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Nuclear matter symmetry energy from generalized polarizabilities:
Dependences on momentum, isospin, density, and temperature
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Symmetry energy terms from macroscopic mass formulas are investigated as generalized polarizabilities
of nuclear matter. Besides the neutron-proton (n-p) symmetry energy, the spin-dependent symmetry energies
and a scalar one are also defined. They depend on the nuclear densities (ρ), neutron-proton asymmetry (b),
temperature (T ), and exchanged energy and momentum (q). Based on a standard expression for the generalized
polarizabilities, a differential equation is proposed to constrain the dependence of the symmetry energy on the
n-p asymmetry and on the density. Some solutions are discussed. The q dependence (zero frequency) of the
symmetry energy coefficients with Skyrme-type forces is investigated in the four channels of the particle-hole
interaction. Spin-dependent symmetry energies are also investigated indicating much stronger differences in
behavior with q for each Skyrme force than the results for the neutron-proton one.
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I. INTRODUCTION

The symmetry energy terms and their dependences on
density are relevant to the nuclear structure and to many
nuclear processes including the structure and dynamics of
proto-neutron and neutron stars. The neutron-proton symmetry
energy is the best known in spite of the different values at
the saturation density in the literature (in the range of 25 to
36 MeV). It is basically represented by a squared power of the
neutron-proton (number or density) asymmetry in the usual
macroscopic/microscopic mass formula [1], the parabolic
approximation. With a symmetry energy coefficient (s.e.c) aτ ,
the binding energy is, in the simplified versions, usually written
as

E/A = H0(A,Z)/A + aτ (N − Z)2/A2, (1)

where the energy density H0 does not depend on the asym-
metry, and Z,N , and A are the proton, neutron, and mass
numbers, respectively. Neutrons and protons occupying the
same total volume yield a term proportional to the squared
asymmetry density, aτ (ρN − ρZ)2/ρ2, which appears in the
nucleonic matter equation of state. The neutron and proton
densities may not be exactly equal to each other in nuclei
[2]. Different polynomial terms of the asymmetry in this
expression [proportional to (N − Z)n for n �= 2] are usually
expected to be less relevant [1,3–8]. However, it is not well
known whether and how this parabolic approximation is to be
modified for very asymmetric systems, such as nuclei far from
the stability line or for (asymmetric) nuclear matter above and
below the saturation density [9]. In large stable nuclei such as
208Pb, the n-p asymmetry [(N − Z)2/A2 � 1/9] is not as large
as it would be in neutron matter. The n-p symmetry energy
coefficient (s.e.c.) aτ is given by the static polarizability of the
system [10] (the inverse of the “isovector screening function”)
which can also depend on the asymmetry of the medium [11].
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This may lead to slightly different forms for the symmetry
energy for very asymmetric n-p systems.

Other symmetry energy coefficients may also be defined in
nuclear matter, for instance, the spin Aσ and spin-isovector
Aστ ones. Extending the n-p symmetry energy, the other
symmetry energy coefficients can be defined in macroscopic
mass formulas as

E

A
= H0(A,Z)

ρ
+ Aτ

(ρN − ρZ)2

ρ2
+ Aσ

(Sup − Sdown)2

(Sup + Sdown)2

+ Aστ

(
ρN

up − ρN
down + ρZ

down − ρZ
up

)2

ρ2
, (2)

where the density (and eventually number) of neutrons and
protons is denoted by ρN, ρZ , of nucleons with spin up (down)
by Sup(Sdown), and the neutron/proton densities with spin
(up, down), by ρi

up,down. The spin channel may lead to the
appearance of polarized nucleonic matter, which has been
investigated within different approaches with controversial
results [11–21]. The spin channel is also relevant to the
study of the neutrino interaction with matter because it
couples to the axial vector current together with the scalar
channel in dense stars [22–24]. The spin-isospin channel has
been associated with pion condensation [25,26] and with
antiferromagnetic states [20]. A nuclear dipolar incompress-
ibility was also defined in [11]; it is related to the nuclear
matter incompressibility as discussed below and it also varies
with n-p asymmetries thus being eventually relevant to the
isoscalar dipole resonances [27]. These coefficients and their
corresponding dependences on the asymmetry of neutron-
proton densities have been investigated in several other works,
as, for example, in [28,29,21]. A different way of obtaining the
symmetry energy has been proposed that involves the linear
response method for the dynamical polarizabilities. The static
limit of these generalized polarizabilities are proportional to
the inverse of the symmetry energy coefficients in symmetric
matter [10]. Therefore, it becomes reasonable to consider
the polarizabilities as a suitable and sound framework to
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determine the behavior of the symmetry energy with the
parameters of the nuclear equation of state. Developments with
relativistic models also yield strong effects with the isovector
mesons, see, for example, references [30–32] among others.
The density dependence of the neutron-proton symmetry
energy and the isospin dependence of the nuclear equation
of state are being extensively investigated for several reasons,
and several experimental tests are being done and prepared
mainly in intermediary and high energy heavy ion collisions
[33–42]. The investigation of the possible effects with their
particularities and the consequences for the observables is
extense, involving new experimental facilities such as RIA
and GSI [36,37,43,44] besides many other works [45]. Any
definitive realistic investigation at really high densities (several
times the saturation density) should take into account baryonic
structure with internal quark and gluon degrees of freedom.

In the present work, some aspects of the symmetry energy
terms are investigated as provenient from the generalized
polarizabilities of nuclear matter for different ranges of the
density, n-p asymmetry, and momentum exchange, in the
zero energy limit, within general arguments and with Skyrme
forces at finite temperature. The case in which there is also
nonzero energy exchange corresponds to the analysis of the
dynamical response function. The density dependence of the
equation of state is not well known, and it is reasonable to
ask whether and how the n-p symmetry energy (and more
generally other symmetry energies in the other channels of the
nuclear interaction) depends on isospin at different densities
and very high n-p asymmetries. The parabolic approximation,
usually appropriated for a restricted range of densities (very)
close to the saturation ρ0 and small asymmetries, may be
modified for lower and/or higher densities.

The parameters of the forces which are used (SLyb and
SKM) were fitted from (i) results of asymmetric nuclear matter
and neutron matter properties obtained from microscopic
calculations [46] and (ii) properties of giant collective modes
in 208Pb [47]. Other forces will be investigated elsewhere.
Skyrme forces can be obtained from a reduction of the nuclear
density matrix [48], and their basic structure is also present
in nonrelativistic reductions of relativistic models for nuclear
systems by passing to relativistic point coupling models or
not [49,50] such that the necessary density dependence of
each of the terms are expected to be stronger than considered
in the earlier parametrizations [51,52].

This work is, in part, an extension of previous work, and it is
organized as follows. In the next section general aspects for the
investigation of symmetry energy within the approach of the
general polarizabilities are discussed including the stability
of nucleonic matter with respect to external perturbations.
In Sec. III, an analysis of simultaneous dependence of the
polarizabilities on the neutron-proton asymmetry and on the
density is proposed with a differential equation that constrains
these two behaviors of the symmetry energies. In Secs. IV
and V, the q dependence (exchanged momentum between the
components of nuclear matter, e.g., neutrons and protons) of
static generalized polarizabilities at finite temperatures with
Skyrme forces is investigated in the limit of symmetric nuclear
matter. In the last section, results are summarized.

II. SYMMETRY ENERGY AND NUCLEAR MATTER
POLARIZABILITIES

Basically, in this section, arguments from previous works
are reproduced. Consider that with the inclusion of an external
source of amplitude ε, which separates nucleon densities
with quantum numbers (s, t) [where (1, 0) stands for different
densities of spin up-spin down nucleons and (0, 1) for different
neutron-proton densities], the energy density of nuclear matter
can be written as

H = H0 + As,t

[ρ(s,t)1 − ρ(s,t)2 ]2

ρ
+ ε′β, (3)

where H0 does not depend on the density asymmetry [ρ(s,t)1 −
ρ(s,t)2 ]2,As,t is the corresponding symmetry coefficient (A1,0,
the spin one; A0,1, the neutron-proton one), and the total
density fluctuation is β = δρ(s,t)1 − δρ(s,t)2 , for these two
cases. For the spin-isospin external perturbation (s, t = 1, 1)
the simultaneous fluctuations of the spin (up/down) and
neutron/proton densities are to be considered just as it is
shown in expression (2). In the case of (s = 0, t = 0), the
scalar channel, there is a change in the total nuclear density
and A0,0 is associated with a dipolar incompressibility [11].
For equal volumes, the densities become the nucleon numbers.

In the ground state, the variation of the energy with respect
to the density fluctuation of a channel (s, t), δρ ≡ β, yields the
condition of minimum

ε′ + 2
As,t

ρ
(ρm + δρ) = ε + 2

As,t

ρ
δρ = 0, (4)

where ρm = ρn
0 − ρ

p

0 �= 0 is for an n-p asymmetric matter
(or correspondingly ρs

m = ρ
up
0 − ρdown

0 �= 0 for spin polarized
matter) and the total “inducing perturbation” for n-p asym-
metric systems is denoted by

ε = ε′ + 2As,t ρm. (5)

The ground state can be considered to have a (polarized)
spin-up/spin-down asymmetric density given by ρs

m �= 0 si-
multaneously to (or instead of) the n-p asymmetry (also
denoted by ρm above). ρm will be considered in most part of this
paper. The nuclear matter polarizability in the channel (s, t)
can be written for ε′ or for the total (inducing) perturbation ε,
respectively, as

�s,t
a ≡ β

ε′ = − ρ

2Aa
s,t

, (6a)

�s,t ≡ β

ε
= − ρ

2As,t

. (6b)

The stability condition for these expressions are different. This
will be discussed below.

The main development will focus on the neutron-proton
symmetry energy (s, t = 0, 1), although it is analogous to the
other channels. The neutron-proton asymmetry used in the
present work is defined by the neutron and proton densities
ρn, ρp as

b = ρn

ρp

− 1. (7)
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An asymmetry coefficient which is probably more familiar to
the reader is given by

α = (2ρn − ρ)

ρ
. (8)

They are related by b = 2α/(1 − α). The coefficient b varies
from b = 0, in symmetric nuclear matter, up to b → ∞, in
neutron matter. For the sake of generality, the coefficient As,t

is considered to be a function of the density fluctuation β. The
fluctuation β is considered to depend on the n-p asymmetry b.
These parameters may be related to each other, and therefore
it will be written that As,t = As,t (β). Relations between b and
β have been investigated by means of prescriptions. Among
those, one which leads to reasonable results is

β = δρn

(
2 + b

1 + b

)
, (9)

where δρn is the neutron density fluctuation. In the n-p
symmetric limit, β = 2δρn, and in another limit in neutron
matter, β = δρn. This ansatz [expression (9)] is based on the
assumption that the density fluctuations are proportional to the
respective density of neutrons and protons, i.e., δρn/β = ρn/ρ,
with ρ being the total density.

The resulting expression for the symmetry energy coeffi-
cient As,t for the prescription above is given by [11]

As,t = As,t
sym

2 + 2b

2 + b
, (10)

for a general s, t (spin, isospin) channel of the effective
interaction. In this expression, Asym = aτ � 30 MeV is the
s.e.c. of symmetric nuclear matter (b = 0). The (generalized)
n-p symmetry energy term can be rewriten as

A0,1 = A0,1
sym(1 + α),

which corresponds to a third-order term in the binding energy,
being smaller than the quadratic term because α < 1. In not
very n-p asymmetric systems, those with n-p asymmetry close
to the stability line, α3 � 1. For b = 2 (α = 0.5, neutron
density three times larger than the proton density), it follows
A = 1.5Asym. In the limit of neutron matter, A(b → ∞) =
2Asym. For proton excess, b < 0. Prescription (9) is therefore
model dependent, and different choices yield other forms
for the (asymmetric) static generalized “screening functions.”
The dynamical response functions are less sensitive to this
prescription.

So far it has been assumed that the stable density ρ is
independent of b (or α). Below is envisaged a development
to guide the simultaneous variations of these two variables.
Several investigations of the role of the symmetry energy on
observables in radioactive ions are being prepared for RIA
and GSI. For this the density dependence of the symmetry
energy is extremely relevant. However, for mass formulas
of very asymmetric nuclei and for the equation of state at
densities different from ρ0, the isospin dependence of the
symmetry energy may be different from the usual one given
by the parabolic approximation, expression (1). Furthermore,
more elaborate pictures in relativistic mean field calculations,
which consider isovector mesons 	δ, yield a qualitative increase
in the relevance of the neutron-proton asymmetry, with a

larger difference of neutron and proton effective masses
[53,54,30,32]. Experimental bounds on the neutron and proton
effective masses [55] may shed light on this. The spin and spin-
isospin symmetry energies can be investigated analogously.
For example, the behavior of A1,0 of the spin channel
(which has already been written as aσ in the static limit in
the framework of Landau’s Fermi liquid theory) at variable
densities was investigated in different works [21,17,13].

A. Stability conditions

In the usual case in which the density ρ is dependent neither
on b nor on β, there are two ways of writing a solution for the
polarizability �s,t from expression (3). They correspond to
the different definitions of the external source shown before,
respectively ε′ (6a) and ε = ε′ + ρm (6b). They allow for
defining polarizabilities given, respectively, by

Aa
s,t

ρ0
= Cs,t(

�a
s,t

)2 − 1

�a
s,t

, (11a)

�s,t = − ρ0

2As,t

, (11b)

where Cs,t = −ρ0/4(Asym
s,t )a is a constant, with the usual

value of the symmetry energy coefficient. In the n-p channel,
(Asym

0,1 )a � 30 MeV (symmetric limit). These two polarizabil-
ities (11) are equal in the limit of symmetric nucleonic matter
ρm = 0. This derivation applies to any of the channels (s, t).

Consider that the binding energy is to be minimized with
respect to the density fluctuation β. From this, an equilibrium
condition for nuclear matter is obtained with δ2(E/A)/δβ2 >

0, being different from other ones and complementary to
them [56]. To be a stable minimum of the binding energy, the
coefficients of both definitions of the polarizabilities satisfy,
respectively,

δ2E/A

δβ2
s,t

= − 2Cs,t(
�a

s,t

)2 > 0, (12a)

δ2E/A

δβ2
s,t

= 2As,t > 0, (12b)

where �a
s,t and As,t are given in expressions (11a) and

(11b), respectively. The constant Cs,t may be negative (stable
symmetric nuclear matter [21]) or positive; As,t and �s,t also
may be negative or positive. While the second expression
yields the more expected result, i.e., the stability is directly
shown by the signal of As,t in each channel (s, t), the first
expression has a more involved behavior because of the
complicated form of expression (11a). From the polarizability
(11a), two conditions for real A and stable system follow:

Aa
s,t <

(
Aa

s,t

)
sym, (13a)

(
Aa

s,t

)
sym

[
2 − Aa

s,t(
Aa

s,t

)
sym

± 2

√
1 − Aa

s,t(
Aa

s,t

)
sym

]
< 0. (13a′)

From condition (13a), the neutron-proton asymmetry can only
lower the value of the generalized coefficient As,t to keep the
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system stable with the use of (11a). It is worth emphasizing
that the two conditions (12) with the respective definitions
for �s,t should not be mixed. If the polarizability from
expression (11b) is considered, the condition (12b) is to be
applied, otherwise inconsistent results arise. Expression (11b)
is the usual form. However, if one considers solution (11a)
the condition (12a) is to be applied, otherwise inconsistent
results arise. In particular, in the case of the polarizability
given by expression (11a), there are several possibilities for the
stability of the symmetric and the corresponding asymmetric
matter depending on As,t > 0 (or As,t < 0) and As,t

sym > 0 (or
As,t

sym < 0) in each of the channel (s, t). The microscopic in
medium nucleon interactions, in an exact calculation, would
give the correct one. Expression (10) for A0,1(b) was found
with the solution (11b) for �s,t .

The stability conditions of a Fermi liquid in the leading
order, in each channel of the interaction, correspond to a
particular case of the above expression (12b). They are given by
the denominator of a particular limit of the response function
�s,t which can be written as

as,t = N0
(
1 + J

s,t
0

)
> 0, (14)

where J
s,t
0 stands for any of F0, F

′
0,G0,G

′
0, respectively, for

the scalar (s = 0, t = 0), isovector (s = 0, t = 1 with aτ ), spin
(s = 1, t = 0 with aσ ), and spin-isovector (s = 1, t = 1 with
aστ ) channels [57,58]. These expressions contain the leading
terms of the more general calculation. Within a nonrelativistic
formalism with Skyrme type interactions, they can be written
in terms of Landau parameters [10,59]. Other considerations
can be associated with different formalisms [60,17,13,61]. A
complementary analysis for particular models will be done in
a forthcoming work.

III. SIMULTANEOUS DEPENDENCE ON
ISOSPIN AND DENSITY

Next it will be assumed that there is an implicit and a
priori unknown dependence of the saturation density on the
n-p asymmetry without any supposition about the microscopic
origin for this, ρ0 = ρ0(b). From the general and usual
expression for the polarizability (6) [or (11b)], a differential
equation for the simultaneous isospin and density dependence
of the symmetry energy (coefficients) As,t will be derived.
Although expression (6) was also derived without considering
a dependence of ρ on b, it will be considered that this simple
form is more general. The derivative of the polarizability �s,t ,
expressions (6), with respect to b is given by

∂β

∂b
= β

[(
1

ρ
− 1

As,t

∂As,t

∂ρ

)
∂ρ

∂b
− 1

As,t

∂As,t

∂b

]
. (15)

The variation δβ/δb is given by expression (9), the prescription
for the relation between the fluctuations. This equation has
three other derivatives a priori unknown which have to
be consistent with the equation of state: the derivatives
∂A/∂ρ, ∂A/∂b, and ∂ρ/∂b. This expression is therefore to
be equated to that of prescription (9) or, more generally,

δβ

δb
≡ −βf (b). (16)

The resulting equation is[(
1

ρ
− 1

As,t

∂As,t

∂ρ

)
∂ρ

∂b
− 1

As,t

∂As,t

∂b

]
= −f (b). (17)

This is one of the most relevant results of this paper.
This equation constrains the simultaneous dependence of the
symmetry energy on the density and on the nucleon density
asymmetry (through the generalized coefficient As,t , in the
channel s, t , which is not a constant anymore).1

The following cases correspond to the derivation in Sec. II
[expressions (11)]:

∂ρ

∂b
= 0, and/or

∂A
∂ρ

= A
ρ

.

These correspond to the use of the prescription given by
expression (9), which yields the function

f (b) = 1

(1 + b)(2 + b)
. (18)

For this prescription, which yields expression (10) for A(b), it
has been assumed that ρ was independent of b, therefore, in
that case,

1

β

∂β

∂b
= − 1

A
∂A
∂b

. (19)

Here, the behavior ofA(ρ) can be the one typical of relativistic
models with the increase of (any of the) symmetry energy
coefficient with the increase of the nuclear density, i.e., As,t ∝
ρ and in part of the microscopic approaches, for which its value
usually tends to a constant, [13,29,62–66]. However, this is not
the most general and interesting case because condition (19)
holds when ρ is independent of b.

A slightly more general parametrization can be investi-
gated. For example, Heiselberg and Hjorth-Jensen [67,68] used
the following expression for the density dependence of the
symmetry energy, which nearly summarizes results obtained
from relativist models:

Esym = Esym(ρ0)

(
ρ

ρ0

)γ

, (20)

where γ is a constant and ρ0 the saturation density. A
variational calculation favors values of the order of γ � 0.6,
whereas an analysis of heavy-ion collisions experiments at low
energies γ � 2 [67,68]. From the differential equation (17), it
will be considered parametrizations given by

∂A
∂ρ

= γ
A
ρ

,

(21)

A = Asym
α1 + α2b

α3 + α4b
,

1The parameter b, however, may be replaced by the equivalent one
for the spin-up/spin-down asymmetry in polarized nuclear matter.
The same form is obtained for spin-polarized nuclear matter, by
interchanging the neutron-proton variables (from s, t = 0, 1) to
spin-up, spin-down ones (with s, t = 1, 0). An equivalent prescription
has to be provided for the spin density fluctuations.
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where αi (i = 1, 2, 3, 4) are constants. When the asymmetry
coefficient in expression (22) reaches the value

b = −α1

α2
,

the symmetry energy coefficient A0,1 changes its sign, making
the system unstable according to the stability condition
(12b). The resulting equation, from the general equation (17),
for the density as a function of b with the above parametriza-
tions is

∂ρ

∂b
= ρ

1 − γ

[
−f (b) + −α1α4 + α2α3

(α3 + α4b)2

]
. (22)

For positive α3 and α4 the general solution is given by

ρb = (b + 2)( 1
1−γ

) (1 + b)(− 1
1−γ

)
[
α1 + α2b

α3 + α4b

] 1
1−γ

B. (23)

In the limit of symmetric nucleonic matter, for b as the neutron-
proton density asymmetry, b = 0, the constant B can be fixed
in terms of ρ0. In neutron matter, ρ → 0 or ρ → ∞. For this
to be finite, ρ(b → ∞) → 0. A particular solution appears for
α3/α4 = −b which yields ρ = 0. When this occurs, α1 and α2

from expression (23) have different signs to keep cA0,1 finite.
For the usual form for the symmetry energy term in which

A = aτ is independent of b, the resulting density as a function
of the asymmetry b from the differential equation (17) is given
by

ρ(b) = C0

(
2 + b

1 + b

) 1
γ

, (24)

where C0 is fixed by a boundary condition, for example, ρ(b =
0), with a fixed value of γ . From this limit, C0 = ρ021/γ ;
whereas in neutron matter, ρ(b → ∞) = C0. The ratio of the
density in these two limits is given as

ρ(b → ∞) = ρ(b = 0)

2
1
γ

. (25)

However, the parameter γ from the parametrization (20) may
(be assumed to) depend on the neutron-proton asymmetry
coefficient b (or equivalently α). In this sense, a modification in
the usual symmetry energy dependence on the n-p asymmetry
can be expected to be equivalent to different values for the
parameter γ , at different densities, in different experimental
situations.

A different form for Eq. (17) can be written by considering
that ∂ρ

∂b
≡ g(b, ρ), and ∂A

∂ρ
≡ h(ρ, b) �= A

ρ
. The following

differential equation appears for A(b, ρ) with these functions:{[
1

ρ
− 1

As,t

h(ρ, b)

]
g(b, ρ) − 1

As,t

∂As,t

∂b

}
= −f (b). (26)

Considering the particular prescription (19), the following
expression it is obtained:[

1

ρ
− 1

As,t

h(ρ, b)

]
g(b, ρ) = −2f (b). (27)

These expressions can be considered for any channel (s, t).
They generate one differential equation for each channel of
the nuclear effective interaction with As,t , and therefore the

final ρ dependence on b is to be the same for each of these
equations, for b representing the same asymmetry (neutron-
proton, spin-up and spin-down). For this, the choices for As,t

and β(b) should be associated, otherwise different ρ(b) will
appear.

IV. GENERALIZED “SCREENING FUNCTIONS”
WITH SKYRME FORCES

In this section, the analysis done previously [10,69,11,21] is
extended with the static limit of the expression for the dynam-
ical polarizability of a nonrelativistic hot asymmetric nuclear
matter with Skyrme effective interactions, limω→0�s,t (ω, q).
These polarizabilities were obtained by the calculation of
the response function of hot asymmetric nuclear matter in
terms of three densities: neutron and proton densities ρi ,
momentum density τi , and kinetic energy densities ji from
the time-dependent Hartree-Fock approximation with Skyrme
forces [10,11]. These densities appear in reductions from
relativistic models in which the scalar density is written in
terms of them [49,50]. The time-dependent approach intro-
duces CP-violating terms proportional to j which are larger in
asymmetric nuclear matter. Four asymmetry coefficients are
defined, a, b, c, and d for the effective masses and densities,
and they are given by

a = m∗
p

m∗
n

− 1, b = ρ0n

ρ0p

− 1,

(28)

c = 1 + b

2 + b
, d = 1

1 + (1 + b)
2
3

,

where m∗
i are the neutron and proton effective masses.

Small approximations were done (i) to equate the asym-
metry coefficient defined for the momentum density to the
density asymmetry coefficient and (ii) to choose a particular
prescription for the fluctuations of the asymmetry density,
expression (9). The second approximation is in fact a choice
with dynamical content, and it deserves more attention.

At the Hartree-Fock level, the symmetry energy coefficient,
aτ = ∂2(E0/A)∂α2, can be written from the expansion

E0

A
= H0 + α

∂(E0/A)

∂α

∣∣∣∣
α=0

+ α2

2

∂2(E0/A)

∂α2

∣∣∣∣
α=0

+ · · · ,
(29)

where higher order terms are not written. There may ap-
pear (small) higher order terms. By calculating the general
polarizability, within the linear response approach, a whole
class of ring diagrams contribute beyond the Hartree-Fock
[70]. Therefore, corrections to the symmetry energies can be
obtained.

For the calculation of the response function, an external
source is introduced in the Hartree-Fock time-dependent
equation that induces small-amplitude density fluctuations.
The general form of the source is the plane wave one given by

Vext = −εÔs,tDe−i(ωt−q·r), (30)

with an amplitude ε (usually a small parameter), an associated
dipole moment D (equal to the unit from here on), and the
operator Ô, which acts on the nucleon states. In particular, for
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the isovector interaction, the third component of the isospin
(Pauli) matrices is considered yielding neutron-proton density
fluctuations. With the above external source, the Hartree-Fock
equation for nuclear matter is written as

∂tρi = −i
[
Wi + V ext

i , ρi

]
, (31)

where Wi is the Hartree-Fock energy of protons or neutrons.
The induced density fluctuations δρ are to have the same spatial
and temporal plane waves behavior of the external source.

The resulting expression is more appropriately written in
terms of generalized Lindhard functions whose real parts, at
zero temperature F2i , were defined as [10,69]

�e�i
2N (ω, q) ≡ gM∗

2π2
�e

∫
d3k

fq(k + q) − fq(k)

ω + iη − ε′
p(k) + ε′

p(k + q)

× [k · (k + q)]N

= gM∗

2π2

∫
dfi(k)�e F2i . (32)

In these expressions fi(k) are the fermion occupation numbers
for neutrons (i = n) and protons (i = p) which will be
considered only for the zero temperature limit [when dfi(k) →
−δ(k − kF )], g is the degeneracy factor for spin and isospin,
and M∗ is the effective mass in symmetric nuclear matter.
In the limit of zero energy exchange (ω → 0), the Lindhard
functions yield the (q-dependent) proton and neutron densities;
the momentum and kinetic energy densities are given by

Nq = γM∗

2π2

∫
dfi(k) �eF0(ω → 0),

ρq = γM∗

2π2

∫
dfi(k) �eF2(ω → 0), (33)

Mq = γM∗

2π2

∫
dfi(k) �eF4(ω → 0).

In the symmetric nuclear matter, the momentum-dependent
polarizability (6) in the channel s, t for the Skyrme effective
force parametrization is written as

As,t (q) = ρq

Nq

[
1 + 2V

s,t
0 Nq + 6V

s,t
1 M∗ρq + (

V
s,t

1

)2
(M∗)2

× (
9ρq

2 − 4MqNq

)]
, (34)

Where V0(q2) and V1 are functions of the Skyrme forces pa-
rameters for each of the (s, t) channels shown in the Appendix.
The nuclear matter incompressibility modulus is related to
A0,0(q2 = 0) in the Appendix. The q-dependent densities
Nq, ρq , and Mq are the total densities from expressions (33).
The term proportional to V 2

1 can be rewritten in homogeneous
nuclear matter at zero temperature as proportional to (ρτ −
	j 2), which is to be zero in the Galilean invariant (homogeneous
and static) limit [50]. This invariance is broken in these
cases, and it is amplified in asymmetric nuclear matter. q
in the neutron-proton channel is the exchanged momentum
between the neutron and proton components, and similarly,
in the spin channel, the corresponding exchanged momentum
for spin-up and spin-down nucleons. The stability condition
for this expression is given by (12b). The finite temperature
calculation of the densities lead to finite temperature symmetry

0 500 1000

q (MeV)

0

20
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60

80

A
0,

1 
(M

eV
)

SLyb (T=0 MeV)
SLyb(T=4 MeV)
SLyb (T=7 MeV)
SKM (T=0 MeV)

FIG. 1. Neutron-proton symmetry energy coefficient A0,1 =
ρ/(2�

0,1
R ) of symmetric nuclear matter as a function of the momentum

transfer between neutrons and protons, q (MeV), for interactions SLyb
for T = 0, 4, 7 MeV and SKM (T = 0).

energy coefficients. In the zero frequency limit, the imaginary
part of the response function disappears.

In the limit of low momenta, q � 2kF , the w = 0 limit
of the Lindhard functions are simplified, as shown in the
Appendix. The polarizabilities of symmetric nuclear can be
approximately written in the form

As,t = As,t (T , ρ) + A
(1)
s,t (T , ρ)q + A

(2)
s,t (T , ρ)q2, (35)

where As,t (T , ρ) is the usual symmetry energy coefficient in
the channel (s, t) [10,11] and A

(i)
s,t (T , ρ) are functions of the

Skyrme force parameters (combined in the functions V
s,t

0 and
V

s,t
1 ), ρ and T.

A. Results for Skyrme interactions in the four channels

In this section, the generalized polarizabilities are investi-
gated numerically for the Skyrme forces SKM and SLyb for the
four channels of the particle-hole interaction as functions of
the exchanged momentum at the normal density ρ0. For this,
the chemical potential was adjusted to mantain a constant
stable nuclear density ρ(T ) = ρ0. As a consequence, the
results are not very strongly dependent on T. In Fig. 1, the
neutron-proton polarizability is shown as a function of the (ex-
changed) momentum for temperatures T = 0, 4, and 7 MeV
for Skyrme force SLyb and at T = 0 MeV for the force SKM.
Both forces produce widely accepted values for the symmetry
energy coefficient, A0,1(q = 0, T = 0) � 32 MeV. There is a
general behavior (for both forces at any of the temperatures) of
decreasing A0,1 with increasing exchanged momentum up to
q � 500 MeV. This corresponds to nearly twice the nucleon
momentum at the Fermi surface. However, A0,1 does not reach
negative values. The behavior of decreasing values of A0,1 for
increasing momenta is in agreement with other analyses for
the momentum dependence of the symmetry energy [71]. The
symmetry energy coefficient has, according to expressions (34)
and (35), a linear/quadratic behavior for very small exchanged
momenta q. This is followed by an abrupt change of behavior
at q � 500 MeV. For higher q the generalized s.e.c. (A0,1)
increases nearly linearly at different temperatures. For the
s.e.c. A0,1 to become negative, the Skyrme parameters t0 and
t3 should result in larger values of V 0 than those of SLyb (this
variable is still smaller for the force SKM) and/or different
values for t1, t2.
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FIG. 2. Same as Fig. 1, but for the spin-isospin symmetry energy
coefficient A1,1 = ρ/(2�

1,1
R ).

In Fig. 2 the spin-isospin generalized polarizability depen-
dence on exchanged momentum between neutrons and protons
with spin up and down is investigated for the same cases
of Fig. 1. There is again a quite defined change of behavior
at q � 500 MeV. The generalized spin-isospin s.e.c. remains
nearly constant with increasing q up to q � 500 MeV. The
force SKM yields smoother variations than SLyb, as in the
n-p channel. Above the saturation density, A1,1 decreases for
most forces, eventually reaching a negative value [21]. Finite
temperature effects are larger for higher values of q.

In Fig. 3, the spin-generalized polarizability A1,0 is shown
for the same cases as in the previous figures. The turning
point present in the isospin-dependent channels, investigated in
Figs. 1 and 2, is the same (q � 500 MeV). This is due to
the form of the Lindhard functions. However, the behavior is
completely different for each of the forces that already have
very different predictions of A1,0(q = 0, T = 0). SKM yields
a nearly constant behavior followed by a strong increase of
A1,0(q) for very large q, whereas SLyb decreases to a local
minimum at q = qc � 500 MeV. The behavior resulting from
the use of the SKM force shows qualitative agreement with
the results of Kaiser within Chiral Perturbation Theory [13].
For the force SLyb, the spin symmetry energy coefficient may
decrease still more for large values of q at zero temperature;
eventually it may become negative at larger densities. The
instability associated with A1,0 < 0 is the one toward a fer-
romagnetic alignment which has been found in several works
with several Skyrme forces and relativistic models at higher
densities [14,21,20,12,16,15]. However, this transition is ab-
sent in several calculations. The most well-known calculations
in which the ferromagnetic alignment is not found are those
based on NN interactions with different methods [17,19,18,13].
However, there are particular Skyrme forces that do not provide
this ferromagnetic phase for nuclear matter: those parametriza-
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FIG. 3. Same as Fig. 1, but for the spin symmetry energy
coefficient A1,0 = ρ/(2�

1,0
R ).
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FIG. 4. Same as Fig. 1, but for the scalar symmetry energy
coefficient A0,0 = ρ/(2�

0,0
R ).

tions with the inclusion of NN tensor Skyrme-type force by Liu
et al. [72] or using SLyb at low momentum as seen in Fig. 3 for
higher densities and n-p asymmetries (seen in the second of the
Ref. [21]). The effect of the momentum dependence, however,
is the decrease of A1,0(q). Whereas the functional density
formalism with Skyrme forces and the relativistic (mean field)
models with nucleon-meson couplings are effective models for
the nuclear many-body problem, the NN-based calculations are
subject to approximate methods that may not capture all the
relevant degrees of freedom appropriately in each part of the
nuclear phase diagram. At finite temperatures,A1,0(q, T ) does
not vary significantly.

In Fig. 4, the scalar polarizability A0,0 as defined in
expression (34) is plotted. It shows a continuous increase with
momentum without the turning point at q � 500 MeV. This
parameter, a dipolar incompressibility, is proportional to the
nuclear matter incompressibility, as shown in the Appendix.

In all the examples shown above, the increase in tem-
perature is more relevant to larger q, and the increase in
the nuclear temperature always yields larger As,t . Usually
a large variation of the static symmetry energy with the
temperature is not expected from microscopic calculations in
finite nuclei [73,74]. Modifications of the chemical potential
at high temperatures can lead to stronger dependences on T.

To understand the behavior of the generalized polariz-
abilities, the total densities (Nq, ρq,Mq), as defined above,
are shown in Fig. 5 as functions of q for the parameters of
force SLyb. They are obtained from the zero frequency of the

0 500 1000
q (MeV)

−6

−5

−4

−3

−2

−1

0

N
q , ρ

q , M
q

N
q
(T=0)

N
q
(T=4)

N
q
(T=7)

ρq
 (T=0)

M
q
 (T=0)

FIG. 5. Densities N, ρ,M as functions of the transfered momen-
tum between neutrons and protons for the force SLyb. They are nearly
independent of the force except for the values of m∗ and kF .
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generalized Lindhard functions, and they generate the behavior
of expressions (35) seen in Figs. 1–4. Whereas �0 and �2

present a smooth behavior toward zero with the increase of
q, the momentum density, | 	j | ∝ M , has a dramatic change at
q � 2kF . This prevents the polarizabilitiesAs,t from becoming
negative for the forces investigated in this work, in particular,
the neutron-proton A0,1 and spin A1,0 polarizabilities.

B. Other considerations

From the stability analysis of Sec. II, the results shown
in Figs. 1–4, mainly for the force SLyb, suggest that nu-
clear matter is close to undergoing phase transitions around
q � 500 MeV, i.e., when the exchanged momentum q is
nearly twice the momentum at the Fermi surface kF . The q
dependence of the Lindhard function yields Mi(q), as well as
Ni(q), and ρi(q) for ω = 0, which makes phase transitions
more difficult to occur.

This analysis was done for zero energy with As,t only as a
function of exchanged momentum. The frequency dependence
of the polarizabilities was analyzed associatedly with the
exchanged momentum for the dipolar collective motions
where zero soundlike excitations were found [10,11]. In nearly
symmetric nuclear matter, they disappear at temperatures of
the order of T � 7 MeV [75,76] (and higher temperatures
for nonzero asymmetries). Their disappearance may occur
with the liquid-gas phase transition [77,78]. The increase of
the giant dipole isovector resonance width stops so that the
corresponding energy is probably being used for changing the
phase of the system.

These results can also be expected to yield consequences
for the supernovae mechanism and proto-neutron or “neutron”
stars with their dynamical behavior involving energy and
momentum dependence of As,t . The symmetry energies
contribute, among other ways, by means of A0,0,A1,0 (due
to the coupling to neutrinos) and A0,1,A1,1 for the different
neutron-proton densities and the other related effects [79,24].
The neutronization of a proto-neutron star in the quasistatic
phase of the supernova can be partially suppressed because
of the eventual increase of the symmetry energy coefficient,
although the momentum dependence shown in Fig. 1 presents
the opposite trend of decreasing A0,1 up to q � 2kF . This
second (dynamical) effect seemingly would facilitate the
neutronization, and it should compete with the former. On the
other hand, the spin symmetry energy is strongly dependent
on the used Skyrme interaction. Although the (continuous)
increase of A1,0 seems to be rather in agreement with other
works [17,13], new developments are needed including new
parametrization of effective forces focusing on spin-dependent
observables from nuclei and nuclear matter.

V. SUMMARY

In this paper, the nuclear matter symmetry energy terms
were investigated as generalized polarizabilities. Stability
conditions with respect to neutron-proton fluctuations were
derived as being complementary to others usually investi-
gated [58,56]. A differential equation for the simultaneous

dependence of the generalized symmetry energy coefficients
on the neutron-proton asymmetry and on the total nuclear
density was proposed in Eq. (17). For this, no considerations
were raised about the microscopic reasons for the resulting
stability density with a given n-p asymmetry. The stability
density is, in this case, a function of the n-p asymmetry as
it should be in a general formulation. Some solutions for
this equation were given. This procedure is interesting for
finite nuclei as well. These results may be of interest to the
investigation of the role of symmetry energy on observables
in radioactive ions, which are being prepared and done mainly
for the RIA and GSI machines. At different densities, the
isospin dependence of the symmetry energy may be different
from the usual one. Finally, within the framework of the
linear response of nonrelativistic nuclear matter with Skyrme
forces, the q dependence (exchanged momentum between the
components of nuclear matter, e.g., neutrons and protons) of
the coefficients As,t was investigated. For low momenta, the
n-p symmetry energy decreases (linearly and quadratically)
until qc � 500 MeV, in agreement with earlier investigations
of the symmetry energy potential [71]. In this range of mo-
mentum transfer, q phase transition(s) may take place if other
conditions are present, such as different (higher/lower) nuclear
densities. This indication can be seen in the other symmetry
energies, the spin-dependent ones, which, however, depend
strongly on the particular Skyrme effective interaction. The
results in the spin-dependent channels show no defined sign of
such ferromagnetic phase for the SLyb force at the saturation
density. However, the decrease of A1,0(q) with increasing
transferred momentum may favor such phase transition in
different conditions of densities and n-p asymmetries. The
scalar coefficient A0,0(q), the dipolar incompressibility, has
continously larger values with the increase of exchanged
momentum.

APPENDIX: SKYRME FORCE PARAMETRIZATION,
FUNCTIONS Vi , RELATION BETWEEN K∞ AND

A0,0(q = 0)

In this Appendix, we exhibit the functions Vi for expression
(34) with parametrization of Skyrme forces SKM, SLyb, and
others [52] given by

v12 = t0(1 + x0Pσ )δ(r1 − r2) + t1

2
(1 + x1Pσ ) [δ(r1 − r2)k2

+ k′2δ(r1 − r2)] + t2 (1 + x2Pσ ) k′ · δ(r1 − r2)k

+ t3

6
(1 + x3Pσ )[a1(ρ1 + ρ2)γ + a2ρ

α]δ(r1 − r2),

(A1)

where Pσ is the spin exchange operator. The parameters for the
forces SLyb and SKM are given respectively, in Refs. [46,47].

From the linear response calculation for a time-dependent
Hartree-Fock frame, in the lines discussed in [10,69], we
can write the corresponding functions V 0

s,t and V 1
s,t in each

channel for the more general calculation in asymmetric nuclear
matter as
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V
0,1

0 =
{
− t0

2

(
x0 + 1

2

)
− t3

12

[
a2

(
x3 + 1

2

)
+ a1

(
1 + x3

2

)
− 1

4
(1 − x3)(α + 2)(α + 1)

]
ρα

− q2

16
[3t1(1 + 2x1) + t2(1 + 2x2)]

}
(1 + bc) + V

0,1
2 ,

V
0,1

1 = 1

16
[t2(1 + 2x2) − t1(1 + 2x1)],

V
0,1

2 = t3

(
a2

(
1

2
+ x3

)
αρα−1[cρn + (c − 1)ρp] + a1

{(
1 + x3

2

)
αρα−1[cρn + ρp(c − 1)]

+ 2(1 − x3)(α + 2)(α + 1)
[
cρα

n + ρα
p (c − 1)

] 1

16

})
1

12
,

V
0,0

0 =
{

3
t0

4
+ (α + 1)(α + 2)t3ρ

α

[
a1

(
1 + x3

2

) (
1 + b

2 + b

)2 1

16
+ a2

(
1 + x3

2

) 1

12

]

+ q2

[
9

t1

32
− (5 + 4x2)

t2

32

]}
(1 + bc) + V

0,0
2 ,

V
0,0

1 = 3
t1

16
+ (5 + 4x2)

t2

16
,

V
0,0

2 = t3

12

(
(x3 + 0.5)[cρn + (c − 1)ρpρ(α−1)] + a1α(1 − x3)

{
(2ρ)α

(2 + b)α+2
+ 2

[(1 + b)2ρ]α

(2 + b)α+2

}
1

2
− a2

[1 + (1 + b)2ρα]

(2 + b)2

)

V
1,0

0 =
{
−0.5t0(x0 + 0.5) − t3

12
ρα(0.5 + x3) − q2

8
[t2(x2 + 0.5) + 3t1(0.5 + x1)]

+ a1

12
t3x3ρ

α(2 + α) + a2

24
t3ρ

α(2x3 − 1)

}
(1 + b · c) + V

1,0
2 ,

V 1
1,0 = 1

8
[t2(x2 + 0.5) − t1(x1 + 0.5)],

V
1,0

2 = t3

12

[
(0.5 + x3)ρnρ

(α−1)
p α

] · c + t3(0.5 + x3)ρpρ(α−1) α

12
(c − 1),

V
1,1

0 (q2) =
{
− t0

4
− t3

24
ρα − a1

48
t3[(2ρn)α + (2ρp)α] − a2

24
t3ρ

α + q2

(
−3

t1

32
− t2

32

)
(1 + b · c)

}
+ V2,

V
1,1

1 = − t1

16
+ t2

16
,

V
1,1

2 = α

24
t3ρ

(α−1)[ρn · c − ρp(1 − c)] − a1t3(2 + α)[(2ρn)αc + (2ρp)α(c − 1)]
1

12

+ a2t3αρ(α−1)
[
−ρn

c

2
− (c − 1)

ρp

2

]
[ρn.c − ρp(1 − c)]

1

24
, (A2)

where ρn, ρp, and ρ are the proton, neutron, and total densities
of asymmetric nuclear matter and a, b, c are the asymmetry
coefficients defined in Sec. IV.

For the long wavelength limit of A0,0(b = 0, ρ, q2 = 0),
the following relation is obtained in terms of the incompress-
ibility modulus [11]:

1
9K∞ = A0,0 − 4

5TF + 2V1k
2
F ρ0 − 3

4 t3ρ
α+1
0 . (A3)

They have different relevant terms such as the one proportional
to the nucleon kinetic energy at the Fermi surface TF and a term
from the density dependence of the Skyrme forces proportional
to t3. This can be seen, in general, by remembering that the

calculation of A0,0(ρ, q = 0) was done with the quadratic
form for the binding energy in the presence of an external
perturbation which induces density fluctuations of expression
(3). It is rewritten as

H = H0 + A0,0(ρ)
(δρ0,0)2

ρ
+ ε′δρ. (A4)

Terms containing (δρ)n, for n �= 2, in H were neglected and
would correspond to the terms which yield the usual K∞.
This more general parametrization will be considered in a
forthcoming work.
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The general structure of the zero frequenc (real) generalized
Lindhard functions �2N at zero temperature can be written as

�0(T = 0) = M∗kF

π2

[
−1 + a

q

(
1 − q2

2k2
F

)
Ln

∣∣∣∣q − 2kF

q + 2kF

∣∣∣∣
]

,

�2(T = 0) = M∗k3
F

2π2

[
−3 + 3q2b2 + b

q
(1 − 3cq2)

×
(

1 − q2

2k2
F

)
Ln

∣∣∣∣q − 2kF

q + 2kF

∣∣∣∣
]

, (A5)

�4(T = 0) = M∗k5
F

π2

[
a4 + b4q + c4q

2 + d4q
3 + e4q

4

+ 1

3q

(
1 − q6

(2kF )6

)
Ln

∣∣∣∣q − 2kF

q + 2kF

∣∣∣∣
]

,

where ai, bi, ci, di, and ei depend on kF and M∗.
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