratios RMCM/R0 and RMCM/Rs.p. are
shown in Fig. 1.

The error bars on Fig. 1 reflect the following uncertainties
in the calculations of R0 and Rs.p.. R0 depends on the range
RN of the interaction potential between the last nucleon N
and the core B. In Ref. [5] this range was 1.3B1/3. In fact,
some contributions from the NN potential at larger RN may
not be negligible, especially for cases when the wave function
of the last nucleon has nodes. We have observed that, for
all nuclei considered up to now, R0 slowly increases with RN ,
reaches its maximum slightly beyond 1.3B1/3, and then slowly
decreases. In estimating uncertainties in R0, we assumed that
its value is somewhere between 1.3B1/3 and the maximum
value. As for Rs.p., its uncertainties are due to the residual
dependence on the nucleon-core potential. We chose this
potential in the Woods-Saxon form and varied its depth and
radius at fixed diffusenesses to reproduce simultaneously the
theoretical proton and neutron separation energies, calculated
in the MCM. The uncertainties in R0 and Rs.p. vary with the
choice of a mirror pair and are the largest for weakly-bound
proton s states with a node in their wave functions.

As shown in Fig.1, the precision of R0 and Rs.p. in
approximating RMCM varies for different systems. For the
relatively strongly bound mirror pair 13N-13C, with the last

nucleon in the p wave with respect to the 12C core, RMCM

agrees with R0 and Rs.p. within these uncertainties.
Another 0p-shell mirror pair, 8B(2+) − 8Li(2+), is signif-

icantly less bound than 13N−13C. However, the quality of
agreement between RMCM and R0 for the ANCs squared
summed over the channel spin, C2

l = C2
lS=1 + C2

lS=2, is the
same as in the 13N-13C case (see black solid curves in
Fig. 1). In contrast, the single-particle estimate Rs.p. is larger
than RMCM, and this difference increases with decreasing
proton separation energy, reaching 9%. We recall that it is
C2

l that determines the cross sections of the radiative capture
reaction 7Be(p,γ )8B.

The ratios RMCM, calculated for spin channels S = 1 and
S = 2, differ by ∼10% (see grey symbols in Fig.1). If the wave
functions of mirror nuclei were exactly the same, then the
ratio of mirror ANCs would not depend on the channel spin.
The charge symmetry breaking due to the Coulomb interaction
may manifest itself stronger in small components of the wave
functions. Therefore, for such components, deviation from (8)
can be more noticeable. Indeed, for 8B(2+)−8

Li(2+), C2
lS=2 is

about four times larger than C2
lS=1, and RMCM for S = 2 agrees

with R0 better than in the channel with S = 1.
In the last mirror pair considered in this section, 17F( 1

2
+

) −
17O( 1

2
+

), the valence proton and neutron are in the 1s state
with respect to the core 16O. The calculated RMCM values
are about 5–8% smaller than R0 for all the proton separation
energies considered. At the same time, RMCM agrees with
single-particle ratio Rs.p. if the proton separation energy
becomes larger than 1.4 MeV. When the NN interaction
is changed so that the proton separation energy decreases
down to 0.13 MeV, then Rs.p. overestimates RMCM by
about 9%.
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B. Mirror ANCs with charge symmetry
breaking NN interactions

Charge symmetry in realistic NN interactions is broken,
and this may be reflected in effective NN interactions. In the
MCM calculations, different parameters m and u of the V2
and MN potentials should be taken in mirror states in order
to achieve agreement between theoretical and experimental
separation energies. The even components (V31 and V13) of
these potentials do not depend on m and u, but their odd
components (V33 and V11) do. Therefore, a different choice
of m and u in mirror states means that charge symmetry is
still present in even NN interactions, but odd NN interactions
are scaled with some renormalization factor. We refer to this
different choice as to charge symmetry breaking for the sake
of simplicity; however, we do realize that in realistic NN
potentials, the charge symmetry is broken in a different way.

In this section, we calculate ANCs for several mirror pairs of
nuclei that have two-, three-, or four-cluster structure. In most
cases, the wave functions of these nuclei have been obtained
earlier. We calculate ANCs in the lj coupling scheme as usually
done in the analysis of transfer reactions, in which these ANCs
can be, or have been, determined. For nuclear astrophysics,
the sum of the ANCs squared C2

l = C2
lj=1/2 + C2

lj=3/2 is often
needed rather than their individual values in channels with
different j. We show these values as well. Other characteristics
of one-nucleon overlaps 〈A|A − 1〉, namely, spectroscopic
factors, rms radii and single-particle ANCs b2

lj = C2
lj /Slj are

presented is this section as well.

1. 8B-8Li

To reproduce experimental values of both the proton and
neutron separation energies, the Majorana parameters m of V2
should differ in 8B and 8Li by 1.8%. For the MN potential, this
difference is only 1.0%.

The C2
1 3

2
values obtained with the V2 potential are 22–26%

larger than those calculated with MN (see Table I). However,
the ratio R 3

2
= C2

1 3
2
(p)/C2

1 3
2
(n) changes only by 3% with the

NN potential choice. These ratios, 1.048 for V2 and 1.079 for
MN, are smaller than the value R0 = 1.13 ± 0.01 predicted
by the formula (8) but higher than the single-particle value
Rs.p. = 1.01 ± 0.01 obtained from equality of mirror proton
and neutron single-particle potential wells and the mirror
proton and neutron spectroscopic factors.

The C2
1 1

2
values are much smaller then C2

1 3
2
, and they change

only by 9% for 8B and 4% for 8Li with different NN potential,
choices. The ratio R 1

2
= C2

1 1
2
(p)/C2

1 1
2
(n) of the mirror ANCs

in this case, 1.26 and 1.19 for the V2 and MN potentials,
respectively, are by 20% and 10% larger thanR 3

2
, which should

be due to the stronger influence of charge symmetry breaking
effects in the small j = 1/2 component.

The C2
l value increases by 20% with a change of the NN

force. However, the ratioRMCM changes only within 2%, being
1.068 and 1.092 for V2 and MN, respectively. Its average value
of 1.08 is closer to the analytical value R0 = 1.13 ± 0.01
than to the single-particle value Rs.p. = 1.01 ±0.01. We recall
that for charge-independent NN interactions, the difference in

RMCM and R0 is only about 2% for energies εp similar to the
experimental ones.

The proton ANCs for 8B were determined in Ref. [16] using
the (7Be,8B) transfer reactions on two different targets, 14N and
10B. The average value of C2

1 deduced from these experiments
is 0.449 ± 0.045 fm−1. The breakup reaction at intermediate
energies gave a very close value of 0.450 ± 0.039 fm−1 [17].
These values are 42% and 30% smaller than the MCM predic-
tions with the V2 and MN potentials, respectively. The neutron
ANC of the mirror nucleus 8Li was experimentally determined
in Ref. [18] using transfer reaction 13C(7Li,8Li)12C. Its value,
C2

1 = 0.449 ± 0.045 fm−1, is also much smaller than the
MCM predictions. However, the ratio of the experimentally
determined mirror ANCs is 1.08 ± 0.15, which in excellent
agreement with the average MCM ratio.

The shapes of the angular distributions of the transfer
reaction 13C(7Li,8Li)12C are very sensitive to the interference
between the contributions from the overlap integrals with
different j. It found in Ref. [18] that C2

1 3
2
/C2

1 1
2

= 0.13(2). This

value is in excellent agreement with the value of 0.131 obtained
in the MCM using the MN potential. As for V2, it predicts a
much lower C2

1 3
2
/C2

1 1
2

ratio, equal to 0.108.

The mirror spectroscopic factors S1 3
2

of large components
of the overlap integrals differ by about 1%, and they change
less than 1% with a different choice of the NN potential (see
Table I). However, small spectroscopic factors S1 1

2
are more

sensitive to the NN potential choice, and their difference in
mirror states reaches 20%. The sums of mirror spectroscopic
factors S1 = S1 3

2
+ S1 1

2
differ in mirror nuclei 8Li and 8B only

by 2%.
The values b2

lj calculated with the V2 and MN potentials
are presented in Table 1 as well. The ratio of b2

lj for the mirror
overlaps differs by 5–10% from the single-particle estimate
Rs.p. = 1.01 ± 0.01 obtained on the assumption that mirror
single-particle potential wells are exactly the same. Therefore,
the present MCM calculations suggest that this assumption is
not valid.

It is interesting to note that MCM predicts that the rms
radius 〈r2

1 1
2
〉1/2 should be larger than 〈r2

1 3
2
〉1/2. The same result

was obtained earlier in Ref. [2], where the overlap integrals
were found as solutions of the inhomogeneous equation with
a shell model source term. A standard single-particle potential
model with central and spin-orbit potentials predicts that the
single-particle wave function with j = 3/2 has a smaller
radius than the one with j = 1/2. To achieve this inversion of
the rms radii, the phenomenological single-particle spin-orbit
potential should be taken with opposite sign. Understanding
the differences in j = 3/2 and j = 1/2 overlaps is important
for the accurate determination of ANC from transfer reactions.

2. 12B-12N

To study the overlap integrals 〈12N|11C〉 and 〈12B|11B〉, we
use the wave functions of 12B and 12N calculated earlier in
Ref. [19] in the multichannel two-cluster models 11B + n and
11C + p with excited states 1

2
−
, 3

2
−
, 5

2

−
, and 7

2
−

of the 11B and
11C cores taken into account.
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TABLE I. Asymptotic normalization coefficients squared C2
lj (in fm−1), their sums C2

l , spectroscopic factors Slj and Sl = Sl,l− 1
2

+ Sl,l+ 1
2
,

ratio b2
lj = C2

lj /Slj (in fm−1) and rms radii 〈r2
lj 〉1/2 (in fm) for mirror overlap integrals. The calculations were performed with two NN potentials,

V2 and MN. The ratios R of similar quantities of mirror overlaps are given in each third line.

l C2
l,l− 1

2
C2

l,l+ 1
2

C2
l Sl,l− 1

2
Sl,l+ 1

2
Sl b2

l,l− 1
2

b2
l,l+ 1

2
〈r2

l,l− 1
2
〉1/2 〈r2

l,l+ 1
2
〉1/2

〈8B(2+)|7Be( 3
2

−
)〉 − 〈8Li(2+)|7Li( 3

2

−
)〉

p 1 0.0886 0.6850 0.7736 0.104 0.926 1.030 0.850 0.740 5.08 4.83
V2 n 1 0.0706 0.6539 0.7244 0.086 0.955 1.040 0.823 0.685 4.078 3.87

R 1.256 1.048 1.068 1.217 0.970 0.990 1.033 1.098

p 1 0.0811 0.5602 0.6413 0.114 0.922 1.037 0.709 0.607 4.76 4.51
MN n 1 0.0682 0.5193 0.5875 0.102 0.942 1.044 0.668 0.552 3.83 3.64

R 1.189 1.079 1.092 1.119 0.979 0.993 1.06 1.10

〈12N(1+)|11C( 3
2

−
)〉 − 〈12B(1+)|11B( 3

2

−
)〉

p 1 1.76 0.595 2.35 0.672 0.261 0.933 2.61 2.28 4.07 3.92
V2 n 1 1.38 0.445 1.82 0.684 0.262 0.946 2.02 1.70 3.59 3.47

R 1.28 1.34 1.29 0.982 0.996 0.986 1.29 1.34

p 1 1.529 0.598 2.127 0.637 0.276 0.913 2.40 2.17 3.97 3.86
MN n 1 1.201 0.440 1.641 0.661 0.278 0.939 1.82 1.58 3.50 3.41

R 1.27 1.36 1.30 0.964 0.993 0.972 1.32 1.37

〈13N( 1
2

−
)|12C(0+)〉 − 〈13C( 1

2

−
)|12C(0+)〉 two-cluster model

p 1 2.66 0.530 5.01 3.63
V2 n 1 2.36 0.531 4.45 3.37

R 1.13 0.998 1.13

p 1 2.18 0.502 4.35 3.50
MN n 1 1.92 0.498 3.85 3.26

R 1.14 1.008 1.13

〈13N( 1
2

−
)|12C(0+)〉 − 〈13C( 1

2

−
)|12C(0+)〉 four-cluster model

p 1 1.54 ± 0.04 0.335 4.61 ± 0.10 3.58
V2 n 1 1.30 ± 0.04 0.330 3.95 ± 0.12 3.32

R 1.19 ± 0.01 1.01 1.17 ± 0.01

p 1 1.34 ± 0.04 0.341 3.93 ± 0.12 3.44
MN n 1 1.12 ± 0.06 0.336 3.33 ± 0.18 3.20

R 1.19 ± 0.01 1.01 1.17 ± 0.01

〈15O( 1
2

−
)|14N(1+)〉 − 〈15N( 1

2

−
)|14N(1+)〉

p 1 64.7 0.830 65.5 1.420 0.017 1.437 45.6 48.8 3.10 3.15
V2 n 1 43.9 0.568 44.5 1.456 0.017 1.473 30.2 33.27 3.00 3.05

R 1.473 1.461 1.473 0.975 1.006 0.976 1.511 1.465

p 1 52.7 0.051 52.7 1.465 8.6×10−4 1.466 35.9 58.6 2.98 3.35
MN n 1 35.6 0.036 35.6 1.489 8.2×10−4 1.489 23.9 43.7 2.89 3.29

R 1.479 1.417 1.481 0.984 1.049 0.985 1.502 1.34

〈15O( 3
2

+
)|14N(1+)〉 − 〈15N( 3

2

+
)|14N(1+)〉

p 0 33.18 0.986 33.7 5.01
V2 n 0 8.74 0.953 9.17 4.15

R 3.79 1.035 3.68

p 0 29.4 0.995 29.6 4.80
MN n 0 7.67 0.966 7.93 3.99

R 3.82 1.03 3.73

064305-6



ASYMPTOTIC NORMALIZATION COEFFICIENTS FOR . . . PHYSICAL REVIEW C 71, 064305 (2005)

TABLE I. (Continued.)

l C2
l,l− 1

2
C2

l,l+ 1
2

C2
l Sl,l− 1

2
Sl,l+ 1

2
Sl b2

l,l− 1
2

b2
l,l+ 1

2
〈r2

l,l− 1
2
〉1/2 〈r2

l,l+ 1
2
〉1/2

〈17F( 5
2

+
)|16O(0+)〉 − 〈17O( 5

2

+
)|16O(0+)〉

p 2 1.09 1.122 1.056 3.84
V2 n 2 1.00 1.125 0.889 3.61

R 1.19 0.997 1.19
p 2 0.951 1.124 0.846 3.67

MN n 2 0.796 1.126 0.706 3.47
R 1.19 0.998 1.20

〈17F( 1
2

+
)|16O(0+)〉 − 〈17O( 1

2

+
)|16O(0+)〉

p 0 8000 1.095 7277 5.55
V2 n 0 11.0 1.110 9.93 4.40

R 727 0.986 733

p 0 7110 1.110 6444 5.32
MN n 0 9.66 1.113 8.68 4.24

R 736 0.997 742

〈23Al( 5
2

+
)|22Mg(0+)〉 − 〈23Ne( 5

2

+
)|22Ne(0+)〉

p 2 1.17 × 104 0.285 4.12 × 104 3.93
V2 n 2 0.398 0.299 1.33 3.68

R 2.95 × 104 0.953 3.11 × 104

p 2 1.02 × 104 0.281 3.61 × 104 3.83
MN n 2 0.343 0.294 1.17 3.60

R 2.96 × 104 0.956 3.09 × 104

〈27P( 1
2

+
)|26Si(0+)〉 − 〈27Mg( 1

2

+
)|26Mg(0+)〉

p 0 1648 0.901 1830 4.43
V2 n 0 36.0 0.824 45.2 3.93

R 45.8 1.09 40.5

p 0 1380 0.873 1582 4.28
MN n 0 31.1 0.809 38.5 3.81

R 44.3 1.08 41.1

The ANCs, spectroscopic factors, rms radii of these over-
laps, and the single-particle ANCs blj are presented in Table I.
The dependence of these values on the NN potential choice is
weaker than in the case of 8Li-8B. The ratio RMCM depends
on the NN potential choice less than the ANCs themselves,
and the difference between R 3

2
and R 1

2
is smaller than for the

8B-8Li mirror pair. RMCM, which is equal to 1.29 for V2 and
1.30 for MN, agrees well with the single-particle estimate
Rs.p. = 1.30 ± 0.02 obtained on the assumption of charge
symmetry of mirror single-particle potential wells. However,
it is smaller than the prediction R0 = 1.38 ± 0.02 of Eq. (8)
by 6%. In Sec. IV A, we showed that for the p-shell nucleus
8B with the proton separation energy similar to that in 12N,
RMCM agrees with R0 within uncertainties of the calculation
of the latter (see m = 0.56 and u = 1.01 cases in Fig. 1).
Therefore, the 6% deviation of RMCM from R0, obtained in
this section, can be attributed to the charge symmetry breaking
in the effective NN interactions, which is about 1.9% for V2
and 5.8% for MN.

The neutron ANC C
exp
l = 1.16 ± 0.10 fm−1/2 and the

rms radius 〈r2
exp〉1/2 = 3.16 ± 0.32 fm for 〈12B|11B〉 were

reported in Ref. [20], where they were determined from the
11B(d, p)12B reaction. Our MCM calculations give the larger
values, Cl = 1.35 fm−1/2 for V2 and and Cl = 1.28 fm−1/2

for MN, while the theoretical rms radius ranges from 3.41 to
3.59 fm depending on j and NN force.

The proton ANCs for 12N have been determined
from the peripheral transfer reaction 14N(11C,12N)13C in
Ref. [21], resulting in C2

l 1
2

= 1.4 ± 0.2 fm−1/2, C2
l 3

2
= 0.33 ±

0.05 fm−1/2, and C2
l = C2

l 1
2
+ C2

l 3
2

= 1.73 ± 0.25 fm−1/2.

Our MCM calculations overestimate the experimental C2
l

value by 35% for V2 and 23% for MN. The theoretical ratio
C2

l 3
2
/C2

l 1
2

0.34 for V2 and 0.39 for MN, is also larger than the

experimental value of 0.24 ± 0.07. However, the ANCs in
mirror nuclei are overestimated in the same proportion, so that
the theoretical ratio RMCM of 1.29 and 1.30 agrees well with
the experimental value Rexp = 1.28 ± 0.29.

064305-7



N. K. TIMOFEYUK AND P. DESCOUVEMONT PHYSICAL REVIEW C 71, 064305 (2005)

The spectroscopic factors in 12N and 12B change by no more
than 6% with different choices of the NN potential. The mirror
spectroscopic factors S1 1

2
differ by 2.8 and 3.6% for V2 and

MN, respectively, while S1 1
2

are practically the same for both
of them.

3. 13C-13N

To describe the mirror pair 13N-13C, we used two different
models: the multichannel two-cluster model 12C + n(p) from
Ref. [15] and the multichannel four-cluster model α + α + α

+ n(p) developed in Ref. [22]. Numerical precision of ANCs
squared obtained in the latter model is about 2–3%. The results
of calculations are presented in Table I.

The ANCs obtained in two- and four-cluster models differ
by 60–80%, and the spectroscopic factors differ by about
50–60% depending on the NN potential used in calculations.
Such a large difference arises because the α + α + α model
for the nucleus 12C contains only one type of permutational
symmetry determined by the Young diagram [f ] = [444].
As explained in Ref. [15], the main contribution to the
spectroscopic factor, vertex constant, and, therefore, to the
ANC of the overlap integral 〈13C|12C〉 comes from the overlap
between the [4441]22P state in 13C and the [4431]13P state
in 12C. The [4431]13P configuration is absent in the α +
α + α model but is present in the one-center shell model
wave function of 12C used in the two-cluster model. For
this reason, the two-cluster model gives larger ANCs and
spectroscopic factors for 13C and 13N, than the four-cluster
model.

Several experimental values for the neutron ANC of 13C
are available [20,23–27]. Apart from the latest value from
Ref. [20], obtained from a nonperipheral (d, p) reaction, they
agree with each other leading to an average value C2

l = 2.36 ±
0.12 fm−1. Our two-cluster calculations with V2 agree with
this value, while the same calculations performed with MN
underestimate it. However, such calculations are very sensitive
to the spin-orbit force, as it regulates the probability of the
[4431]13P configuration in 12C [15]. As for the four-body
model, it underestimates the experimental values C2

l squared
by a factor of 2.

The ratio RMCM calculated in the four-cluster model agrees
well with both the analytical value R0 = 1.198 ± 0.004 and
the single-particle value Rs.p. = 1.168 ± 0.020. However, the
two-cluster model gives smaller values ofRMCM, 1.13 and 1.14
for the V2 and MN potentials, respectively. As we have seen
in Sec. IV A, the two-cluster model RMCM agrees with both
R0 and Rs.p. if the charge symmetry of the NN interactions
is present. In this section, to reproduce the mirror separation
energies εp and εn within the two-cluster model, the Majorana
parameters m of V2 in mirror nuclei 13C and 13N have to be
different by 1.4% and the parameters u of MN must differ
by 1.9%, which corresponds to ∼6% difference in the odd
NN potentials. With actual parameters m and u, used in the
two-cluster calculations, the singlet- and triplet-odd parts of
the NN potentials are large. As a result, the deviation of RMCM

from what would be expected in the case of charge symmetry, is
comparable to the degree to which charge symmetry is broken.
The situation is different for the four-cluster model where the

required charge symmetry breaking in these components is
also smaller and the actual choice of parameters m and u gives
to weaker odd NN potentials.

The spectroscopic factors obtained are sensitive to both the
model and the NN potential choice; however, the difference in
mirror spectroscopic factors does not exceed 2%. The same
model that reproduces the experimental ANC value in 13C
gives the spectroscopic factor S = 0.53, which is lower than
the shell model value of 0.68 from Ref. [28].

4. 15O-15N

We describe 15O and 15N in the multichannel two-cluster
14N + p(n) model with the core 14N being either in the
ground state or in one of the first excited states 1+, 2+,
or 3+. The internal structure of the 14N core is represented
by the 0p oscillator shell model with the oscillator radius
of 1.6 fm. We consider only two states in 15O and 15N,
the ground state and the first 3/2+ state, since they are the
most important for understanding 15O production in the CNO
cycle.

For the ground states of 15O and 15N, |C1 3
2
|2 are about two

orders of magnitude smaller than |C1 1
2
|2 for both NN potentials

used in the calculations (see Table I), while the experimentally
determined |C1 3

2
|2 is only one-tenth of |C1 1

2
|2 [29]. The

|Cl|2 = 65.5 fm−1 value calculated with V2 agrees with the
experimental value of 63 ± 14 fm−1 from Ref. [30], while
|Cl|2 = 52.7 fm−1 calculated with MN agrees with another
available experimental value of 54 ± 5.9 fm−1 [29]. The ratio
RMCM = 1.48, which is almost the same for both NN potentials,
agrees well with the analytical value R0 = 1.48 obtained from
Eq. (8) and with the single-particle value Rs.p. = 1.51 ± 0.03.

The difference between mirror spectroscopic factors does
not exceed 2.5% for j = 1/2, but it is slightly larger for j = 3/2
and the MN potential. This difference is most likely due to the
∼3% difference in the NN potential parameters in mirror states
required for simultaneous reproduction of proton and neutron
separation energies in 15O and 15N.

The ANCs for the first excited 3/2+ state is less sensitive
to the NN potential choice than those for the ground state.
An experimentally determined value C2

l = 21 ± 5 fm−1 for

the 〈15O( 3
2

+
1 )|14N〉 has been reported in Ref. [30]. The exper-

imental data from this work have been recently reanalyzed in
Ref. [29], increasing this value to C2

l = 27.6 ± 6.8 fm−1. The
results of our calculations, 33.2 and 29.4 fm−1, are close to
this reconsidered value.

The RMCM values for 3/2+
1 , calculated with V2 and MN,

differ only by 1%, and this value, RMCM = 3.8, is smaller than
the analytical estimate R0 = 4.23 ± 0.15 from Eq. (8) but
larger than the single-particle value Rs.p. = 3.62 ± 0.03. This
difference must originate purely from the charge symmetry
breaking due to the Coulomb interaction, since the parameters
m and u of nuclear NN potentials differ less than by half of
one percent in the mirror 3/2+ states. The Coulomb effects
should be also responsible for the 3% difference in mirror
spectroscopic factors and for deviation of (bp/bn)2 from the
single-particle value Rs.p. = 3.62 ± 0.03.
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5. 17F-17O

To describe 17F and 17O, we use single-channel two-cluster
models 16O + n and 16O + p from Refs. [9,13]. To reproduce
simultaneously the proton and neutron separation energies
in 17F and 17O, less than 1% difference in the NN potential
parameters in mirror states is required.

The ANCs calculated with V2 are on average 13–14%
larger than those obtained with the MN potential (see Table I).
However, the ratio RMCM of mirror ANCs does not change
with NN potential choice in the ground states and differs only
by 1% in the first excited states. The spectroscopic factors are
practically insensitive to the NN potential and differ in mirror
states by approximately 1%.

In the 17F and 17O ground states, the RMCM = 1.19 value
agrees with the single-particle estimate Rs.p. = 1.21 ± 0.03
based on charge symmetry of mirror potential wells and is
slightly smaller than prediction R0 = 1.21 from the analytical
formula (8). However, for the first excited state 1/2+,RMCM ≈
730 is noticably larger than the single-particle value of 702 ± 4
and significantly smaller than the analytical value R0 =
837 ± 42. In Sec. IV A we showed that in the presence of
charge symmetry of the NN interactions, the RMCM value,
calculated for very small proton separation energies, is approx-
imately the average between R0 and Rs.p.. The RMCM value
of the present section is about 6% smaller than (R0 + Rs.p.)/2,
which should be due to the charge symmetry breaking required
to reproduce mirror separation energies εp and εn in the 1/2+
state.

The ratio b2
p/b2

n of mirror single-particle ANCs squared
(733 for V2 and 742 for MN) for the first excited state 1/2+
is larger than Rs.p.. This means that in the effective local
two-body potential model, the nuclear potential fields for 1s 1

2

protons and neutrons are slightly different. This contrasts with
the situation for 0d 5

2
proton and neutron in ground states of

17F and 17O, where they can be considered as being placed in
the same nuclear potential well.

The results of the calculations described above have been
obtained with an oscillator radius of 1.76 fm, which reproduces
the rms radius of 16O. We repeated the same calculations with
a much smaller value of the oscillator radius, r0 = 1.5 fm, in
order to check how RMCM depends on the wave function of the
core 16O. With smaller r0,

16O has a 38% smaller rms radius,
the expectation energy of the 16O core is lowered by 20 MeV,
and C2

l drops by about 40%. However, theRMCM changes only
by 2% and 5% for the 5/2+ and 1/2+ states, respectively. This
is consistent with the idea behind the formula (8) that the ratio
of mirror ANCs depends only on the core charge and on the
separation energies of mirror proton and neutron.

The experimental value C2
l = 0.667 ± 0.042 fm−1 for

17Og.s. has been determined in Ref. [31]. As already reported in
Ref. [9], the MCM calculations with V2 and MN overestimate
this value. For the mirror nucleus 17F, the proton ANC has
been experimentally determined in Refs. [32–36] (the ANCs
from the data measured in [32,33] are given in [35]). The
C2

l values from the first four works, 0.772 ± 0.19, 0.911 ±
0.082, 0.811 ± 0.082, and 0.838 ± 0.05 fm−1, agree with
each other within the error bars giving the average value of
0.836 ± 0.050 fm−1. However, the C2

l = 1.08 ± 0.10 fm−1

from Ref. [36] is about 30% larger. The theoretical value
RMCM = 1.19 agrees well with the averaged experimental
value Rexp = (Cexp

p /C
exp
n )2 = 1.25 ± 0.15 if the ANC from

Ref. [36] is disregarded.

6. 23Al-23Ne

To check if the relation between mirror ANCs is still
valid with increasing mass and charge of a mirror pair,
we calculated the overlap integrals 〈23Ne( 5

2

+
)|22Ne(0+)〉 and

〈23Al( 5
2

+
)|22Mg(0+)〉. The latter is relevant to the proton

capture reaction 22Mg(p, γ )23Al in novae [37].
We describe 23Al and 23Ne in the multichannel two-cluster

models 22Mg + p and 22Ne + n respectively, where the
cores 22Mg and 22Ne are in the ground state 0+ and in the
excited 1+

1 , 2+
1,2,3, 3+

1 , and 4+
1,2 states. The internal structure

of these states is represented by closed 0s and 0p shells
and linear combinations of all possible Slater determinants
of the 0d 5

2
shell with the oscillator radius chosen to be

1.7 fm. The results of these calculations are presented in
Table I.

The calculated ratio RMCM ≈ 2.95×104 is about 12%
higher than both the analytical value R0 = (2.64 ± 0.03)×104

and the single-particle value Rs.p. = (2.67 ± 0.03)×104. It
is unlikely that such a deviation could come from the 1.5%
difference in the NN potential parameters needed to reproduce
both proton and neutron separation energies in 23Al and 23Ne.
To exclude this reason, we computed RMCM using exactly
the same NN interactions in these mirror nuclei. As a result,
the divergence between RMCM and R0 increased and reached
15%. The agreement between RMCM and R0 was restored
after we dropped all channels but one, namely, 22Mg(0+

1 ) +
p and 22Ne(0+

1 ) + n, in the wave functions of 23Al and
23Ne. By adding and eliminating different configurations (see
Table II), we found that the main reason for the difference
between RMCM and R0 is the coupling to the 2+

1 and 4+
1

members of the 0+ ground state rotational band and to the
second excited state 4+

2 in the 22Ne and 22Mg cores. The
spectroscopic factors calculated in the MCM for these core
excitations, 0.62, 0.75, and 0.95, respectively, are signifi-
cantly larger than the spectroscopic factors of ∼0.29 for the
cores 22Mg(0+

1 ) and 22Ne(0+
1 ) in their ground states. These

spectroscopic factors for mirror overlaps 〈23Ne( 5
2

+
)|22Ne(0+)〉

and 〈23Al( 5
2

+
)|22Mg(0+)〉 differ by about 4.5%, and they are

reasonably close to the value of 0.34 predicted by the shell
model calculations in Ref. [37].

Growing disagreement between RMCM and R0 when
including more core excitations can be explained by the
increasing role of the quadrupole term 	VCoul in deformed
nuclei. This term decreases slowly at large r as r−3, giving rise
to contributions to Eq. (3) from beyond the nuclear range RN ,
which were ignored in deriving formula (8) for R0. For very
small proton separation energies, the contribution from nuclear
interior to the proton ANC may be even more reduced with
increasing orbital momentum l because of the (κr)l behavior
at r → 0. If this is true, then artificial increase of proton
separation energy in 23Al should lead to smaller differences
betweenRMCM andR0. To check this, we performed the MCM
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Table II. RMCM and R0 for the 23Ne-23Al and 27P-27Mg mirror pairs calculated with different excitations in
the 22Ne-22Mg and 26Si-26Mg cores. Calculations were performed with Volkov potential V2 assuming the same
interactions in mirror nuclei and with Majorana parameters m chosen to fit the experimental proton separation
energies in 23Al or 27P.

Core excitations RMCM R0 RMCM/R0

〈23Al( 5
2

+
)|22Mg(0+)〉 − 〈23Ne( 5

2

+
)|22Ne(0+)〉

0+
1 1.86×104 1.82×104 1.02

0+
1 ,2+

1 2.24×104 2.15×104 1.05
0+

1 ,2+
1 ,4+

1 2.90×104 2.67×104 1.09
0+

1 ,1+
1 ,2+

1 ,4+
1 2.93×104 2.67×104 1.10

0+
1 ,1+

1 ,2+
1 ,3+

1 ,4+
1 2.96×104 2.65×104 1.12

0+
1 ,1+

1 ,2+
1,2,3+

1 ,4+
1 3.17×104 2.84×104 1.12

0+
1 ,1+

1 ,2+
1,2,3,3+

1 ,4+
1 3.21×104 2.87×104 1.12

0+
1 ,1+

1 ,2+
1,2,3,3+

1 ,4+
1,2 3.86×104 3.37×104 1.15

〈27P( 1
2

+
)|26Si(0+)〉 − 〈27Mg( 1

2

+
)|26Mg(0+)〉

0+
1 44.04 46.3 0.95

0+
1 ,2+

1 46.96 45.7 1.03
0+

1 ,2+
1 ,4+

1 47.08 45.8 1.03

calculations for V2 with smaller values of m. Figure 2 shows
that RMCM/R0 indeed decreases with increasing separation
energy εp. The decrease with εp, but to a lesser extent, is also
present if all the core excitations are removed (open circles in
Fig 2).

7. 27P-27Mg

In this section, we study another sd-shell mirror pair
27P-27Mg and the overlap integrals 〈27Mg|26Mg〉 and

Proton separation energy in 
23

Al (MeV)
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0
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1,2
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1,2,3, 3
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1,4
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23
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23
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Excitations in the 
22

Ne and 
22

Mg cores:

6543210 7

FIG. 2. Ratio RMCM/R0 for the 23Al-23Ne mirror pair as a
function of the proton separation energy in 23Al calculated with (filled
circles) and without (open circles) excitations in the 22Mg and 22Ne
cores. The error bars are due to uncertainties in calculating R0, as
explained in Sec. IV A. Calculations were performed with different
Majorana parameters m of the Volkov potential V2. Experimental
proton separation energy is 0.123 MeV.

〈27P|26Si〉. The latter is relevant to the proton capture reaction
26Si(p, γ )27P in the rp process in hot stellar hydrogen burning
[38].

We describe 27P and 27Mg in the two-cluster models
26Si + p and 26Mg + n, respectively, in which the cores 26Si
and 26Mg can be in ground state 0+

1 and in first 2+
1 and

4+
1 excited states. The internal structure of these states is

represented by the Slater determinants composed of 0s, 0p,
and 0d 5

2
single-particle oscillator wave functions with the

oscillator radius of 1.7 fm.
First, we studied the dependence of the ratio RMCM/R0 on

core excitations using the assumption of charge symmetry
of the NN interaction. The results, presented in Table II,
show that coupling to the configuration with the core in
the 2+

1 state increases this ratio by 8%. This configuration
has a spectroscopic factor of 0.25, which is 3.5 times
smaller than that for the ground state. These results were
obtained for the V2 potential, in which the parameter m was
fitted to reproduce the experimental proton separation energy
in 27P.

With the NN interaction different in mirror nuclei, the
difference between RMCM and R0 is 2.5%. The average
value RMCM = 45.0 ± 0.8 is larger than the single-particle
estimate Rs.p. = 40.3 ± 1.1 , but Rb = b2

p/b2
n = 40.8 ± 0.3

agrees with Rs.p.. This means that potential wells for mir-
ror valence neutron and proton can be considered to be
the same. Therefore, the deviation of R0 from Rs.p. is
due to the difference in mirror spectroscopic factors. This
difference, 9% for V2 and 8% for MN, is unexpectedly
large.

The average value of the spectroscopic factor in 27P and
27Mg, which is ∼0.85, is about twice the value predicted by
the shell model calculations in [38]. Such a disagreement is
most likely caused by neglect of 1s 1

2
and 0d 3

2
orbitals in the

core wave functions.
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Table III. Number of nodes n, orbital momentum l, proton (εp) and neutron (εn) separation energies (in MeV), single-particle estimate Rs.p.,
microscopic calculations RMCM, analytical estimate R0, microscopic calculations for Rb = C2

pSn/(C2
nSp) for the mirror pairs from the first

column. Average value between calculations with V2 and MN potentials is presented for RMCM and Rb. Charge symmetry breaking of NN
interactions is assumed in the MCM calculations.

Mirror pair J π nl εp εn Rs.p. RMCM R0 Rb

j = l − 1/2 j = l + 1/2

8B-8Li 2+ 0p 0.137 2.03 1.01 ± 0.01 1.075 ± 0.013 1.13 ± 0.01 1.046 ± 0.014 1.099 ± 0.001
12N-12B 1+ 0p 0.601 3.37 1.30 ± 0.02 1.295 ± 0.05 1.38 ± 0.02 1.305 ± 0.015 1.355 ± 0.015
13N-13Ca 1

2

−
0p 1.944 4.95 1.168 ± 0.02 1.135 ± 0.005 1.198 ± 0.004 1.13

13N-13Cb 1
2

−
0p 1.944 4.95 1.168 ± 0.02 1.19 ± 0.01 1.198 ± 0.004 1.17 ± 0.01

15O-15N 1
2

−
0p 7.297 10.8 1.51 ± 0.03 1.477 ± 0.004 1.48 1.506 ± 0.005 1.40 ± 0.06

15O-15N 3
2

+
1s 0.507 3.53 3.62 ± 0.02 3.805 ± 0.015 4.23 ± 0.15 3.705 ± 0.025

17F-17O 5
2

+
0d 0.601 4.14 1.21 ± 0.03 1.19 1.21 1.195 ± 0.005

17F-17O 1
2

+
1s 0.106 3.27 702 ± 4 731 ± 5 837 ± 42 738 ± 5

23Al-23Ne 5
2

+
0d 0.123 4.42 (2.67 ± 0.03)×104 2.95×104 (2.63 ± 0.03) × 104 (3.10 ± 0.01) × 104

27P-27Mg 1
2

+
1s 0.859 6.44 40.3 ± 1.1 45.0 ± 0.8 44.0 ± 0.7 40.8 ± 0.3

aTwo-cluster model.
bFour-cluster model.

V. SUMMARY AND CONCLUSIONS

The ANCs for mirror virtual nucleon decays should be
related because of charge symmetry of the NN interactions.
According to the simple analytical formula (8) derived in
Ref. [5], this relation is determined only by the separation
energies of mirror proton and neutron, the charge of the
residual nucleus, and the range of its strong interaction with the
last nucleon. The ratio of mirror ANCs should not be sensitive
to the NN potential and details of internal nuclear structure.
This ratio should be the same in channels with different spin
or for the same transferred angular momentum j.

The MCM calculations of the present paper confirm this
general trend. For the mirror pairs considered here, the ratio
RMCM changes by four orders of magnitude as predicted by
Eq. (8). Moreover, when charge symmetry of NN interactions
is assumed in MCM, RMCM and R0 for nodeless overlaps are
in good agreement even for small separation proton energies.
This agreement occurs for both of the NN interactions used
in calculations. For the overlap 〈17F( 1

2
+

)|16O〉 with a node,
a judgment about the agreement between RMCM and R0

is more difficult to make because of uncertainties in the
choice of RN to calculate R0. Nevertheless, for very small
proton separation energies, RMCM is closer to R0 rather than
to Rs.p..

The most noticeable disagreement between RMCM and R0

can be seen for small components of overlap integrals, for
example, for j = 1/2 component in 〈8B|7Be〉. Even in this
case, the disagreement is on the level of 8% if charge symmetry
of NN interactions is valid. Stronger disagreement can occur
for nuclei with deformed cores. For the 23Al-23Ne mirror pair,
strong coupling to the excited states in the 22Mg and 22Ne
cores increase this disagreement up to 15%.

The charge symmetry breaking of the NN interactions,
required to reproduce simultaneously the experimental proton

and neutron separation energies, reducesRMCM with respect to
R0. This is especially noticeable for two-cluster calculations
of the 13N-13C mirror pair, where this effect reaches 6% (see
Table III). These two-cluster calculations require too large
odd NN interactions with strong breaking of mirror symmetry.
Four-cluster calculations, which do not require strong breaking
of mirror symmetry, give much better agreement between
RMCM and R0. Good agreement between RMCM and R0 also
occurs for another 0p overlap 〈15O( 1

2
−

)|14N〉. However, with
decreasing proton separation energy, for example, for 8B-8Li
and 12N-12N mirror pairs, this agreement deteriorates and the
deviations reach 6%.

For other nodeless overlaps considered here, the agreement
between RMCM and R0 depends on the deformation of the
residual nucleus. In the absence of strong core excitations
[the 17F( 5

2

+
)-17O( 5

2

+
) case] the agreement between RMCM

and R0 is good; however, strong coupling to excited states
of the core may noticeably increase RMCM, for example,
in 23Al( 5

2

+
)-23Ne( 5

2

+
). For overlaps with one node and a

loosely bound proton, the situation is the opposite. RMCM

and R0 are in good agreement if core excitations are present
[27P( 5

2

+
)-27Mg( 5

2

+
)], otherwise RMCM is smaller than R0 [as

in 15O( 3
2

+
) and 17F( 1

2
+

)].
Our investigation of mirror symmetry of spectroscopic

factors has shown that the spectroscopic factors for small
components of one-nucleon overlaps can differ by up to 20%.
For large components of overlaps, the mirror spectroscopic
factors are almost the same: the spectroscopic factors Sl =
Sl,l− 1

2
+ Sl,l+ 1

2
for 0p-shell mirror overlaps may differ by up

to 3%. For single-particle mirror nuclei 17F and 17O, the
spectroscopic factors are the same; while for nuclei in the
middle of the sd shell, mirror spectroscopic factors may differ
by up to 9%.
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The microscopic calculations of single-particle ANCs blj =
CljS

−1/2
lj and their ratio squared Rb for mirror overlaps are

presented in Table III, where they are compared to the single-
particle estimates based on assumption of charge symmetry of
mirror potential wells. This comparison shows that the concept
of mirror symmetry of potential wells is valid only for j = 1/2
component in the 12N-12B and 15O( 1

2
−

)-15N( 1
2

−
) mirror pairs,

in the 0d nuclei 17F( 5
2

+
) and 17O( 5

2

+
), and for four-cluster

calculations of 13N-13C. For all other overlap integrals, this
assumption is not valid. It is interesting that for first excited 1s
states in 17F and 17O, which are supposed to be good single-
particle nuclei, Rb significantly differs from Rs.p.. This means
that stronger penetration of the valence 1s neutron inside the
16O core perturbs the mean field to a greater extent than the
mirror proton leading to mirror symmetry breaking in single-
particle potential wells.

The assumption that in mirror nuclei both mirror potential
wells and mirror spectroscopic factors are equal is valid only
for four-cluster model calculations of 13N-13C and for ground
states of 17F-17O. However, the deviation between Rs.p.,
obtained with this assumption, and microscopic calculations
in most cases is not strong, being of the same order as
R0/RMCM.

The predictions from MCM can be used to calculate proton
ANCs using experimentally determined neutron ANCs and

vice versa. As an example, let us calculate ANCs for 8B from
experimentally determined values C2

1 3
2
(8Li) = 0.384 ± 0.038

fm−1 and C2
1 1

2
(8Li) = 0.048 ± 0.006 fm−1 from Ref. [18].

With R 3
2

and R 1
2

values from Table I we get that C2
1 (8B) is

0.460 ± 0.048 fm−1 for V2 and 0.471 ± 0.048 fm−1 for MN.
These values give the astrophysical S factor of the 7Be(p, γ )8B
reaction at zero energy S17(0) = 17.8 ± 1.7 eV b for V2 and
18.2 ± 1.8 eV b for the MN. The difference between these two
calculations is only 2%.

Finally, if theoretical predictions for the ratio between
mirror ANCs are not available, simultaneous consideration
of analytical formula (8) and of single-particle estimate Rs.p.

can be used. Based on our calculations, the average between
these values may be a reasonably good approximation if the
core is not strongly deformed. Strong core polarization effects
can increase this ratio. The largest increase, calculated in the
present paper, is 12%.
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