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Nuclear friction and quantum mechanical diffusion
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We study dissipative properties of the motion of a slow nuclear collective variable weakly coupled to a complex
quantum environment formed by the fast nucleonic degrees of freedom. The fast quantum mechanical subsystem
is treated within the random matrix approach, where the complexity of the nucleonic degrees of freedom’s motion
can be changed by a parameter from regular to fully chaotic. Classical dynamics is assumed for the slow variable,
and the equation of motion is determined from conservation of the total energy of the nuclear many-body system.
We show that the macroscopic equation of motion for the collective variable is subject to a memory-dependent
friction force, with a retardation defined by the chaoticity of the fast nucleonic environment.

DOI: 10.1103/PhysRevC.71.064304 PACS number(s): 24.60.Lz, 21.60.Ev

I. INTRODUCTION

The nuclear many-body problem involves hundreds of
nucleonic degrees of freedom. However, many nuclear pro-
cesses can be theoretically studied in terms of the dynamics
of only a few macroscopic collective variables. Examples are
fission, giant multipole resonances, and the fusion of heavy
ions, where the collective variables are related to the shape
of the nucleus. Usually the choice of collective variables is
dictated by our intuition or a model of the physical problem.
Once such a choice is made we are led immediately to
the concept of dissipation, or the energy flow between the
collective and nucleonic modes. Dissipation of the collective
energy can be taken into account by introducing friction into
the equations of motion for the collective variables.

A natural question that appears is how the properties of
the macroscopic friction depend on the degree of chaoticity
of the nucleonic motion. A system of noninteracting nucleons
in a deformed mean field is almost regular at low excitations
because only the few lowest many-body states of the system are
excited. With the growth of excitation energy, the number of
excited many-body states increases exponentially, and at high
excitations many-body states are very close lying in energy.
In this case, any residual interaction may lead to extremely
complex, chaotic nucleonic dynamics. One may ask, what is
the effect of this chaotic dynamics on the collective motion?

The effect of classical chaos on collective dynamics has
been studied in some previous works. Burgio et al. [1]
considered the motion of classical noninteracting particles
confined in a two-dimensional “nuclear” billiard whose walls
undergo periodic and slow shape oscillations. They found
that the chaotic one-particle dynamics generates dissipation of
the collective energy, while for the regular intrinsic dynamics
there is no damping of collective motion. This conclusion was
confirmed by the semiclassical study of the question by Bauer
et al. [2,3]. They studied the damping of collective motion in
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nuclei within the Vlasov equation, which is the semiclassical
approximation to the time-dependent Hartree-Fock equation.

If the nuclear many-body system is considered quantum
mechanically, it is assumed that we can select a few slowly
varying (collective) degrees of freedom, while all remaining
degrees of freedom are treated as a fast quantum environment.
To model such a nucleonic bath, the random matrix approach
may be utilized [4–8]. The random matrices are usually
taken in the Gaussian orthogonal ensemble (GOE) limit,
corresponding to the fully chaotic dynamics of the nucleonic
degrees of freedom. In contrast to that, Refs. [9,10] showed
that the chaoticity of the energy spectrum of the fast quantum
environment can be changed by the strength of the residual
interaction introduced so that it acts between all eigenstates
of the system. In this case, the residual interaction leads to
Landau-Zener transitions from occupied to unoccupied energy
levels, giving rise to a diffusion of the energy. It is interesting
to note that such quantum mechanical diffusion of the energy
strongly depends on the complexity of the fast quantum
system. Thus, for the mixed dynamics, the energy evolves
quadratically in time, while normal energy diffusion (linear
time dependence) appears for the fully chaotic dynamics of
the fast quantum environment [10].

We address the question of what is the macroscopic
manifestation of the quantum mechanical diffusion: How does
the complexity of the quantum environment reveal itself in
the time evolution of the slow collective variable? We expect
that the slow but finite perturbation of the complicated motion
of the nucleonic degrees of freedom may lead to a time delay in
the response of the nucleonic bath. And since the motions of the
collective and nucleonic degrees of freedom are coupled due to
the conservation of the total energy of the nuclear many-body
system, this will imply the presence of memory effects in the
dynamics of the slow collective variable. The memory effects
in the nuclear collective motion were found earlier within
different approaches. For example, in the nuclear Fermi-liquid
model [11,12] the non-Markovian features of the collective
dynamics arise because of the Fermi-surface distortions and
depend on the relaxation time of the collective excitations.
In this respect, we also mention the linear response theory
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[13,14] and dissipative diabatic dynamics model [15,16], with
which the macroscopic collective equations of motion with the
retarded friction force have been investigated.

The plan of the paper is as follows. In Sec. II, we present a
model for the nuclear many-body system which is assumed to
have one fast (nucleonic) and one slow (collective) part. The
microscopical derivation of the quantum mechanical response
of the fast nucleonic subsystem on the slow variations of
the collective variable is contained in Sec. III. Section IV is
devoted to the discussion of an influence of the macroscopic
retardation of the nucleonic response on the dynamics of the
slow collective degree of freedom. Summary and conclusions
are given in Sec. V.

II. NUCLEAR MANY-BODY SYSTEM

Our basic assumption is that the nuclear many-body system
can be separated into one fast (nucleonic) and one slow
(collective) part,

Htot = Hfast(Q; pi) + Hslow(Q, Q̇), (1)

where Q represents the collective degree of freedom and pi

the fast nucleonic degrees of freedom. The model for Hfast is
given in Sec. II A, while the dynamics of the slow degree of
freedom Q is described in Sec. II B.

A. Fast (nucleonic) subsystem

To model quantum chaoticity of the nucleonic degrees
of freedom, we use a time-dependent random matrix model
developed in [9] and write the corresponding Hamiltonian in
the form

Hfast[Q(t)] = H
(0)
fast + A · [Q(t) − Q0], (2)

with Q(t = 0) = Q0,

H
(0)
fast =

N ′∑
n=−N ′

εnc
†
ncn +

∑
n>k

Wnk(c†nck + c
†
kcn), (3)

and

A =
N ′∑

n=−N ′
Anc

†
ncn. (4)

The creation and annihilation operators in Eqs. (3) and (4) refer
to the time-dependent basis, |n〉, which may be thought of as
describing single-particle states or many-body configurations
by Slater determinants, where the latter is assumed here. Wnk

in (3) are the matrix elements of the residual interaction acting
between all eigenstates of H

(0)
fast. The time-dependent term A ·

[Q(t) − Q0] in the right-hand side (rhs) of Eq. (2) represents
the coupling to the slow subsystem. In contrast to [17], we take
the matrix elements of a coupling operatorA (4) to be diagonal
with respect to the instantanious states |n〉 of the Hamiltonian
Hfast[Q(t)]. This can always be done by choosing a basis where
A has diagonal form.

All matrix elements in Eqs. (3) and (4) are defined as
random numbers,

εn ∈ G
(

0,

√
2
N

)
, Wnk ∈ (1 − δn,k)G

(
0,�

√
1
N

)
,

An ∈ G
(

0, σA

√
2
N

)
, (5)

i.e., Hfast[Q(t)] constitutes an ensemble of N = (2N ′ + 1)-
dimensional, time-dependent random matrices with Gaussian
distributed matrix elements, which are all Q independent (or
time independent). In the following, the ensemble averaging
(denoted by a bar above a quantity) is understood as the
averaging over different sets of the Hamiltonians of the fast
subsystem (2).

The two parameters in Eq. (5), � and σA, determine the
properties of the system (2). By varying the strength of the
residual interaction, the “chaoticity parameter” �, between
0 and 1, the fluctuations of the energy spectrum as well as
of the eigenfunctions of Hfast[Q(t)] smoothly change between
Poisson (regular) and GOE (chaos) [9]. In the limit of no
residual interaction (� = 0), each eigenvalue has a set of
good quantum numbers, and its classical counterpart is regular.
The coupling A · [Q(t) − Q0] to the slow subsystem does not
break these good quantum numbers, since A has diagonal
form. At � = 0, the eigenvalues of Hfast[Q(t)] depend linearly
on the slow variable Q(t), and the slopes are determined by
the dispersion σA.

When � > 0, a random residual interaction is introduced
which is assumed not to depend on Q. This is a quite
reasonable approximation that implies matrix elements of the
residual interaction Wnk between unmixed (time-dependent)
eigenstates |n〉 and |k〉 are independent of Q. In many realistic
cases, as, e.g., for nuclear fission, the coupling matrix elements
may, however, show a small but smooth variation with the
collective variable, i.e., shape parameters.

The dynamics of the fast subsystem is determined by the
time-dependent Schrödinger equation,

ih̄
∂

∂t
|�(t)〉 = Hfast[Q(t)]|�(t)〉. (6)

As the initial condition, we shall assume that the middle
eigenstate in the random matrix description of Hfast[Q(t)] is
occupied at t = 0.

We define the static basis states, |µ(Q)〉, through the time-
independent Schrödinger equation,

Hfast(Q)|µ(Q)〉 = Eµ(Q)|µ(Q)〉, (7)

where the orthonormal wave functions |µ〉 and energies Eµ

are calculated for each fixed Q value.
The states |µ(Q)〉 are mixtures of unpertubed states,

|µ〉 =
∑

n

bµn|n〉. (8)

The spread of |µ〉 over the unpertubed states |n〉 can be
characterized by the spreading width �µ that depends on the
size of the matrix elements of the residual interaction Wnk .
For small perturbations, �µ may be estimated through Fermi’s
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Golden Rule,

�µ = 2π

〈
W 2

nk

〉
D

, (9)

where D is the mean level spacing. In the following, we assume
that �µ > D.

The static energies Eµ of Eq. (7) are unfolded such that the
mean level density is constant, ρ = const, at each value of Q.
Later, we shall consider a more realistic energy dependence
of the level density suitable for the considered many-body
system.

To see how the energy of the fast subsystem evolves with
time, one expands the time-dependent wave function �(t) in
the static basis (7),

|�(t)〉 =
∑

µ

dµ(t)|µ(Q)〉, (10)

where dµ(t = 0) = δµ,η. Because of the residual interaction,
the initially occupied state η spreads over neighboring states
through the jumps, in the same way as in the standard two-level
Landau-Zener picture. This gives rise to a diffusion of the
energy

Efast(t)=〈�(t)|Hfast[Q(t)]|�(t)〉=
∑
µ

|dµ|2(t)Eµ(Q). (11)

As shown in Ref. [10], an important peculiarity of the
energy Efast(t) of the driven fast quantal system (2)–(5) is
that it saturates with time. Such saturation is a pure quantum
effect caused by the discreteness of individual energy levels
of quantal system. Times, over which Efast(t) saturates, are
of the order of the Heisenberg time, t ∼ h̄/D (for example,
h̄/D ≈ 3 × 10−5 s for 10 MeV excitation of the 236U), which
is much larger than typical times of nuclear collective motion,
τcoll ∼ 10−22–10−20 s.

B. Slow (collective) subsystem

The slow collective subsystem is considered clasically with
the Hamilton function

Hslow(Q, Q̇) = Eslow(t) = 1
2MQ̇2 + 1

2CQ2, (12)

where M and C are collective mass and stiffness coefficients,
respectively. These two parameters may be microscopically
determined from the cranking approach and are here treated
as constant parameters. The stiffness coefficient C is allowed
to be positive (nuclear giant resonances situation) as well as
negative (the case of nuclear descent from the fission barrier).

Different dynamical paths Q(t) of the slow collective
variable are attributed to different realizations of the random
matrices Hfast[Q(t)], modeling the nucleonic bath. These paths
are found by the condition that the total energy of the nuclear
many-body system (1) is conserved,

Etot(t) = Efast(t) + Eslow(t) = Etot(0), (13)

where Efast(t) is given by Eq. (11). Since the fast nucleonic
subsystem, described in terms of the random matrix approach
(2)–(5), exhibits energy diffusion, the coupling Eq. (13)
implies dissipative effects in the slow collective dynamics. The

random matrix model contains no scales and can therefore be
used only to measure the fluctuation properties of the nucleonic
bath. Indeed, assuming a constant mean level density ρ of the
fast subsystem’s eigenstates, the ensemble averaged energy is
constant in time, E fast(t) = Eη. This is so because of symmetry
of the energy states implying equal transition probabilities
from the initially occupied state η to higher and lower-lying
unoccupied levels. In the absence of coupling between the
slow and fast subsystems, the energy Eslow(t), associated with
the nuclear shape parameter Q, is conserved and defined by
the mass M and stiffness parameter C, obtained in the limit
of the infinitely slow deformations of the nucleus. In our
model, the damping of the collective motion may arise only
from the time fluctuations of the energy Efast of the nucleonic
bath generated by the set of random matricies Hfast[Q(t)]. This
feature causes the present model to differ from a concept of
the cranking approach [18] or the linear response theory [14],
where the dynamics of Q is derived from the constancy of the
energy of the nucleonic subsystem.

Taking the time derivative of Eq. (13) and utilizing Eq. (12),
one can obtain an equation of motion for the collective degree
of freedom in the form

MQ̈ = −C(Q − Q0) + Ffast, (14)

with the initial conditions Q(t = 0) = Q0 and Q̇(t = 0) =
Q̇0. The force

Ffast = − 1

Q̇

dEfast(t)

dt
(15)

measures the response from the fast nucleonic bath.
Equation (14) defines the complicated dynamics of the slow

collective variable that arise because of the dependence of
Efast(t) (11) on Q and Q̇. Indeed, from Eqs. (10) and (6),
one can see that the occupation probabilities |dµ|2(t) in (11)
depend on the collective coordinate and velocity through the
set of equations

ḋµ(t) = −Q̇(t)
∑

ν

〈µ|∂Q|ν〉dν(t) − i

h̄
Eµ[Q(t)]dµ(t). (16)

Thus, the dynamical trajectory Q(t) of the slow variable
is obtained by solving Eqs. (14) and (16). This solution
corresponds to a given set of the random matrices (2)–(5)
that model the nucleonic subsystem. The average behavior of
the collective degree of freedom Q(t) is obtained by ensemble
averaging over all realizations of the nucleonic subsystem. In
this way, we may define not only an equation of motion of the
average collective variable Q, but also an equation of motion
of Q itself that includes the fluctuations. The latter implies the
introduction of a stochastic force, resulting in the Langevin
description of the nuclear collective dynamics, see, e.g. [11].

III. RESPONSE OF THE FAST SUBSYSTEM

To get a general understanding of the influence of the
chaoticity of the nucleonic bath, treated within the approach
(2)–(5), on the dissipative properties of the collective dynamics
(12), we shall study the ensemble average of the response
force Ffast (15). In general, the calculation of (15) is a very
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complicated problem. The problem simplifies significantly if
one considers the response of the quantum mechanical system
(2) on small variations Q − Q0 of the slow parameter Q
around its initial value Q0. In this case, Ffast can be treated
perturbatively, i.e., in powers of Q − Q0.

Such perturbative derivation of the ensemble averaged
response force is presented in Sec. III A. In Sec. III B, we show
that the linearized response contains a memory-dependent
friction term, with a retardation determined by the chaoticity
of the fast quantum mechanical subsystem.

A. Response force

The response force (15) can be calculated from Eq. (11)

Ffast = −
∑

µ

|dµ|2(t)
∂Eµ(Q)

∂Q
−

∑
µ

1

Q̇

d(|dµ|2)

dt
Eµ(Q).

(17)

The explicit time dependence of the occupation probabilities
|dµ|2 in (17) can be obtained from Eq. (16). Since for each
fixed Q value the static eigenstates |µ〉 are orthonormal, the
matrix 〈µ|∂Q|ν〉 in (16) is anti-Hermitian, implying

〈µ|∂Q|ν〉 = i · Im(〈µ|∂Q|ν〉) ≡ i · Dµν(Q), (18)

where the introduced functions Dµν are real numbers.
It is convenient to introduce

fµ(t) = exp

{
i

h̄

∫ t

0
Eµ[Q(t ′)]dt ′

}
dµ(t), (19)

and rewrite Eq. (16) in integral form for the new dynamical
variables fµ

fµ(t) = −i

∫ t

0
Q̇(t ′)

∑
ν

exp

(
− i

h̄

∫ t ′

0
[Eµ − Eν]dt ′′

)

×Dµν(t ′)fν(t ′)dt ′, (20)

where fµ(0) = δµ,η.
The resulting system of integral equations is of Volterra

type and can be solved by iterations

fµ(t) = δµ,η − i

∫ t

0
Q̇(t1)Dµη(t1)

× exp

(∫ t1

0

i

h̄
[Eµ − Eη]dt ′

)
dt1

−
∫ t

0
Q̇(t1)

∑
ν

Dνη(t1) exp

(∫ t1

0

i

h̄
[Eν − Eη]dt ′

)

×
∫ t1

0
Q̇(t2)Dµν(t2)

× exp

(∫ t2

0

i

h̄
[Eµ − Eν]dt ′

)
dt2dt1 + · · · (21)

The iterations are defined by the parameter

α = −i

∫ t

0
Q̇(t1)Dµν(t1) exp

(∫ t1

0

i

h̄
[Eµ − Eη]dt ′

)
dt1,

(22)

which can be estimated as follows. From Eq. (18) we have

iDµν = 〈µ|∂Hfast/∂Q|ν〉
Eµ − Eν

= 〈µ|A|ν〉
Eµ − Eν

, µ 	= ν, (23)

where the second step is obtained from Eqs. (2) and (7). By
assuming the functions Dµν to weakly depend on time, we
may estimate the size of α,

|α| ≈
∣∣∣∣∣
[ 〈µ|A|ν〉
Eµ − Eν

]
Q=Q0

· (Q − Q0)

∣∣∣∣∣ . (24)

To truncate the series (21), α should be relatively small. As
seen by Eq. (24), this is fulfilled if either the displacements
Q − Q0 of the slow variable are small, or the coupling 〈µ|A|ν〉
between the slow and fast subsystems is weak.

Using Eqs. (19) and (21), we get up to quadratic in α terms,

|dµ(t)|2 = |fµ(t)|2 = δµ,η

+
[∫ t

0
Q̇(t ′)Dµη(t ′) cos

(
1

h̄

∫ t ′

0
[Eµ − Eη]dt ′′

)
dt ′

]2

+
[∫ t

0
Q̇(t ′)Dµη(t ′) sin

(
1

h̄

∫ t ′

0
[Eµ − Eη]dt ′′

)
dt ′

]2

− 2δµ,η

∫ t

0
Q̇(t1)

∑
ν

Dνη(t1) cos

(∫ t1

0

1

h̄
[Eν − Eη]dt ′

)

×
∫ t1

0
Q̇(t2)Dµν(t2) cos

(∫ t2

0

1

h̄
[Eµ − Eν]dt ′

)
dt2dt1

− 2δµ,η

∫ t

0
Q̇(t1)

∑
ν

Dνη(t1) sin

(∫ t1

0

1

h̄
[Eν − Eη]dt ′

)

×
∫ t1

0
Q̇(t2)Dµν(t2) sin

(∫ t2

0

1

h̄
[Eµ − Eν]dt ′

)
dt2dt1.

(25)

One can neglect the time dependence of the functions D and
static energies E [appearing through its parametric dependence
on Q(t)]. Otherwise, this corresponds to including higher-
order terms in α (or in Q − Q0). We put the variables D and
E equal to the corresponding values evaluated at Q = Q0.

Linearizing Eq. (17) with respect to Q − Q0 and utilizing
Eq. (25), we obtain an expression for the response force Ffast,

Ffast = −∂Eη

∂Q
− ∂2Eη

∂Q2
· (Q − Q0) −

∫ t

0
γ (t − t ′)Q̇(t ′)dt ′,

(26)
with

γ (t − t ′) = 2
∑

µ,µ 	=η

|〈µ|A|η〉|2 cos([Eµ − Eη][t − t ′]/h̄)

Eµ − Eη

,

(27)
where Eq. (23) was used.

The first two terms in the rhs of Eq. (26), determined by the
variations of the energy Eη(Q) of the initially occupied state η

around Q = Q0, give the static (and conservative) part of the
response (17) of the fast quantum mechanical subsystem. This
conservative force exists also for infinitely small parametric
drivings, Q̇ → 0, of the quantum subsystem Hfast[Q(t)] and,
therefore, this may be included into the definition of the
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potential energy of the slow collective variable (12). In the
sequel, we shall omit this contribution to Ffast and concentrate
only in the second part (26) of the response force which has
a dynamical nature and is given by the memory integral over
velocities of the slow collective variable. One can then write
for the ensemble averaged response force,

F fast = −
∫ t

0
γ (t − t ′)Q̇(t ′)dt ′. (28)

This retarded force is coming from the time growth of the
occupations |dµ|2 of the initially unoccupied states µ. This
may lead to a heating of the quantum mechanical subsystem
or, because of the energy conservation condition (13), to the
corresponding dissipation of the collective energy (12). From
this perspective, the presence of the retarded force (28) in the
response of the fast nucleonic environment may give rise to
the friction in the collective dynamics (14).

B. Retardation of the response

Formally, the response of the quantum mechanical subsys-
tem (28) has a retarded character. To estimate the retardation
and see how it is defined by the chaoticity of the quantum
environment (2)–(5), we shall evaluate the ensemble averaging
of the memory kernel γ (t − t ′) (27).

Since for different realizations of the random matrices
(2)–(5), the squared matrix elements of the coupling operator
A, |〈µ|A|η〉|2, are statistically independent of the energy
differences Eµ − Eη, one can write that

γ (t − t ′) = 2
∑

µ

|〈µ|A|η〉|2

· [Eµ − Eη]−1 cos([Eµ − Eη][t − t ′]/h̄).

(29)

Introducing the dimensionless spacings, sr ≡ (Eµ − Eη)/D,
we have statistics of sr described by the r ≡ |µ − η|th order
spacing distribution of the GOE ensembles of the energy levels.
The distribution of nearest-neighbor energy levels (obtained
at r = 1) is approximately described by the well-known
Wigner distribution, P (s1) = (π/2)s1 exp(−π/4s2

1 ) also for
quite small values of � [a]. Obviously, the mean value is
〈s1〉 = 1 and the variance σ 2(s1) = 4/π − 1 in that case. In
the general case of r > 1, the mean value of the rth order
spacing distribution is just 〈sr〉 = r , while the variance be-
haves as σ 2(sr ) = (2/π2)[ln(2π (r + 1)) + 1 − π2/8] − 1/6;
see, for example, [19]. The slow growing of the variance
with the multiplicity of spacing is a consequence of the
constancy of the unfolded mean level density used to measure
fluctuations of the GOE spectrum. The size of spacing
fluctuations between any pairs of energy levels are quite
similar and relatively small, σ (sr )/r � 1. In the following,
we approximate σ 2(sr ) by a constant smaller than 1 for
any r.

An important feature of the rth order spacing distribution
P (sr ) is that it approaches a Gaussian distribution even at

moderate values of r [20]. Therefore,

[Eµ − Eη]−1 cos([Eµ − Eη][t − t ′]/h̄)

≈
∫ +∞

−∞
dsr

1√
2πσ 2

exp

(
− [sr − r]2

2σ 2

)
× sr cos([sr ][t − t ′]/[h̄/D]), (30)

where sr = (Eµ − Eη)/D and r = |µ − η|. Since σ (sr )/r �
1, one can replace the term 1/sr in Eq. (30) by 1/r and perform
integration of the remaining integral function analytically.
With this, we get for the ensemble averaged memory kernel
(29) the following expression,

γ (t − t ′) = 2
∑

µ

|〈µ|A|η〉|2 cos([Eµ − Eη][t − t ′]/h̄)

Eµ − Eη

× exp

(
− (t − t ′)2

2[h̄/σD]2

)
, (31)

where Eµ − Eη = rD.
We see that the ensemble averaging procedure (29)–(31)

leads to the decay of the ensemble averaged memory kernel
with time. In fact, the decay time of the memory kernel,
h̄/σD, even at relatively small excitations of the nucleus is
much larger than characteristic time scales of nuclear collective
dynamics τcoll ∼ 10−22–10−20 s; see estimation for h̄/D given
at the end of Sec. II A. Consequently, the exponential term in
Eq. (31) can be very well approximated by 1.

Thus, we make the next step evaluating the ensemble
averaged memory kernel (31). Now we consider the level
density ρ of the many-body states to be a growing function
of the excitation energy E, relative the initial energy Eη,E ≡
Eµ − Eη and make the replacement

∑
µ → ∫ +∞

−∞ ρ(E)dE in
Eq. (31). Using the Taylor expansion of ρ(E) around E = 0,
one can show that

γ (t − t ′) =
√

8π

+∞∑
l=0

(−1)l

(2l + 1)!
· d (2l+1)ρ

dE(2l+1)

∣∣∣∣
E=0

× d (2l)

d(t ′′/h̄)(2l)

{
Re

(
F

[
|〈µ|A|η〉|2

]
(t ′′/h̄)

)}
,

t ′′ = t − t ′, (32)

where

F[|〈µ|A|η〉|2](t ′′/h̄)

≡ 1√
2π

∫ +∞

−∞
|〈µ|A|η〉|2(E)e−i(t ′′/h̄)EdE (33)

is the Fourier transform of the squared matrix elements
|〈µ|A|η〉|2, which are assumed to be even functions of E.
Odd terms in expansion disappear because of the symmetry
of the energy spectrum. We shall proceed by considering only
the first term in the infinite sum (32),

γ (t − t ′) =
√

8π
dρ

dE
Re(F[|〈µ|A|η〉|2](t ′′/h̄)),

t ′′ = t − t ′, (34)

which is equivalent to a local quadratic expansion of the many-
body level density ρ in the vicinity of the energy of the initially
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occupied state |η〉. This general expression for the memory
kernel is quite reasonable provided that the energy changes of
the fast quantum environment are relatively small.

In the case (34), the time properties of the memory kernel
γ (t − t ′) are given by the Fourier transform (33) of the
ensemble averaged values of the squared matrix elements
|〈µ|A|η|〉|2. To analyze the E dependence of |〈µ|A|η|〉|2
within the random matrix approach (2)–(5), we expand
the perturbed states |µ〉 in the unperturbed ones |n〉 [see
Eq. (8)], yielding for the ensemble averaged values of the
squared matrix elements,

|〈µ|A|η〉|2 =
∑

n

|bµn|2 · |bηn|2 · A2
n. (35)

Since the coupling operator (4) is diagonal in basis |n〉, A2
n =

2σA/N , where σ 2
A is the spreading of the slopes of the

unperturbed energies, and N is the size of the random
matrices in Eqs. (2)–(5). The ensemble averaged strength
functions |bµn|2 = |bµn|2(En) in Eq. (35) are peaked around
the perturbed average energy Eµ.

For small matrix elements of the residual interaction
(� � 1), |bµn|2 are of Breit-Wigner shape [21,22],

|bµn|2 = 1

πρ
· �µ/2

(En − Eµ)2 + (�µ/2)2
, (36)

with the spreading width �µ obtained from Fermi’s Golden
Rule (9), and where the level density ρ is taken as constant. We
use the expression for the spreading width derived in Ref. [23],

�µ = 0.039

(
A

160

)
E3/2

exc MeV, (37)

where the damping of a one-quasiparticle state was assumed to
be �

↓
ν=1 = E2

exc/15 MeV. Here A is mass number and Eexc is
the excitation energy of the nucleus. Replacing the summation
in (35) by the integration

∑
n → ρ

∫ +∞
−∞ dEn, we obtain

|〈µ|A|η〉|2 = 2σ 2
A

πρN
· �µ

(Eµ − Eη)2 + �2
µ

, (38)

which gives for the memory kernel (34) the following
expression

γ (t − t ′) = 4σ 2
A

N

1

ρ

dρ

dE
exp

(
− |t − t ′|

(h̄/�µ)

)
. (39)

The memory kernel γ (t − t ′) is mainly concentrated in the
time interval |t − t ′| � τ , where τ = h̄/�µ. Taking �µ from
Eq. (37) and considering the nucleus as a Fermi gas with
temperature T that is related to the excitation energy by Eexc =
(A/10)T 2 MeV, we get

τ ≈
(

A

230

)−5/2

T −310−22 s. (40)

For example, for low-energy (T < 1 MeV) fission of heavy
nuclei with mass numbers A = 200–260, the memory
kernel (39) is spread out over times τ ∼ 10−22–10−21 s, which
are comparable to typical saddle-to-scission times for nuclear
descent from the fission barrier [24]. Such a macroscopic
retardation of the response force (28) of the fast quantum

mechanical subsystem indeed implies that the dynamics (14)–
(15) of the slow collective variable is subject to memory
effects.

Note that an exponential form exp(−|t − t ′|/τ ) of the
memory kernel of the retarded friction force in the macroscopic
equations of motion for the nuclear collective deformations is
used in the Fermi-liquid model [25] and in the linear response
theory [14]. In these approaches, τ is a relaxation time of the
collective excitations, which in the limit of small temperatures
T of the nucleus goes as τ ∼ 1/T 2, and which can be compared
to the temperature dependence shown in Eq. (40), τ ∼ 1/T 3.

For fairly large matrix elements of the residual interaction
(� < 1, when the spectrum is mixed), the ensemble averaged
strength functions of the perturbed states in (35) may have a
Gaussian shape [22],

|bµn|2 = 1√
2πρ�G

· exp

[
− (En − Eµ)2

2�2
G

]
, (41)

and are characterized by the spreading width �G that is larger
than �µ. This leads to

γ (t − t ′) = 4σ 2
A

N

1

ρ

dρ

dE
exp

[
− (t − t ′)2

(h̄/�G)2

]
. (42)

Here the memory kernel has a smaller time spread τ = h̄/�G

than in the previous case, i.e., when γ (t − t ′) (34) was obtained
with the ensemble averaged strength functions of the Breit-
Wigner shape (36). In addition, the memory kernel (42) will
result in a much stronger decay of correlations between the

values of the slow collective velocity Q̇ at different times
t and t ′ in the equation of motion (14)–(15) and, therefore,
will give rise to less pronounced non-Markovian features of
the collective dynamics as compared to γ (t − t ′) given by
Eq. (39).

In the GOE limit (� = 1, fully chaotic energy spectrum of
the quantum mechanical subsystem), the ensemble averaged
strength functions are constant, |bµn|2 = 1/N . We then get

γ (t − t ′) = 4πσ 2
A

N2

1

ρ

dρ

dE
δ(t − t ′), (43)

corresponding to the pure viscous response (28)

F fast = −γ0Q̇(t), (44)

with a friction coefficient γ0 = (4σ 2
A/N)(dρ/dE)/ρ. Note

that within the Fermi gas model for sufficiently high ex-
citations of the nucleus, when the nuclear level density ρ

grows exponentially with the excitation energy Eexc, ρ ∼
exp(2

√
(10/A)Eexc), the friction coefficient γ0 behaves with

the temperature T = √
(10/A)Eexc as γ0 ∼ 1/T .

IV. MEMORY EFFECTS AND FRICTION

From the studies presented in the previous section, we
conclude that

(i) Coupling of the slow collective degree of freedom Q to
the fully chaotic quantum environment (2)–(5) formed by the
fast nucleonic degrees of freedom gives rise to the appearence
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of the usual (Markovian) friction force in the macroscopic
equation of motion for Q, (14) and (15),

MQ̈ = −C(Q − Q0) − γ0Q̇, (45)

while
(ii) the collective dynamics (14) and (15) becomes memory

dependent if the quantum nucleonic environment has mixed
(or almost regular) energy spectrum,

MQ̈ = −C(Q − Q0) −
∫ t

0
γ (t − t ′)Q̇(t ′)dt ′. (46)

What is the role of the memory effects caused by the
retarded force in the motion of the slow collective degree of
freedom (46)? To answer this question, we show in the
Appendix that the retarded force can be split into conservative
and friction parts, such that∫ t

0
γ (t − t ′)Q̇(t ′)dt ′ = C(t)[Q(t) − Q0] + G(t)Q̇(t). (47)

The memory effects are reflected here in the time dependence
of the coefficients C and G determined by the explicit form
of the memory kernel γ (t − t ′), see Eqs. (A8) and (A9),
correspondingly.

First of all, we see that the memory effects lead to the
renormalization of the stiffness C of the slow variable’s
potential energy,

C̃ = C + C(t). (48)

As is demonstrated in Refs. [11,12] for the retarded
force of the form (47), the dynamical correction C(t) to
the “adiabatic” stiffness C always stabilizes the slow collective
subsystem, i.e., increases its total stiffness C̃. Moreover, the
time dependence of C leads to the peculiarity in the motion of
the collective deformation parameter: the nucleus will undergo
characteristic shape oscillations. One can say that with the
growth of the correlations between values of the collective
velocity at different moments of time, the relative role of C(t)
will increase. In other words, the stronger the memory effects,
the more elastic the response of the quantum nucleonic bath.
Microscopically, the dynamical correction to the adiabatic
stiffness of the slow collective subsystem is coming from the
time-reversible transitions of the probability from occupied to
unoccupied states of the fast quantum mechanical environment
giving rise to its time-reversible energy change.

The other manifestation of the memory effects is the
presence of friction in the collective dynamics described by the
time-dependent friction coefficientG(t). The friction is defined
by the residual interaction acting between all eigenstates
of the fast subsystem, and its relative contribution to the
retarded force (47) increases with the increase of the strength
of this interaction, i.e., with the increase of the chaoticity
parameter �. The microscopic origin of the friction is the
time-irreversible growth of the ensemble averaged occupations
|dµ|2. This would lead to the heating of the fast nucleonic
degrees of freedom’s subsystem provided that its mean level
density ρ is an increasing function of the energy. The
latter is an important point because otherwise, at ρ = const,
the energy of the fast subsystem E fast(t) averaged over all

ensembles of the random matrices (2)–(5) will be constant
in time, E fast(t) = Eη, since the occupation probability |dµ|2
concentrated initially at the level with the energy Eη will spread
out symmetrically on higher- and lower-lying states. This fact
is simply expressed in terms of the memory kernel (31) as

γ (t − t ′) = 2
∑

µ

|〈µ|A|η〉|2 cos([Eµ − Eη][t − t ′]/h̄)

Eµ − Eη

= 0,

(49)

provided that the ensemble averaged values of the squared
coupling matrix elements |〈µ|A|η〉|2 are even functions of the
energy difference Eµ − Eη. It is obvious that the asymmetrical
distribution of |〈µ|A|η〉|2 with Eµ − Eη will lead to the
heating of the fast quantum mechanical subsystem, γ 	= 0,
even at ρ = const.

It should be stressed that the separation of the retarded force
(47) is general in the sense that the memory integral in (47)
can always be separated into time-reversible (conservative) and
time-irreversible (friction) parts. For the linear dynamics of the
slow variable, the separation can be performed explicitly, while
for nonlinear dynamics it cannot. In the latter case, the friction
part of the retarded force (which can be a more complicated
function of the coordinate and velocity) will be determined by
the odd powers of the velocity, while the conservative one will

be the function of the even powers of Q̇.

V. SUMMARY

We have studied dissipative motion of the slow nuclear col-
lective variable Q in the complex quantum environment formed
by the fast nucleonic degrees of freedom. The fast quantum
mechanical subsystem was considered with the help of the
ensembles of the time-dependent random matrices Hfast[Q(t)]
(2)–(5), which are linearly dependent on the slow coordinate
Q(t). The coupling operator A (4) between the fast and slow
subsystems was taken diagonally on the basis of the many-
body states of the fast Hamiltonian. The complexity of the
quantum mechanical subsystem was generated by the inclusion
of the residual interaction, acting between all eigenstates
of Hfast[Q(t)], and which can be controlled by the relative
strength of the interaction �, with the two limits, � = 0
and � = 1, corresponding to the regular and fully chaotic
energy spectrum of the system. The initial configuration of the
quantum mechanical subsystem is described by the occupation
of the middle eigenstate |η〉 of the Hamiltonian Hfast.

The dynamics of the slow collective variable Q(t) (12) was
treated as a small-amplitude motion around the initial value
Q0 of a classical particle with constant mass M in the field of
the potential force −C(Q − Q0) and subject to the influence
of the irregular force −1/Q̇(dEfast/dt) caused by the coupling
of the collective motion to the nucleonic bath with the energy
Efast(t) (11).

We have shown that for relatively small variations of the
slow variable Q(t) − Q0, the ensemble averaged response of

the nucleonic bath −1/Q̇(dEfast/dt) can be represented as

the memory integral −∫ t

0 γ (t − t ′)Q̇(t ′)dt ′. To evaluate the
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memory kernel γ (t − t ′) (31), we represented it as an infinite
sum (32) of terms containing a product of derivatives of the
many-body level density of the fast quantum environment
ρ and the time derivatives of the Fourier transform of the
squared coupling matrix element |〈µ|A|η〉|2. By making a
local expansion for the level density around the energy Eη of
the initially occupied state |η〉, we took only the first term (34)
in the sum (32), which is proportional to the Fourier transform
of the matrix element itself. Our next step was to measure
how the chaoticity of the fast quantum mechanical subsystem
(2)–(5) is reflected in the properties of |〈µ|A|η〉|2. For that
purpose, we expanded the perturbed many-body states |µ〉 of
the fast Hamiltonian Hfast in terms of the unperturbed ones |n〉
(8) and considered its ensemble averaged strength functions
|bµn|2.

When the matrix elements of the residual interaction are
relatively small (which corresponds to the almost regular
energy spectrum of the quantum mechanical subsystem), the
distribution of |bµn|2 as a function of the perturbed energy
Eµ is of the Breit-Wigner shape (36), see Ref. [21]. The
distribution of the strength functions (36) is characterized by
the spreading width of the perturbed states �µ, which can
be estimated in the same way [Eq. (37)] as in [23]. In this
case, we get the memory kernel γ (t − t ′) of the exponential
form, γ (t − t ′) ∼ exp(−|t − t ′|/[h̄/�µ]), concentrated on the
macroscopic time range τ = h̄/�µ, i.e., on typical times of
the collective motion in nuclei. This implies the presence of
the memory effects in the dynamics (14) and (15) of the slow
collective degree of freedom. With the growth of the chaoticity
of the fast quantum environment, the functional form of the
memory kernel (34) is changing. Thus, for sufficiently large
matrix elements of the residual interaction, the distribution
of the strengths |bµn|2 becomes Gaussian (41) [22,26] with
the larger spreading width �G, which results in the memory
kernel γ (t − t ′) ∼ exp{−(t − t ′)2/[h̄/�G]2}, see Eq. (42).
Such memory kernel of the retarded force (28) in the equation
of motion (14) and (15) for the slow collective variable will
lead to much weaker memory effects. The non-Markovian
features of the collective dynamics disappear in the limit of
the fully chaotic energy spectrum of the quantum mechanical
subsystem, when |bµn|2 are constant. Here the response of
the fast quantum environment (28) is given by the usual

(Markovian) friction force −γ0Q̇(t).
To measure the influence of the memory effects on the

dynamics of the slow collective variable, we have split

analytically the retarded force −∫ t

0 γ (t − t ′)Q̇(t ′)dt ′ into the

conservative C(t)[Q(t) − Q0] and friction G(t)Q̇(t) forces
with the time-dependent stiffness C (A8) and friction G (A9)
coefficients determined by the explicit form of the memory
kernel γ (t − t ′). The conservative and friction parts of the
retarded response force are defined, correspondingly, by the
time-reversible and time-irreversible probability transitions
from occupied to unoccupied energy levels of the fast
nucleonic bath.

In the paper, we have studied how the memory effects for the
linear average collective dynamics (46) are determined by the
complexity of the nucleonic quantum mechanical subsystem

(2)–(5). One can expect that the relative role of the memory
effects does not depend exclusively on the structure of the fast
quantum environment itself, but also on the initial excitation
of the slow collective subsystem (12), measured by the initial
velocity Q̇0, and the characteristic time of the changes of the
slow variable Q(t), τslow ∼ √

M/|C|. In this case one has to
consider, in principle, nonlinear dynamics of Q, arising either
by the coordinate-dependent nuclear mass parameter M or by
the higher-order corrections [in (Q − Q0) ∼ Q̇0τslow] to the
response force (28).
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APPENDIX: SPLITTING OF THE RETARDED FORCE

In this Appendix, we demonstrate how the retarded force
in the equation of motion for the slow variable

MQ̈ = −C(Q − Q0) −
∫ t

0
γ (t − t ′)Q̇(t ′)dt ′ (A1)

can be split into the conservative and friction forces,∫ t

0
γ (t − t ′)Q̇(t ′)dt ′ = C(t)[Q(t) − Q0] + G(t)Q̇(t). (A2)

First, we find the analytical solution to the equation of
motion with the help of the Laplace transformation,

Q(t) = Q0 + A(t)Q0 + B(t)Q̇0, (A3)

where

A(t) =
∫ +∞

0

s

Ms2 + γ̂ (s)s + C
estds, (A4)

B(t) =
∫ +∞

0

1

Ms2 + γ̂ (s)s + C
estds, (A5)

and

γ̂ (s) =
∫ +∞

0
γ (t)e−st dt. (A6)

Then, we construct a second-order differential equation,
which has the same solution (A3) as the integro-differential
equation (A1). Let us write it in the form

MQ̈ = −C(Q − Q0) − C(t)(Q − Q0) − G(t)Q̇, (A7)

with some unknown functions C(t) and G(t). Since Eq. (A7)
has two linearly independent solutions A(t)Q0 and B(t)Q̇0,
one obtains

MÄ = −CA − CA − GȦ,

MB̈ = −CB − CB − GḂ,
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which defines C and G. Solving this system of equations, we
get

C(t) = M
Ä(t)Ḃ(t) − Ȧ(t)B̈(t)

Ȧ(t)B(t) − Ḃ(t)A(t)
− C, (A8)

and

G(t) = M
B̈(t)A(t) − Ȧ(t)B(t)

Ȧ(t)B(t) − Ḃ(t)A(t)
. (A9)

Formal comparison of Eqs. (A1) and (A7), having the same
solution (A3), leads to an expression (A2) for the retarded

force
∫ t

0 γ (t − t ′)Q̇(t ′)dt ′.

One can check the result (A2) in the two limiting cases: for
the Markovian dynamics, γ (t − t ′) = 2γ0δ(t − t ′) [when the

retarded force becomes an ordinary friction force γ0 · Q̇(t)],
and in the opposite limit of the constant memory kernel,
γ (t − t ′) = C0 [when the retarded force is given by the pure
conservative force C0 · [Q(t) − Q0]. In the first case, we obtain
from Eqs. (A8) and (A9),

C(t) = C0, G(t) = 0, (A10)

while in the second case,

C(t) = 0, G(t) = γ0, (A11)

as it should be.
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