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We consider the relationship between p-wave πN scattering and the strength of the p-wave two-pion-exchange
three-nucleon interaction (TPE3NI). We explain why effective theories that do not contain the Delta resonance as
an explicit degree of freedom tend to overestimate the strength of the TPE3NI. The overestimation can be remedied
by higher-order terms in these “Delta-less” theories, but such terms are not yet included in state-of-the-art chiral
effective field theory calculations of the nuclear force. This suggests that these calculations can predict the
strength of the TPE3NI only to an accuracy of ±25%.
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I. INTRODUCTION

A long-standing quest in hadronic physics is to relate the
properties of free pions, observed in, for instance, pion-nucleon
(πN ) scattering, to those of the pions that play such a
significant role in the nuclear force. Recently, the Nijmegen
group has provided a striking demonstration that one-pion
exchange indeed provides the longest range component of
the two-nucleon potential. They extracted, with small error
bars, the masses of the charged and neutral pions and the
couplings of pions to the nucleon from fits to the pp and
np scattering data [1]. A subsequent Nijmegen analysis of
NN data then confirmed that two-pion exchange [2–4] gives
a significant fraction of the intermediate-range attraction in
the NN interaction [5]. In some models other mechanisms,
for example, the very broad f0(600)—or σ—meson [6], also
contribute to this attraction. In systems beyond A = 2 the
three-nucleon interaction plays a subtle, but important, role. In
this article we focus on the Fujita-Miyazawa (FM) [7] term in
the two-pion-exchange three-nucleon interaction (TPE3NI). It
appears—at least for light nuclei—that this is the largest piece
of the three-nucleon force [8].

Ideally πN scattering data should be used to directly
construct the TPE3NI. However, the pions that generate
nuclear forces are highly virtual. The relation between the
scattering they experience from nucleons inside the nucleus
and that observed in free space is nontrivial. To determine
it, an extrapolation of the πN amplitude from the “physical
region”—where the pion energies are greater than mπ—to
the “virtual region”—where pion energies are much less than
mπ—is needed.

The Delta isobar is the most prominent feature of πN

dynamics. The Delta peak in the π+p elastic scattering cross
section is larger by an order of magnitude than any other [6].
Therefore, when constructing models of the πN interaction
that will be used for the extrapolation to the virtual region it is
natural to include the Delta as an explicit degree of freedom.
This was the path followed many years ago, and the leading
two-pion-exchange two- and three-nucleon potentials with an
explicit Delta were derived by Sugawara and von Hippel

[2] and Fujita and Miyazawa (FM) [7], respectively. These
two-pion-exchange NN and NNN potentials were recently
rederived as pieces of the more general expressions for two-
and three-nucleon forces that are obtained when an effective
field theory (EFT) with explicit Delta degrees of freedom is
applied to the problem of nuclear forces [4,9]. Here we discuss
how the FM potential arises in any theory with an explicit
Delta. Our expression for this potential is connected to πN

scattering data through the Delta mass and the πN� coupling
constant, both of which can be determined from the πN data.

But the highly virtual pions exchanged in the TPE3NI have
energies much less than the Delta-nucleon mass difference.
This has encouraged the development of an approach to nuclear
forces that is different from that of Sugawara and von Hippel
and Fujita and Miyazawa. In this approach the Delta degree of
freedom—along with all other πN resonances— is “integrated
out.” This yields an EFT in which pions and nucleons interact
in the most general way. In this EFT πN interactions are point
like and organized as an expansion in the number of space and
time derivatives (for a review, see Ref. [10]). The expansion
parameter is essentially ω

�M
, with ω the pion energy and

�M ≡ M� − M ≈ 300 MeV ∼ 2mπ the Delta-nucleon mass
difference. Applying this “Delta-less” EFT to πN scattering
is challenging (see, e.g., Ref. [11]) because the expansion
parameter is, at best, 1

2 , and the expansion breaks down
completely at the Delta peak. However the expansion should
converge well if ω � �M , a condition which should have fair
validity in nuclear-structure physics. The leading contributions
to NN and NNN potentials in this EFT were found in Refs. [12]
and [9], respectively.1

We have argued that nuclear-structure physics is within
the domain of validity of both the theory with explicit Deltas
and the “Delta-less” EFT. We might expect then, that the

1The delta contributions were of course implicit in previous
dispersion-theoretical approaches [13,14] and models [15,16], al-
though the correct chiral-symmetry properties are difficult to maintain
when connecting the pion-nucleon amplitude to the potential without
using field theory [17].
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two theories would give similar results for the strength of the
TPE3NI. But this turns out not to be the case. Effective theories
without an explicit Delta predict a strength for the TPE3NI that
is 1.5 to 2.5 times larger than that obtained by FM [17]. Studies
of the spectrum of light nuclei with the Green’s function Monte
Carlo method, including three-nucleon interactions, favor a
strength of the TPE3NI closer to the FM value [8,18].2

Here we identify the origin of this discrepancy. Parameters
in the Lagrangian of the theory with pions and nucleons
alone must be extracted from πN scattering data. But the
poor convergence of the derivative expansion in that the-
ory tends to contaminate parameters extracted in this way.
These parameters then appear in the TPE3NI and result in
overestimation of its strength. Within the Delta-less EFT this
problem is only mitigated if many orders in the expansion are
retained.

This simple argument is presented as follows. In Sec. II we
write down an EFT with nucleons, pions, and explicit Deltas,
and compute, to leading order, both the p-wave πN scattering
amplitude and the TPE3NI. In Sec. III we use a theory without
explicit deltas to compute the TPE3NI. By construction the
πN amplitudes in this theory and the theory of Sec. II agree
at πN threshold. We show that they differ by a factor of 4

3
in their prediction for the strength of the FM NNN potential.
We then discuss how this overestimation would be remedied at
higher orders in the Delta-less EFT, and what the implications
of this problem are for contemporary EFT computations of the
TPE3NI.

II. A THEORY WITH EXPLICIT DELTAS

Although many terms contribute to πN scattering and
the three-nucleon potential, here we focus on the Delta
contributions. We do not claim that this is an accurate or
complete model for either πN scattering or the TPE3NI, but
it serves to illustrate the point we wish to make regarding the
relationship between πN data and the strength of the TPE3NI
in Delta-less EFTs. For discussions of this relationship in the
context of hadronic models, see, e.g., Ref. [16].

We consider p-wave πN scattering in an effective theory
with an explicit Delta degree of freedom. We are interested in
small pion momenta, and so we need only the leading terms
in the πNN and πN� interaction Lagrangians. These are as
follows:

LπNN = gA

2fπ

N †στN × ∇� (1)

LπN� = hA

2fπ

(�†STN + H.c.) × ∇� (2)

where �,N , and � are the pion, nucleon, and Delta fields,
fπ � 93 MeV is the pion decay constant, gA � 1.29 is the
axial-vector constant that corresponds to the value of the
(charged) πNN coupling constant reported in Ref. [1], hA �
2.8 is the corresponding pion-nucleon-Delta transition strength

2This conclusion is somewhat dependent on the regulator used in
the three-nucleon force but holds definitively if one requires that the
cutoffs used in the NN and NNN system be the same.
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FIG. 1. Four πN scattering diagrams. Dashed lines represent
pions, solid line nucleons, and thick solid lines Delta isobars.

(see, e.g. Ref. [19]), σ and τ are the Pauli spin and isospin
matrices, and S and T are Rarita-Schwinger transition spin
and isospin operators. Both S and T obey generalized Pauli
identities of the following form:

S† · AS · B = 2

3
A · B − 1

3
iσ · A × B. (3)

Alternatively, one can work with the following Hamiltonians:

HπNN = −fπNN

mπ

σ · ∇(�(r) · τ ), (4)

HπN� = −fπN�

mπ

{S · ∇[�(r) · T] + S† · ∇[�(r) · T†]}, (5)

where, at this order, fπNN = mπgA/2fπ and fπN� =
mπhA/2fπ , with mπ the pion mass.

A. π N scattering at low energies

At leading order in small momenta these Lagrangians yield
four diagrams that contribute to p-wave πN scattering. They
are shown in Fig. 1. Only two involve the Delta. They give the
nucleon-pole-subtracted amplitude that enters the TPE3NI.
Graph �.1 is the direct (s-channel) graph, and graph �.2 is
the crossed (u-channel) graph.

We evaluate these graphs in the center-of-mass frame in
which the pion energy is ω and denote the momentum and
isospin of the initial (final) pion by q1 and t1 (q2 and t2).
Because we limit ourselves to pion momenta of the order of
the pion mass, the nucleon kinetic energies are smaller than
ω by a factor of order mπ/M and can be neglected in this
leading-order calculation. For the same reason we neglect the
kinetic energy of the delta.

The delta contribution to the πN amplitude is then given
by the following:

AπN = −f 2
πN�

m2
π

〈χ ′
j |S†

j · q2Sj · q1 T†
j · t2Tj · t1

1

�M − ω

+ S†
j · q1Sj · q2 T†

j · t1Tj · t2
1

�M + ω
|χj 〉. (6)

The χj and χ ′
j are spin-isospin quantum numbers of the

nucleon before and after scattering, and �M ≡ M� − M .
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FIG. 2. The twelve “direct” NNN diagrams in time-ordered
perturbation theory. Notation as in Fig. 1.

Using Eq. (3), we can rewrite this amplitude as follows:

AπN = −f 2
πN�

m2
π

〈χ ′
j |

4

9

[
q1 · q2 t1 · t2 − 1

4
σ j · q1

× q2 τ j · t1 × t2

] (
2�M

(�M)2 − ω2

)

+ i
2

9
[σ j · q1 × q2 t1 · t2 + τ j · t1 × t2 q1 · q2]

×
(

2ω

(�M)2 − ω2

)
|χj 〉. (7)

B. The three-nucleon scattering amplitude

We now turn our attention to the tree-level Delta contri-
bution in the TPE3NI. To this end we consider the amplitude
for nucleon i emitting or absorbing a pion of momentum ±q1

and isospin t1 and nucleon k emitting or absorbing a pion
of momentum ±q2 and isospin t2. In “direct” diagrams the
pion “1” converts nucleon j to a � and “2” reconverts it
to nucleon. In the “crossed” diagrams “2” converts and “1”
reconverts. There are 12 “direct” and 12 “crossed” diagrams
in time-ordered perturbation theory. The 12 direct diagrams
are shown in Fig. 2.

The contribution of the direct diagrams to the three-nucleon
scattering amplitude is given by the following:

Adirect
3N = f 2

πNN

m2
π

〈χ ′
k|σ k · q2 τ k · t2|χk〉〈χ ′

i |σ i · q1 τ i · t1|χi〉

×
(

1

4ω1ω2

)[
12∑

α=1

1

�α

]
f 2

πN�

m2
π

×〈χ ′
j |S†

j · q2Sj · q1 T†
j · t2Tj · t1|χj 〉. (8)

Here χi,j,k and χ ′
i,j,k denote the initial and final spin-isospin

states of nucleons i, j , and k, and �α is the product of the
three energy denominators in diagram α of Fig. 2. The values
of �α can be read off the diagrams, and they are listed in
Table I. Once again we have neglected nucleon and � kinetic
energies in computing these denominators, which is valid in
our leading-order calculation.

From Table I we can easily verify the following:

12∑
α=1

1

�α

= −4

ω1ω2�M
. (9)

Substituting this in Eq. (8) gives the following:

Adirect
3N = f 2

πNN

m2
π

〈χ ′
k|σ k · q2 τ k · t2|χk〉〈χ ′

i |σ i · q1 τ i · t1|χi〉

×f 2
πN�

m2
π

〈χ ′
j |S†

j · q2Sj · q1 T†
j · t2Tj · t1|χj 〉

×
( −1

ω2
1ω

2
2�M

)
. (10)

The contribution of the crossed diagrams involves analo-
gous energy denominators and can be calculated similarly. The
sum of direct and crossed diagrams,

A3N = f 2
πNN

m2
π

〈χ ′
k|σ k · q2 τ k · t2|χk〉〈χ ′

i |σ i · q1 τ i · t1|χi〉

×
( −1

ω2
1ω

2
2�M

)
f 2

πN�

m2
π

〈χ ′
j |S†

j · q2Sj · q1 T†
j · t2Tj · t1

+ S†
j · q1Sj · q2 T†

j · t1Tj · t2|χj 〉, (11)

TABLE I. The values of (−1/�α) for direct diagrams.

α −1/�α α −1/�α

1 ω2�Mω1 2 (�M + ω2)�Mω1

3 (�M + ω2)(ω1 + ω2)ω1 4 ω2�M(�M + ω1)
5 (ω2 + �M)�M(ω1 + �M) 6 (ω2 + �M)(ω1 + ω2)ω2

7 ω2(ω1 + ω2)(ω1 + �M) 8 (ω2 + �M)(ω1 + ω2 + �M)(ω1 + �M)
9 (ω2 + �M)(ω1 + ω1 + �M)ω2 10 ω1(ω1 + ω2)(ω1 + �M)

11 ω1(ω1 + ω2 + �M)(ω1 + �M) 12 ω1(ω1 + ω2 + �M)ω2
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gives the Fujita-Miyazawa potential V
2π,FM
ijk [7] as follows:

V
2π,FM
ijk = f 2

πNN

m2
π

(
1

ω2
1ω

2
2

)
σ k · q2 τ k · t2 σ i · q1 τ i · t1

×
(

−f 2
πN�

m2
π

4

9

2

�M

) (
q1 · q2 t1 · t2 − 1

4
σ j · q1

× q2 τ j · t1 × t2

)
. (12)

This result agrees with many previous rederivations of the FM
potential (e.g. Ref. [9]). It is exact at tree level in the static
limit if the only terms in the πNN and πN� Lagrangians are
those in Eqs. (1) and (2).

III. RELATION TO THEORIES WITHOUT
EXPLICIT DELTAS

We now attempt to find a more direct connection between
πN scattering data and V

2π,FM
ijk —one that does not invoke the

Delta as an explicit degree of freedom. Such attempts have
been reviewed in Ref. [17], whose notation we follow below.

A key aspect of this connection is that πN scattering
involves pions with ω ∼ mπ , whereas in V

2π,FM
ijk we have

ω ∼ m2
π/M . (The typical nucleon momentum in the nucleus is

of order the pion mass, and the pion energy is then smaller by
a factor mπ/M .) Because we have already been neglecting
terms suppressed by mπ/M we take q0

1 = q0
2 = 0. Given

this kinematics, the three-nucleon potential can be written as
follows:

V̄ 2π
ijk = f 2

πNN

m2
π

σ i · q1σ k · q2

ω2
1ω

2
2

[−F
αβ

j τα
i τ

β

k

]
, (13)

where ωi ≡ √
q2

i + m2
π comes from the pion propagators and

−F
αβ

j = δαβ
[
a + bq1 · q2 + c

(
q2

1 + q2
2

)]
− d

(
τ

γ

j εαβγ σ j · q1 × q2
)

(14)

is the Born-subtracted πN subamplitude. Because of chiral
symmetry, the third term is zero at low orders in an expansion
in powers of momenta and the pion mass [17]. The model
considered here is consistent with this result: we have c = 0.
Meanwhile, the first term is because of s-wave scattering. It is
very small in the context of V 2π

ijk [8] and is zero in the present
model. The second and fourth terms, which we focus on in
this article, are the anticommutator and commutator parts of
the TPE3NI.

Therefore for our purposes the crucial point is the determi-
nation of the coefficients b and d. In a theory without explicit
Delta fields, they are fitted to πN data near threshold. If we
lived in a world where there were no contributions to πN

scattering other than from the s- and u-channel delta and
nucleon poles, comparing Eq. (14) and Eq. (7) shows that
a fit to threshold πN data would result in the following:

b = 4d = −f 2
πN�

m2
π

4

9

[
2�M

(�M)2 − m2
π

]
. (15)

The TPE3NI corresponding to this amplitude is given by the
following:

V̄ 2π
ijk = f 2

πNN

m2
π

1

ω2
1ω

2
2

σ i · q1σ k · q2τ i · t1τ k · t2OπN
j . (16)

The factor 1/ω2
1ω

2
2 comes from the pion propagators, and the

factors in addition to OπN
j describe the coupling of the pions

to the nucleons i and k. The πN interaction is described by the
following:

OπN
j = b

(
q1 · q2t1 · t2 − 1

4
σ j · q1 × q2τ j · t1 × t2

)
, (17)

with b given by Eq. (15). Of course, this is just the usual FM
form, but with specific choices for the coefficients b and d.

A. The problem

Comparing the V̄ 2π
ijk in Eq. (16) with the the “exact”

result for our model [V 2π,FM
ijk of Eq. (12)] we find that they

are the same apart from the crucial fact that the strength
of the interaction in the “Delta-less” theory has the factor
2�M/(�M)2 − m2

π , instead of the 2/�M of the “exact”
result. Because �M � 2mπ , these factors are �4/3mπ and
�1/mπ , respectively. One way to understand this result is to
realize that the direct term for the πN scattering amplitude in
Eq. (7) and Fig. 1 is evaluated at the energy of a real pion and
so has the energy denominator �M − mπ for low-momentum
pions. This denominator is half of the average denominator,
�M , of the diagrams in Fig. 2 that contribute to the TPE3NI.
The crossed pion term mitigates this discrepancy but not
enough to cure the problem. Ultimately, the V̄ 2π

ijk that is
extracted “directly” from πN scattering data is too strong
by a factor of 4/3.

The difference between V̄ 2π
ijk and V

2π,FM
ijk is of order

(mπ/�M)2. It will vanish in the limit �M 
 mπ , which
includes the chiral limit mπ → 0. However, in the context
of the nuclear many-body problem mπ is not small. The range
of the one-pion-exchange potential is comparable to the mean
internucleon spacing in nuclei, and the energies required to
excite nucleons to isobar states such as the delta are not much
larger than mπ .

Of course, in the real world there are contributions to the
πN amplitude other than the two graphs we have considered
here. Also b and d will probably be determined from data that
are not exactly at threshold. Although we cannot say a priori
in which direction these effects go, fitting πN data at higher
energies will presumably only make the extrapolation problem
worse.

Parts of this problem have been understood for a long time,
but, as discussed in the introduction, the prevailing folklore has
been that an EFT without explicit deltas could still work well
in nuclei, because the relevant energies in nuclear-structure
physics are much smaller than �M . However, the poor con-
vergence of the EFT without explicit deltas for πN scattering
affects the TPE3NI because b and d are not calculated from first
principles; instead they are fitted to threshold πN data. This
necessitates an extrapolation from pion energies ω ∼ mπ to the
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energies of the highly virtual pions in the TPE3NI, which are
of order m2

π/M . This extrapolation takes place over an energy
range that is sizable compared to the radius of convergence of
the “Delta-less” theory—�M .

Here we have explicitly considered the implications of such
an extrapolation for the three-nucleon potential, but other few-
nucleon potentials (including the two-nucleon force) will be
afflicted by the same problem. All use πN parameters that are
potentially contaminated in a similar way. Such contamination
will occur in all EFTs for low-energy hadronic physics that
contain only pion and nucleon degrees of freedom.

B. The solution

In a theory with explicit deltas this extrapolation is under
much better control, because the pion-energy dependence of
the πN amplitude is better reproduced. In contrast, at leading
order in the “Delta-less” theory the coefficients of the two
operators in OπN

j are energy independent, and so the value
extracted for them at threshold, where ω = mπ , is used in the
TPE3NI, where ω � 0.

But at higher orders in this EFT additional corrections to the
πN amplitude, and in particular to the two operators in OπN

j ,
enter. To see what form this higher- order energy dependence
would take, we expand the result (7) in powers of (ω/�M)2.
The first correction to the leading-order results for b and d (15)
occurs at O[(ω/�M)2]. The form of OπN

j is now as follows:

OπN
j = (b + b̃ω2)

(
q1 · q2t1 · t2 − 1

4
σ j · q1 × q2τ j · t1 × t2

)
.

(18)

In the EFT, terms such as b̃ω2 and d̃ω2 appear in the
Lagrangian as pion-nucleon interactions with time derivatives.
We must fit πN data over a range of pion energies to determine
both b and b̃. If, once again, we imagine living in a world where
the true answer was given by Eq. (7), then fitting the Eq. (18)
to reproduce Eq. (7) in the region around ω = mπ yields the
following:

b = −4

9

f 2
πN�

m2
π

(
2�M

(�M)2 − m2
π

) (
1 − m2

π

(�M)2 − m2
π

)
;

(19)

b̃ = −4

9

f 2
πN�

m2
π

2�M[
(�M)2 − m2

π

]2 . (20)

Note that at πN threshold this gives exactly the same result
for OπN

j as in Eq. (17). However, extrapolating to ω = 0 now
yields a TPE3NI that has an additional factor of [1− m2

π

(�M)2−m2
π

]
in its strength. If we set �M = 2mπ , this gives an overall
factor of 8/9mπ , instead of the 1/mπ found in the “exact”
calculation with explicit deltas. This means that in the theory
without explicit deltas the “exact” factor 1/mπ is being built
up as follows:

1

mπ

=
(

1 − 1

3
+ . . .

)
4

3mπ

, (21)

a series that converges moderately quickly.

To summarize, in the theory without explicit Deltas it is
important to realize that the factor 4/3mπ obtained by fitting
πN “data” with the leading-order form [Eq. (17)] is not
the final answer. This result will change when higher order
terms are incorporated in the theory and used to improve
the extrapolation from ω � mπ to ω � 0. We can estimate
the size of such terms based on our knowledge that the
convergence will be governed by the parameter mπ/�M and
that—because of crossing—only even terms in this expansion
can appear in b and d. The leading-order result should therefore
be quoted as follows:

b = −4

9

f 2
πN�

m2
π

4

3mπ

[
1 ±

( mπ

�M

)2
]

. (22)

More conservative error bars are certainly acceptable, but the
≈25% we have chosen is the minimum permissible theoretical
error that can be assigned to b when it is extracted in the
theory without explicit deltas. Such an error bar turns out to be
consistent with the “exact” answer for b in the simple model
considered here.

IV. CONCLUSION

We have shown that theories without an explicit Delta tend
to overestimate the delta contribution to the TPE3NI. This is
because there is an error in the leading-order computation of
the three-nucleon potential in the “Delta-less” theory. The error
is ∼25%, and it is necessary to include terms suppressed by
(ω/�M)2 in the EFT to reduce it. The inclusion of other higher
order effects, such as nucleon recoil and dispersive effects for
intermediate-state Deltas, may make the extrapolation error
smaller than we found, but it seems unlikely that it will
completely remove the difficulty.

Unfortunately this problem is present in the state-of-the-art
N3LO chiral EFT computation of NN potentials [20] and
their possible extension to the NNN case. The terms that
ameliorate the overestimation appear in L(4)

πN , and so will not
enter the chiral EFT nuclear force until N4LO. Computing the
two- and three-nucleon potentials to this (or higher) order
will take considerable effort. It may well be that an EFT
with explicit Deltas is simply a more efficient tool than one
without. In fact, the first studies in nuclear EFT [4,9] included
diagrams with intermediate Deltas in their calculation of the
nuclear force. The drawback of such a treatment is that to fix
parameters one must analyze data around the Delta resonance,
which necessitates a resummation of the Delta self-energy.
Only recently has a power counting been devised that allows
a systematic EFT treatment of effects in this kinematic
region [19].

The Delta-less EFT has also found difficulties with certain
πN parameters that are large because the effects of the
integrated-out Delta are encoded there. In Ref. [21] Epelbaum
et al. argued that there is a cancellation of Delta-excitation and
πρ-exchange contributions in nuclear forces. This motivated
their use of NN and NNN potentials containing πN -interaction
parameters smaller than those extracted from chiral analyses
of πN scattering data. We stress that the reduction in strength

064002-5



V. R. PANDHARIPANDE, D. R. PHILLIPS, AND U. VAN KOLCK PHYSICAL REVIEW C 71, 064002 (2005)

of the NNN force we have discussed here is not based on such
an argument. It is independent of details of nuclear dynamics
at the distance scale 1/mρ .

So, until the theory with explicit Delta degrees of freedom
is further developed, or Delta-less theories can be extended to
higher order, the πN parameters used in the NNN potential
should be viewed as only loosely constrained by πN data.
Furthermore, EFT extractions of πN parameters from NN data
(see, e.g., Ref. [5]) and from πN data (see, e.g., Ref. [11]) can
be expected to give results that differ by amounts of order
(mπ/�M)2.
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[12] C. Ordóñez and U. van Kolck, Phys. Lett. B291, 459 (1992);
J. L. Friar, Phys. Rev. C 60, 034002 (1999)

[13] W. N. Cottingham, M. Lacombe, B. Loiseau, J. M. Richard,

and R. Vinh Mau, Phys. Rev. D 8, 800 (1973); A. D. Jackson,
D. O. Riska, and B. Verwest, Nucl. Phys. A249, 397 (1975).

[14] S. A. Coon, M. D. Scadron, P. C. McNamee, B. R. Barrett,
D. W. E. Blatt, and B. H. J. McKellar, Nucl. Phys. A317, 242
(1979).

[15] L. S. Celenza, A. Pantziris, and C. M. Shakin, Phys. Rev. C
46, 2213 (1992); C. A. da Rocha and M. R. Robilotta, ibid. 49,
1818 (1994); 52, 531 (1995); Nucl. Phys. A615, 391 (1997);
J.-L. Ballot, M. R. Robilotta, and C. A. da Rocha, Int. J. Mod.
Phys. E 6, 83 (1997); Phys. Rev. C 57, 1574 (1998).

[16] H. T. Coelho, T. K. Das, and M. R. Robilotta, Phys. Rev. C 28,
1812 (1983); M. R. Robilotta and H. T. Coelho, Nucl. Phys.
A460, 645 (1986); T. Y. Saito and I. R. Afnan, Few Body Syst.
18, 101 (1995); T. Y. Saito and J. Haidenbauer, Eur. Phys. J.
A 7, 559 (2000); D. P. Murphy and S. A. Coon, Few Body Syst.
18, 73 (1995).
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