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Neutrino oscillations: Measuring θ13 including its sign
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In neutrino phenomenology, terms in the oscillation probabilities linear in sin θ13 lead naturally to the question
“How can one measure θ13 including its sign?” Here we demonstrate analytically and with a simulation of
neutrino data that Peµ and Pµµ at L/E = 2π/�21 exhibit significant linear dependence on θ13 in the limit of
vacuum oscillations. Measurements at this particular value of L/E can thus determine not only θ13 but also its
sign, if CP violation is small.
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To incorporate neutrino oscillations, the standard model is
conventionally extended by adding a mass term and a mixing
matrix. This theory of three-flavor neutrino oscillations has
been successful in accommodating the results of neutrino
oscillation experiments, save those of the LSND experiment
[1]. The theory contains six independent parameters: three
mixing angles θjk , two independent mass-squared differences
�jk := m2

j − m2
k , and one Dirac CP phase δ. Reference [2], for

example, provides a summary of the current knowledge of the
values of these parameters and describes future experiments.
The long baseline (LBL) K2K experiment [3] is in the
process of confirming the results of the Super-K atmospheric
experiment [4] by measuring the parameters �32 and θ23,
independent of atmospheric neutrino flux models. Future
LBL experiments MINOS [5], OPERA [6], and ICARUS
[7] will improve upon the bounds for these parameters.
Additionally, a global analysis of these LBL experiments could
provide a lower bound on the magnitude of θ13 [8]. Future
LBL experiments might also resolve the question of mass
hierarchy and the level, if any, of CP violation in the neutrino
sector [9].

We here examine the related question of how to best
measure θ13, including its sign. In Ref. [10], we have shown
that even in the presence of matter effects [11], neutrino
oscillations can be uniquely and completely parametrized with
the following bounds on the angles: the CP phase δ lies
in the range [0, π ); θ13 lies in the range [−π/2, π/2]; and
the remaining mixing angles lie within the first quadrant.
This choice of bounds has two advantages. First, present
experiments limit θ13 to a small asymmetric region about
zero [12,13]. Other choices would break this region into two
disconnected regions. Secondly, the CP violating phase is
restricted to the first two quadrants; this range is sufficient
to characterize all CP violating effects. Terms proportional to
cos δ are thus able to be used to uniquely determine its value,
assuming we have knowledge of all the other parameters.

In what follows, we analytically examine the terms of the
neutrino oscillation probability formulas that are first order
(linear) in θ13. These terms are proportional to either sin δ

or cos δ, as indicated in Refs. [2,14]. It has been suggested
[14,15] that the presence of such terms, in part, can explain
the excess of electronlike events in the Super-K atmospheric
experiment [4]. In this work, we find that experiments that
lie in the oscillatory region for the small (solar) mass-squared
difference, an L/E on the order of 104 m/MeV, are sensitive

to the linear θ13 terms. We further find that by judicious choice
of the value of L/E the effects of the CP violating phase δ can
be suppressed if δ is near zero or π , while at the same time
the effect of the linear term in θ13 is maximized. Subsequently,
we utilize a simulation [13] of the existing neutrino oscillation
data to further examine the ability of new data to determine
θ13, including its sign. We assume that either CP is conserved
or that our choice of the value L/E has provided sufficient
suppression of the CP violating terms. Finally, we summarize
our conclusions and provide some thoughts on needed future
theoretical work.

Here, we provide explicit analytic expressions for three
neutrino oscillations valid for the incoherent limit of the atmo-
spheric mass-squared difference. We confine our discussion
to vacuum oscillations. For LBL experiments through the
earth, we indicate which values of L and E yield the cleanest
measurement of θ13 by avoiding significant contributions from
matter effects [11]. Additionally, we indicate qualitatively the
consequences of straying outside these energies and baselines.
We use these analytic expressions to examine where the effects
of the linear terms can best be seen. As the magnitude of θ13 and
the mass-scale ratio α := |�21|/|�32| are known to be small,
one may expand the oscillation probability formulas about
these parameters. In these perturbations (cf. [16]), terms that
are linear in θ13 are suppressed by a factor of α ∼ 0.03. From
this, one might conclude that effects relevant to the sign of θ13

are forever relegated to the realm of the unobservable. Here,
this is not the case as we look beyond the valid region of these
expansions.

We use the standard representation [17] of the three-
neutrino mixing matrix with the notation cjk = cos θjk, sjk =
sin θjk , and δ is the CP violating phase. In a three-neutrino
theory, the probability that a neutrino with relativistic energy
E and flavor α will be detected a distance L away as a neutrino
of flavor β is given by

Pαβ(L/E) = δαβ − 4
3∑

j<k

j,k=1

Re(UαjU
∗
αkUβkU

∗
βj ) sin2 ϕjk

+ 2
3∑

j<k

j,k=1

Im(UαjU
∗
αkUβkU

∗
βj ) sin 2ϕjk, (1)

where ϕjk := �jkL/4E with �jk := m2
j − m2

k .
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Examining the terms that are linear in sin θ13 motivates
us to consider the limit in which the oscillations due to
the mass-squared differences |�32| ∼= |�31| ∼ 10−3 eV2 are
incoherent while the oscillations due to |�21| ∼ 10−5 eV2 are
still relatively coherent. In this limit, we may take

sin2 ϕ23 = sin2 ϕ13 = 1
2 , sin 2ϕ23 = sin 2ϕ13 = 0. (2)

The oscillation probabilities Peµ,Pµµ, and Pµτ , in the limit
of incoherent atmospheric oscillations, are then given by

Peµ = [
1
2 sin 2θ12 cos 2θ12 sin 2θ13c13 sin 2θ23cδ

+ sin2 2θ12c
2
13

(
c2

23 − s2
13s

2
23

)]
sin2 ϕ12

+ 1
2 sin2 2θ13s

2
23 + 2J sin 2ϕ12, (3)

Pµµ = 1 − [
sin2θ12 cos 2θ12 sin 2θ13c13 sin 2θ23s

2
23cδ

+ 2 sin 2θ12 cos 2θ12s13 sin 2θ23 cos 2θ23cδ

+ (
1 − sin2 2θ12c

2
δ

)
s2

13 sin2 2θ23

+ sin2 2θ12
(
c2

23 − s2
13s

2
23

)2]
sin2 ϕ12

− 2c2
13s

2
23

(
1 − c2

13s
2
23

)
, (4)

Pµτ = [
sin2θ12 cos 2θ12s13

(
1 + s2

13

)
sin 2θ23 cos 2θ23cδ

× (
1 − sin2 2θ12c

2
δ

)
s2

13 sin2 2θ23

− 1
4 sin2 2θ12

(
1 + s2

13

)2
sin2 2θ23

+ sin2 2θ12s
2
13

]
sin2 ϕ12

+ 1
2 sin2 2θ23c

4
13 + 2J sin 2ϕ12, (5)

with

J = 1
8 sin 2θ12 sin 2θ13c13 sin 2θ23sδ. (6)

As we are interested in the sign of θ13, we isolate those terms
that are odd with respect to θ13

Peµ(θ13) − Peµ(−θ13) = 4J sin 2ϕ12

+ sin 2θ12 cos 2θ12 sin 2θ13c13

× sin 2θ23cδ sin2 ϕ12, (7)

Pµµ(θ13) − Pµµ(−θ13) = −4
(
c2

23 − s2
13s

2
23

)

× sin 2θ12 cos 2θ12s13

× sin 2θ23cδ sin2 ϕ12, (8)

Pµτ (θ13) − Pµτ (−θ13) = 4J sin 2ϕ12 + 2 sin 2θ12

× cos 2θ12s13
(
1 + s2

13

)
sin 2θ23

× cos 2θ23cδ sin2 ϕ12. (9)

Note that the sign of θ13 exhibits the maximal effect whenever
sin2 ϕ12 is maximal for cδ ∼ 1. This occurs whenever ϕ12 =
(2n + 1)π/2 or, in other terms, for L/E = 2(2n + 1)π/�12.
These oscillations will be more coherent for the smaller values
of n.

This choice is fortuitous in that it also removes from
Eqs. (7) and (9) terms dependent on sδ as sin 2ϕ21 = 0
whenever ϕ21 is an odd-integer multiple of π/2. This removes
the CP violating terms from consideration. The remaining
terms are modulated by cδ . Thus for δ near zero or π , we would
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FIG. 1. Value of �χ 2 = χ 2 − χ 2
min versus θ13 as extracted from

the world’s neutrino oscillation data using the simulation of Ref. [13].
All other parameters other than θ13 are varied. There are two minima,
θ13 = 0.11 and −0.04. Dashed line represents the results of the “one
mass-squared dominance” approximation. Horizontal lines represent
the 90 and 95% confidence levels.

have a clean measurement of θ13. Also, should CP violation
be found to be maximal, then the terms involving cδ vanish.

A consequence of removing the dependence on J is that
CP violating effects are suppressed. At these local values of
L/E, we have Pαβ = Pαβ , where α indicates an antineutrino
of flavor α; assuming CPT is invariant, this can be expressed
as Pαβ = Pβα . This supports our previous statement that it
is sufficient to only consider Peµ,Pµµ, and Pµτ in regards
to their dependence on the sign of θ13. These probabilities in
addition to Pee, which is a function of θ2

13, will give us all
the other oscillation probabilities at this value of L/E. The
remaining probabilities are

Peτ = 1 − Pee − Peµ, (10)

Pττ = 1 − Pµτ − Peτ , (11)

so that the dependence ofPeτ on the sign of θ13 can be surmised
from the statements made concerning Peµ and, likewise, the
behavior of Pττ can be surmised from Pµτ and Peµ. In what
follows, we will assume that any CP violation is small so that
we may set the phase equal to 0.

We have previously performed [12] a simulation, assuming
no CP violation, of the world’s neutrino oscillation data. An
analysis that includes more recent data [13], in preparation,
produces �χ2 := χ2 − χ2

min as pictured in Fig. 1. Included
in the analysis are data for neutrinos from the sun [18],
from reactors [19], atmospheric neutrinos [20], and beam-stop
neutrinos [3]. For one standard deviation, the analysis bounds
θ13 to lie within [−0.17, 0.22] with two minima located at
θ13 = 0.11 and −0.04. For the absolute minimum θ13 = 0.11,
we find θ12 = 0.48, θ23 = 0.80,�21 = 7.7 × 10−5 eV2, and
�32 = 2.6 × 10−3 eV2.

Since Pee is a function of sin2 θ13, the asymmetry seen in
Fig. 1 must arise from the atmospheric and K2K data, which
involve Peµ and Pµµ. If we employ the “one mass-squared
dominance” approximation, as is often done, we find the
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FIG. 2. Pee versus L/E. Solid curve corresponds to the mixing
parameters for a fit with θ13 = 0. Dashed curve represents the two
curves given by θ13 = ±0.2, which are identical.

dashed curve in Fig. 1. This approximation gives oscillation
probabilities that are a function of sin2 θ13.

To demonstrate the relative size of the effect of the sign
of θ13, we choose some realistic values for the mixing angles:
θ12 = 0.56 and θ23 = 0.78. The first two peaks of sin2 ϕ12 oc-
cur around L/E = 1.6 × 104 m/MeV and 4.8 × 104 m/MeV.
For such values of L/E, the oscillations due to �32 and �31

would be incoherent. It is clear from Eq. (9) that the screening
effect of maximal mixing for θ23 results in independence of the
sign of θ13 forPµτ . For the remaining two oscillation channels,
we have a sizable effect. The oscillation probabilities evaluated
at the one-standard-deviation points for θ13,−0.17 and 0.22,
are

Peµ(θ13 = −0.17) = 0.35, Peµ(θ13 = 0.22) = 0.50, (12)

Pµµ(θ13 = −0.17) = 0.37, Pµµ(θ13 = 0.22) = 0.22. (13)

The relative differences are more appropriate quantities to
consider; for Pµµ we have the most significant effect

Pµµ(θ13 = 0.22) − Pµµ(θ13 = −0.17)

Pµµ(θ13 = 0.22) + Pµµ(θ13 = −0.17)
= −0.25, (14)

while the effect is still large for Peµ

Peµ(θ13 = 0.22) − Peµ(θ13 = −0.17)

Peµ(θ13 = 0.22) + Peµ(θ13 = −0.17)
= 0.17. (15)

We compare the one-sigma extremes of θ13 in order to
demonstrate the potential size of the effect.

The previous analytic work tells us where to look if we wish
to observe the terms in the oscillation formulas that are linear
in sin θ13. We investigate this further by utilizing the analysis
from Ref. [13]. We proceed by fixing all of the oscillation
parameters except θ13 to their values given by an analysis in
which θ13 is set to zero.

In Figs. 2–4, we present the oscillation probabilities
Pee,Peµ, and Pµµ as a function of L/E, respectively. In all
cases, we assume a Gaussian spread in energy of 20%. In all
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FIG. 3. Peµ versus L/E. Solid curve corresponds to the mixing
parameters for a fit with θ13 = 0. Dashed (dot-dashed) curve corre-
sponds to θ13 = 0.2 (−0.2).

cases, curves are presented for θ13 = 0 and θ13 = ±0.2. In
Fig. 2 for Pee there are only two curves, as Pee is a function
of sin2 θ13. Thus the curves for θ13 = ±0.2 are identical. The
curve is presented for completeness and to note that there is a
measurable dependence of Pee on the magnitude of θ13 near
the peak at L/E = 3.2 × 104 m/MeV, near the location of
KamLAND as indicated in Ref. [13].

In Fig. 3, we verify two facts as derived analytically
previously. First, there is a significant linear dependence ofPeµ

on sin θ13. Secondly, the dependence is maximal at ϕ12 = π/2
and 3 π/2. The optimal value of L/E to measure θ13, including
its sign, is thus L/E = 2π/�21. The linear term in θ13 clearly
dominates near the maximum of the oscillation. However,
the constant term in Eq. (3) proportional to sin2 θ13 becomes
relevant whenever the probability is minimal.

In Fig. 4, we see that Pµµ is a somewhat better quantity
to measure than Peµ, as here the linear term is even more
dominant. Again, the linear dependence on θ13 is maximal at
ϕ12 = π/2 and 3 π/2. Figure 1 demonstrates the inadequacy of
parametrizing oscillation parameters as a function of sin2 θ13.
Figures 3 and 4 demonstrate this more dramatically as the
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FIG. 4. Same as Fig. 3, except the muon survival probability Pµµ

is presented.
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FIG. 5. The oscillation probabilities versus the mixing angle θ13

with the other parameters fixed at their value from a fit with θ13 = 0.
Solid curve is Pee; dashed curve, Peµ; dot-dashed curve, Pµµ. We
take L/E = 1.6 × 104 m/MeV where the effect of the linear terms in
θ13 are maximized.

linear term in θ13 is found to dominate the quadratic term for
Peµ and Pµµ in this region of L/E.

The ideal measurement would be to determine Pµµ over
a range for L/E from approximately 1.6 × 103 to 1.6 ×
104 m/MeV. The lower end of this range provides an overall
calibration point where the affect of nonzero θ13 is small,
whereas the upper end is the point where the effect is largest.
To avoid the further complications of the earth’s Mikheev-
Smirnov-Wolfenstein (MSW) effect, the energy should be less
than about 100 MeV, the energy of the MSW resonance in
the mantle of the earth. For an upper limit on the energy
of 50 MeV, this sets an ideal value L = 80 km and a range
in energy for the muon neutrinos of 5 to 50 MeV. For a
smaller value of L, the range of the neutrino energies would
have to be proportionally smaller. More likely one’s neutrino
source would produce neutrinos with energies of at least a few
hundred MeV. Here, matter effects become significant, though
the qualitative features of the curves in Figs. 3 and 4 can be
salvaged. The most notable changes for oscillations through
the mantle in this scenario are the increased frequency of
oscillations, necessitating a suitable change in the baseline and
the adjustment of the matter mixing angle θm

12. However, the
difference between the matter mixing angle θm

12 and the vacuum
value of the mixing angle can be minimized by choosing a
neutrino energy twice that of the resonance energy. For such a
situation, the qualitative features of the oscillations presented
above remain the same.

Finally, in Fig. 5, we present the values of Pee,Peµ, and
Pµµ as a function of θ13. The other parameters are fixed at their
values for a fit with θ13 = 0. We use a value of L/E = 1.6 ×
104 m/MeV, chosen to maximize the relative importance of the
linear terms in θ13. Again,Pee is quadratic in θ13. However,Peµ

and Pµµ are nearly linear in θ13 over this rather large range of
−0.4 � θ13 � 0.4. The near linearity reinforces our observation
that the measurement of Peµ and Pµµ at L/E = 2π/�21 is a
way of determining θ13, including its sign.

The phenomenology of neutrino oscillations, in the absence
of CP violation and various exotica such as a fourth sterile neu-

trino, has been performed in the context of determining three
mixing angles and two mass-squared differences. Historically,
the results were presented in terms of sin2 θ13, which yields
an upper limit. When the bounds on the mixing angles were
explicitly quoted, they were all stated to be bounded by π/2.
In Ref. [21], it was shown that in the physical case which
necessarily includes the MSW matter effect, a second branch
corresponding to δ = π must also be included. In Ref. [10],
we extended the derivation, again in the physical case which
necessarily includes the MSW matter effect, to show that only
the δ = 0 branch is required if the mixing angle θ13 is allowed
to vary from −π/2 to +π/2. There are two advantages to
this convention. First, the allowed region for θ13 consists of a
single region that extends on either side of 0, rather than two
disjoint regions, one for δ = 0 and one for δ = π . Secondly,
in the presence of CP violation, the CP phase is bounded by
0 and π . Thus, a measurement that is sensitive to cos δ could
uniquely determine the quadrant in which δ lies.

The natural question that arises from this formal work is
whether you can measure θ13 including its sign. In Ref. [12]
we demonstrated that for a model analysis of the world’s
data, the χ2 space was asymmetric in θ13, thus demonstrating
that such a measurement might be possible. A more recent
analysis [13], which includes recent data, verified this. Here
we address the question directly and demonstrate that the
answer to our question is yes—the mixing angle θ13 does
appear linearly in the oscillation probabilities at a level where
it dominates the quadratic term for the correctly chosen
oscillation probabilities when measured at the correct value of
L/E.

We find that this is true for measurements of Peµ and
Pµµ at L/E = 2π/�21. This fortuitously also corresponds
to a value of L/E where the contribution from the CP
violating effects is minimal. A consequence of this work
is that it reinforces our earlier thesis that parametrizing
neutrino oscillation probabilities as a function of sin2 θ13 is
inadequate.

There remains additional work to be done. We find that
present data indicate a correlation between the allowed value
of θ13 and θ23 when the linear terms are included in the
analysis. We are investigating the implications for θ13 that
will result from measurements of θ23. We have assumed no CP
violation in our model analysis. Since the CP phase and θ13 are
interrelated, this needs further clarification. For cleanliness of
interpretation, we propose to conduct experiments in a region
of E where the earth’s MSW effect is small. We are examining
in a quantitative way how the earth’s MSW effect might
modify an analysis should this be necessary. We, like others,
have excluded the LSND [1] experiments. If MiniBoone
verifies the LSND results, then a whole new physics will
be needed to reach a consistent understanding of neutrino
oscillations.
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062501-4



RAPID COMMUNICATIONS

NEUTRINO OSCILLATIONS: MEASURING θ13 INCLUDING ITS SIGN PHYSICAL REVIEW C 71, 062501(R) (2005)

[1] C. Athanassopoulos et al., Phys. Rev. Lett. 77, 3082 (1996);
Phys. Rev. C 54, 2685 (1996); Phys. Rev. Lett. 81, 1774 (1998);
Phys. Rev. C 58, 2489 (1998); A. Aguilar et al., Phys. Rev. D.
64, 112007 (2001).

[2] V. Barger, D. Marfatia, and K. Whisnant, Int. J. Mod. Phys. E
12, 569 (2003).

[3] M. H. Ahn et al. (K2K Collaboration), Phys. Rev. Lett. 90,
041801 (2003); 93, 051801 (2004).

[4] Y. Fukuda et al., Phys. Lett. B436, 33 (1998); Phys. Rev. Lett.
82, 2644 (1999); 86, 5651 (2001).

[5] R. Saakian (MINOS Collaboration), Phys. At. Nucl. 67, 1084
(2004) [Yad. Fiz. 67, 1112 (2004)].

[6] M. Dracos (OPERA Collaboration), Phys. At. Nucl. 67, 1092
(2004) [Yad. Fiz. 67, 1120 (2004)].

[7] J. Lagoda (ICARUS Collaboration), Phys. At. Nucl. 67, 1107
(2004) [Yad. Fiz. 67, 1135 (2004)].

[8] V. Barger, A. M. Gago, D. Marfatia, W. J. C. Teves, B. P.
Wood, and R. Zukanovich Funchal, Phys. Rev. D 65, 053016
(2002).

[9] V. Barger, D. Marfatia, and K. Whisnant, Phys. Rev. D 65,
073023 (2002).

[10] D. C. Latimer and D. J. Ernst, Phys. Rev. D 71, 017301 (2005).
[11] L. Wolfenstein, Phys. Rev. D 17, 2369 (1978); S. P. Mikheyev

and A. Yu. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985).
[12] D. C. Latimer and D. J. Ernst, nucl-th/0404059.

[13] D. C. Latimer and D. J. Ernst, in preparation.
[14] O. L. G. Peres and A. Yu. Smirnov, Nucl. Phys. B680, 479

(2004).
[15] G. L. Fogli, E. Lisi, A. Marrone, and G. Scioscia, Phys. Rev. D

59, 033001 (1998); C. W. Kim and U. W. Lee, Phys. Lett. B444,
204 (1998); O. L. G. Peres and A. Yu. Smirnov, ibid. B456, 204
(1999); Nucl. Phys. (Proc. Suppl.) B110, 355 (2002).

[16] E. K. Akhmedov, R. Johansson, M. Lindner, T. Ohlsson, and
T. Schwetz, J. High Energy Phys. 04 (2004) 078.

[17] S. Eidelman et al., Phys. Lett. B592, 1 (2004).
[18] B. T. Cleveland et al., Astrophys. J. 496, 505 (1998);

J. N. Abdurashitov et al., Phys. Rev. C 60, 055801 (1999);
J. Exp. Theor. Phys. 95, 181 (2002); W. Hampel et al., Phys. Lett.
B447, 127 (1999); M. Altmann et al., ibid. B490, 16 (2000);
Q. R. Ahmad et al., Phys. Rev. Lett. 87, 071301 (2001); 89,
011301 (2002); S. N. Ahmed et al., ibid. 92, 181301 (2004).

[19] M. Apollonio et al., Phys. Lett. B420, 397 (1998); B466, 415
(1999); Eur. Phys. J. C 27, 331 (2003); K. Eguchi et al., Phys.
Rev. Lett. 90, 021802 (2003); T. Araki et al., ibid. 94, 081801
(2005).

[20] Y. Fukuda et al., Phys. Lett. B335, 237 (1994); B433, 9 (1998);
B436, 33 (1998); Phys. Rev. Lett. 81, 1562 (1998); Phys. Lett.
B436, 33 (1998); Phys. Rev. Lett. 82, 2644 (1999); 86, 5651
(2001); Y. Ashie et al., ibid. 93, 101801 (2004).

[21] J. Gluza and M. Zralek, Phys. Lett. B517, 158 (2001).

062501-5


