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Residual interaction effects on deeply bound pionic states in Sn and Pb isotopes
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We have studied the residual interaction effects theoretically on the deeply bound pionic states in Pb and Sn
isotopes. We need to evaluate the residual interaction effects carefully to deduce the nuclear medium effects
for pion properties, which are believed to provide valuable information on nuclear chiral dynamics. The s- and
p-wave πN interactions are used for the pion-nucleon residual interactions. We show that the complex energy
shifts are around [(10–20) + i(2–7)] keV for 1s states in Sn, which should be taken into account in the analyses
of the high precision data of deeply bound pionic 1s states in Sn isotopes.
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Deeply bound pionic states in heavy nuclei were predicted
to be quasistable by Friedman and Soff [1] and Toki and
Yamazaki [2] independently. According to the theoretical
predictions for the formation reactions [3,4], the deeply bound
pionic 2p states are observed in 207Pb nucleus experimentally
in (d,3He) missing mass spectra [5,6]. After this discovery,
precise data of the deeply bound pionic 1s and 2p states
in 205Pb were also observed [7,8]. Furthermore, Umemoto
et al. predicted that the Sn isotopes are ideal target nuclei to
observe 1s pionic states and to deduce the isotope shifts of
the pionic atoms [9]. Recently, K. Suzuki et al. performed
the experiments of the (d,3He) reactions on the Sn targets
and succeeded to observe deeply bound 1s pionic states
in Sn isotopes quite precisely [10]. Experimental errors for
the binding energies of the 1s states are around �E ∼
20 keV.

From these experiments, we can study the s-wave part of
the pion-nucleus interaction, which is very interesting because
the s-wave strength is expected to provide information on the
pion mass excess and pion decay constant fπ in the nuclear
medium through the Tomozawa-Weinberg theorem [11,12].
The f 2

π is the order parameter of chiral symmetry breaking
of quantum chromodynamics (QCD) and is connected to
the quark condensate through the Gell-Mann-Oakes-Renner
relation [13]. Thus, it is very interesting to determine the
s-wave potential parameters from deeply bound pionic atoms.
For this purpose, it is required to observe the pionic 1s states
because these states depend predominately on the s-wave
potential [9] and, furthermore, the 1s states in heavy nuclei
(N > Z) provide key information on the isovector part of
the s-wave potential. As described above, K. Suzuki et al.
performed the experiment and obtained excellent new data of
the deeply bound pionic 1s states in Sn isotopes [10], which
are very suited for the purpose.

However, because we make use of the single neutron
pickup (d,3He) reactions, the final pionic states are the pion
plus neutron-hole state [π ⊗ n−1]J with respect to the target
nuclei [4,7,9]. So far all theoretical calculations and analyses
of the data, except for Ref. [14], postulate that the residual
interaction effects are small enough and can be neglected.
This is actually true for pionic atoms in 207Pb case because
experimental errors are significantly larger than the estimated
residual interaction effects [14]. However, in the present cases
for the 1s states in Sn isotopes, it is not obvious whether

the effects are negligible because the experimental errors for
Sn cases are comparable to the calculated residual interaction
effects for 207Pb [14]. Thus, it is very important to evaluate
the residual interaction effects for 1s states in Sn isotopes to
deduce physical quantities related to pion behaviors in the
nuclear medium from the observed spectra. In this report
we evaluate the residual interaction effects on pionic states
in 207Pb, 205Pb, and Sn isotopes by taking into account both
s-wave and p-wave π -N interactions. We will also describe the
theoretical formula to evaluate the residual interaction effects.

We consider the pionic states whose Hamiltonian is ex-
pressed as follows:

H =
∑

i

ωic
†
i ci +

∑
i

εia
†
i ai +

∑
ijk�

Vji,�kc
†
j a

†
i akc�, (1)

where the c† (c) and a† (a) are creation (annihilation) operators
of the pion and the nucleon respectively. The indices character-
ize their quantum numbers. In Eq. (1), ωi is the pion binding
energy, εi the single-nucleon energy, and Vji,�k indicate the
matrix elements of the pion-nucleon residual interaction.

Because we make use of the single-neutron pickup (d,3 He)
reaction, each final state is the pion-plus-single-neutron-hole
state with respect to the target nucleus. To calculate the
residual-interaction effects between pion and the neutron hole,
we introduce a neutron-hole creation (annihilation) operator
b†(b), which are defined as follows:

a
†
jm = (−1)j−mbj−m. (2)

Here, we show the angular momentum quantum numbers
explicitly, with the isospin indices abbreviated. The third term
in Eq. (1) can be rewritten as follows:∑

ijk�

Vji,�kc
†
j a

†
i akc� −→ V̂ =

∑
ijk�

Vjk,�ic
†
j b

†
kbic�, (3)

where we discarded the core contribution, which is already
included in the second term of Eq. (1), and Vjk,�i are the
interaction matrix elements between pion and the nucleon hole,
which correspond to the Pandya transformation of the pion-
nucleon interaction.

The state of pionic atom with a single neutron-hole state
can be expressed as follows:

|π,Nα; J 〉 = (
c†π ⊗ b

†
Nα

)J |0〉, (4)
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where the suffixes π and Nα specify the quantum numbers of
the pion and the neutron-hole respectively, and J is the total
angular momentum of the pion-nucleus system. The matrix
elements of the Hamiltonian with respect to these states are
expressed as follows:

〈π ′, Nβ ; J |H |π,Nα; J 〉 = (ωπ − εα)δπ,π ′δα,β

×〈π ′, Nβ ; J |V̂ |π,Nα; J 〉, (5)

where ωπ is the eigenenergy of the pionic state specified as
π and εα is the separation energy of neutron from the target
nucleus.

As the residual interaction, we consider the following pion-
nucleon interaction:

V = − 2π

mπ

[b0 + b1τ · I + (c0 + c1τ · I)∇ · ∇]δ(r). (6)

Here, we have taken into account both the s- and the p-wave
pion-nucleon interaction. The gradient operators act on the
right- and the left-hand-side pion wave functions, respectively.
In Ref. [14], we reported the results with the s-wave contribu-
tion only. We fix the parameters as b0 = −0.0283m−1

π , b1 =
−0.12m−1

π , c0 = 0.223m−3
π , c1 = 0.25m−3

π , which are taken
from Ref. [15]. The pion-nucleon interaction adopted here
is consistent with the pion-nucleus optical potential used to
calculate the pion wave functions. By folding the pion-nucleon
interaction with the nuclear density, we obtain exactly the
same real part of the pion-nucleus optical potential except
for the small corrections coming from the transformation of
the center-of-mass coordinates. As for the imaginary part, we
simply assume the pion-nucleon residual interaction is real
and has no absorptive effects because two nucleon degrees
of freedom are necessary at least in absorptive processes.
The effects of the pion absorption by the core nucleus are
incorporated phenomenologically as the density quadratic
term in the imaginary parts of the pion-nucleus optical
potential as usual. In this theoretical framework, we do not
evaluate the absorptive effects because of processes, including
both nucleon-hole and nucleon-particle degrees of freedom
simultaneously, which we expect to be small.

The interaction matrix elements between the pion and the
nucleon hole are expressed as follows:

〈π ′, Nβ ; J |V̂ |π,Nα; J 〉 = − 1

2mπ

(−1)−J+jα+jβ+1/2

×√
(2jα +1)(2jβ +1)(2�α +1)(2�β +1)(2�′

π +1)(2�π +1)

×
∑
L

(−1)L
{

�′
π jβ J

jα �π L

}{
�α jα

1
2

jβ �β L

}

× (�β0�α0 | L0)(�π0�′
π0 | L0)

×
[
(b0 +b1)

∫ ∞

0
drr2R∗

�β
(r)R�α

(r)R�′
π
(r)R�π

(r)

+ (c0 + c1)
∫ ∞

0
drr2R∗

�β
(r)R�α

(r)

{(
dR�′

π
(r)

dr

)(
dR�π

(r)

dr

)

+ �π (�π + 1) + �′
π (�′

π + 1) − L(L+ 1)

2

R�′
π
(r)R�π

(r)

r2

}]
,

(7)

TABLE I. Nuclear density parameters used in the present
calculations.

Nucleus rp(= rn)[fm] ap[fm] an[fm]

116Sn 5.417 0.5234 0.5837
120Sn 5.459 0.5234 0.6014
124Sn 5.491 0.5234 0.6175
132Sn 5.548 0.5234 0.6487
206Pb 6.631 0.5234 0.6389
208Pb 6.647 0.5234 0.6439

where R�π
(r) and R�α

(r) are the radial wave function of
the pion and the neutron hole, respectively. We consider the
pionic orbits of the 1s, 2s, 2p, 3s, 3p, and 3d, states which are
obtained by solving the Klein-Gordon equation numerically.
Because the Klein-Gordon equation includes the complex
optical potential that makes the Hamiltonian non-Hermite and
makes the eigenenergies complex, and hence we normalize
the pionic wave function on the proper orthonormal condition
according to the prescription in Ref. [16].

For the proton and the neutron distributions, we use the
two-parameter Fermi type density distribution as follows:

ρp(n) = ρ0

1 + exp[(r − rp(n))/ap(n)]
(8)

and assume the same radius parameters of the proton and the
neutron. These radius parameters and the proton diffuseness
parameter are taken from the experimental values in Ref. [17].
For the diffuseness parameter of the neutron we adopt the
values in Ref. [18]. These density parameters are compiled in
Table I.

For the neutron-hole states, we have taken into ac-
count the orbits p−1

1/2, f
−1
5/2, p

−1
3/2, i

−1
13/2 for 205,207Pb and

d−1
3/2, s

−1
1/2, h

−1
11/2, g

−1
7/2, d

−1
5/2 for 115,119,123,131Sn. These states

are calculated using a potential of Woods-Saxon form in
Ref. [19]. The neutron separation energies εα are determined
from experimental data as far as possible. We can disregard
the spreading widths of the neutron-hole states that are
considerably narrower than the width of the pionic states
and little affect the results here. For 207Pb, the separation
energies are obtained from the Table of Isotopes [20] as the
excited energies of the levels coupled to the neutron pickup
reactions. For open shell nuclei 205Pb and 115,119,123Sn, we
adopt the excited states observed in single-neutron pickup
reactions [21,22] and use the observed excitation energies to
deduce the neutron separation energies. In the case that there
exist plural states assigned to the same spin and parity, we
choose the level which has a larger spectroscopic factor. As
for 131Sn, we use the separation energies deduced from the
systematics in Ref. [23] because no data of the neutron pickup
reactions are available. We diagonalize the matrix elements
of the whole Hamiltonian expressed in Eq. (5). Then, we can
calculate the complex energy shifts defined as follows:

�E ≡ E(π,Nα; J ) − (ωπ − εα), (9)
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TABLE II. Calculated complex energy shifts because of the
residual interaction in 207Pb. The results are shown in units of
kilo-electron-volts for [(1s)π ⊗ j−1

n ]J and [(2p)π ⊗ j−1
n ]J , including

the s-wave and the p-wave parts of pion neutron-hole residual
interaction. The values in the parentheses are the results obtained
only with the s-wave residual interaction. Experimental errors are
taken from Ref. [6].

1s 2p

J = 1/2 −7.7 − 2.1i

p−1
1/2 −13.3 − 2.9i (−9.4 − 2.7i)

(−14.2 − 3.1i) J = 3/2 −7.7 − 2.1i

(−9.3 − 2.7i)

J = 1/2 −15.8 − 4.4i

(−17.6 − 5.0i)
p−1

3/2 −12.9 − 2.9i J = 3/2 −0.16 + 0.2i

(−13.8 − 3.1i) (−1.7 − 0.5i)
J = 5/2 −8.9 − 2.4i

(−10.1 − 3.0i)

J = 3/2 −13.9 − 4.6i

(−15.9 − 5.2i)
f −1

5/2 −13.1 − 3.5i J = 5/2 0.90 + 0.5i

(−14.1 − 3.6i) (−0.8 − 0.3i)
J = 7/2 −9.5 − 3.1i

(−11.4 − 3.8i)

J = 11/2 −13.4 − 7.6i

(−17.2 − 7.4i)
i−1
13/2 −14.8 − 6.3i J = 13/2 2.1 + 1.0i

(−17.2 − 5.7i) (−0.2 − 0.1i)
J = 15/2 −11.3 − 6.5i

(−14.9 − 6.4i)

Exp. ±20 (stat.) ± 120 (sys.)
error ±30i (stat.) ± 30i (sys.)

where E(π,Nα; J ) are the corresponding eigenenergies of the
pion-nucleus system.

We will now show the numerical results of the residual
interaction effects for the pionic atoms. As we explained
above, we include six pionic states and 4(5) neutron states
for Pb(Sn) isotopes in the present calculation to evaluate the
matrix elements. Because the residual interaction effects are
larger for deeper bound pionic states, we show the numerical
results for pionic 1s and 2p states.

In Table II, we show the complex energy shifts of the pionic
states on 207Pb. To see the contributions from πN p-wave
interactions, which are newly included in present work, we
show both results with only s-wave interaction and with s-
and p-wave residual interactions. Here, because we have used
more realistic neutron wave functions and nuclear density
distributions than those used in Ref. [14], the present results
are slightly different from those in the previous work. In
Table II, the results only with the s-wave residual interaction
are written in the parentheses and have the same negative sign
for all configurations, which means that the s-wave residual
interaction effects make the bound states deeper and the
level widths wider. This fact can be understood intuitively

TABLE III. Calculated complex energy shifts because of the
residual interaction in 205Pb. The results are shown in units of
kilo-electron-volts for [(1s)π ⊗ j−1

n ]J and [(2p)π ⊗ j−1
n ]J , including

the s-wave and the p-wave parts of pion neutron-hole residual
interaction. Experimental errors are taken from Ref. [8].

1s 2p

p−1
1/2 −13.6 − 3.1i J = 1/2 −8.3 − 2.5i

J = 3/2 0.4 + 0.2i

J = 1/2 −15.7 − 4.4i

p−1
3/2 −13.2 − 3.1i J = 3/2 −0.1 + 0.3i

J = 5/2 −9.1 − 2.5i

J = 3/2 −22.6 − 7.3i

f −1
5/2 −13.5 − 3.7i J = 5/2 0.9 + 0.6i

J = 7/2 −9.8 − 3.3i

J = 11/2 −13.9 − 8.0i

i−1
13/2 −15.4 − 6.6i J = 13/2 2.2 + 1.1i

J = 15/2 −11.7 − 6.8i

+86i +30i
Exp. error ±61 ±45

−77i −31i

as the result of the lack of the repulsive s-wave interaction
from the removed one neutron. The calculated results with
both s- and p-wave residual interactions are also shown in
the same table. We find that the p-wave interaction has the
opposite effects to the s-wave interaction in general and the
complex energy shifts become less attractive and absorptive
in almost all configurations except for a few cases. This
tendency also can be understood as the result of the missing
attractive p-wave interaction from one picked-up neutron. In
this case with 207Pb nuclei, the calculated shifts are reasonably
smaller than the experimental errors and we think we can
safely neglect the residual interaction effects as concluded in
Ref. [14].

We show the calculated results in Table III for pionic atoms
in 205Pb with the experimental errors reported in Ref. [8].
In this case, the largest shifts appears for [(2p)π ⊗ f −1

5/2]3/2

configuration and is around half of the corresponding exper-
imental error for the real part. However, this configuration
only has minor contribution to the formation cross section
[7,8]. The dominant contribution to the formation process of
pionic 2p state is from [(2p)π ⊗ p−1

3/2] configurations and the
residual interaction shifts for this configuration are evaluated
to be around 1/3 or less of the experimental error in real
part. The each level corresponding to different total angular
momentum J has different energy shifts and splits by a few
kilo-electron-volts, which will be seen as a broadening of the
resonance peak because each level overlaps because of their
large natural widths. As for the pionic 1s state, the residual-
interaction effects are around 1/4 ∼ 1/5 of experimental error
for the real part and smaller by about 10 for the imaginary
part. Therefore, we can also conclude that the residual
interaction effects can be neglected safely for pionic atoms in
205Pb case.

For Sn isotopes, we have made similar calculation for
115Sn, 119Sn, and 123Sn. In these cases together with 205Pb
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TABLE IV. Calculated complex energy shifts because of the residual interaction in 115,119,123Sn. The results are shown in units of
kilo-electron-volts for [(1s)π ⊗ j−1

n ]J and [(2p)π ⊗ j−1
n ]J , including the s-wave and the p-wave parts of pion neutron-hole residual interaction.

Experimental errors are taken from Ref. [10].

115Sn 119Sn 123Sn

1s 2p 1s 2p 1s 2p

s−1
1/2 −15.4 J = 1/2 −4.0 − 1.1i −13.5 J = 1/2 −5.2 − 2.0i −12.3 J = 1/2 −3.2 − 0.7i

−4.2i J = 3/2 −4.0 − 1.1i −3.3i J = 3/2 −3.8 − 1.1i −2.4i J = 3/2 −3.5 − 0.8i

d−1
3/2 −15.9 J = 1/2 −9.1 − 3.1i −14.3 J = 1/2 −7.0 − 1.6i −12.8 J = 1/2 −8.1 − 2.5i

−4.8i J = 3/2 0.3 + 0.3i −3.7i J = 3/2 0.4 + 0.3i −2.9i J = 3/2 0.2 + 0.1i

J = 5/2 −5.2 − 1.8i J = 5/2 −4.6 − 1.4i J = 5/2 −4.3 − 1.2i

g−1
7/2 −15.4 J = 5/2 −6.0 − 3.8i −13.0 J = 5/2 −5.5 − 3.3i −11.1 J = 5/2 −4.9 − 2.8i

−7.3i J = 7/2 1.5 + 0.8i −5.8i J = 7/2 1.3 + 0.7i −4.6i J = 7/2 1.2 + 0.6i

J = 9/2 −4.4 − 2.9i J = 9/2 −3.9 − 2.4i J = 9/2 −3.5 − 2.0i

h−1
11/2 −18.3 J = 9/2 −7.7 − 4.0i −16.0 J = 9/2 −6.9 − 3.5i −14.1 J = 9/2 −6.3 − 3.0i

−7.2i J = 11/2 1.7 + 0.8i −6.0i J = 11/2 1.5 + 0.7i −5.1i J = 11/2 1.4 + 0.6i

J = 13/2 −6.2 − 3.3i J = 13/2 −5.6 − 2.8i J = 13/2 −5.1 − 2.5i

d−1
5/2 −15.1 J = 3/2 −7.6 − 2.6i −13.6 J = 3/2 −7.1 − 2.2i −12.2 J = 3/2 −6.5 − 1.9i

−4.8i J = 5/2 1.0 + 0.6i −3.7i J = 5/2 0.9 + 0.4i −2.8i J = 5/2 0.8 + 0.3i

J = 7/2 −5.0 − 1.7i J = 7/2 −4.6 − 1.4i J = 7/2 −4.3 − 1.2i

Exp. ±24 ±18 ±18
— — —

error ±44i ±40i ±36i

case, the target nuclei are not closed and thus the description of
the nuclear structure is much more complicated. The purpose
of the present calculation is, however, not to make detailed
comparison with the experiment but to estimate the size
of the correction coming from the effects of the residual
interaction between pion and the residual nucleus. Then,
we simply assumed that the residual nucleus �r consists
of a single-hole state with respect to the target nucleus �i

as follows:

�r = Cb†α�i, (10)

and we simply assumed the constant C = 1 to estimate the
largest possible residual interaction effects. The calculated
results for the 115−123Sn are compiled in Table IV. As can
be seen, the residual interaction shifts are comparable to
the experimental errors of the real part for the pionic 1s

states, which are the most important states and have dominant
contributions for the formation reaction [9,10]. Typically, the
real energy shifts are around 15 keV and the imaginary shifts
are around 5 keV for pionic 1s states. The residual interaction
effects slightly decrease for heavier Sn isotopes, because the
binding energies of 1s pionic states are smaller and less bound
for heavier Sn isotopes [9]. We also show the calculated
results for the pionic states in 131Sn in Table V, which has the
single neutron-hole configuration with respect to the doubly
closed-shell structure. The results are close to those of the
other Sn isotopes.

In the pionic atom formation spectra of the (d,3He)
reactions on Sn targets, the dominant configuration is [(1s)π ⊗
s−1

1/2]1/2 [9]. Thus, the residual interaction effects of this

configuration should be considered carefully. As we can
see in Table IV, the residual interaction effects on the
[(1s)π ⊗ s−1

1/2]1/2 configuration are slightly smaller than ex-
perimental error for all isotopes. Hence, we could just manage
to neglect the residual interaction effects again. However, the

TABLE V. Calculated complex energy shifts because of the
residual interaction in 131Sn. The results are shown in units of
kilo-electron-volts for [(1s)π ⊗ j−1

n ]J and [(2p)π ⊗ j−1
n ]J , including

the s-wave and the p-wave parts of the pion neutron-hole residual
interaction.

1s 2p

s−1
1/2 −10.5 − 1.3i J = 1/2 −3.2 − 0.6i

J = 3/2 −3.3 − 0.6i

J = 1/2 −7.1 − 2.0i

d−1
3/2 −10.4 − 2.1i J = 3/2 0.2 + 0.0i

J = 5/2 −3.8 − 1.1i

J = 5/2 −3.0 − 1.2i

g−1
7/2 −6.5 − 1.6i J = 7/2 0.9 + 0.4i

J = 9/2 −2.1 − 0.8i

J = 9/2 −4.6 − 1.8i

h−1
11/2 −9.6 − 2.6i J = 11/2 1.1 + 0.4i

J = 13/2 −3.7 − 1.4i

J = 3/2 −5.8 − 1.5i

d−1
5/2 −9.9 − 1.9i J = 5/2 0.6 + 0.2i

J = 7/2 −3.9 − 1.1i
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magnitude of the real energy shifts are more or less comparable
to those of the experimental error and should be taken into
account seriously in analyses of data with higher precision
than presented in Ref. [10].

In summary, we have evaluated the complex energy shifts
of the deeply bound pionic states because of the residual
interaction in Pb and Sn isotopes. We have shown the
numerical results that include both s-wave and p-wave πN

residual interaction effects. For the open-shell nuclei, we have
assumed a one-neutron-hole configuration as described in
Eq. (10). The present results show that the sizes of the residual
interaction effects are slightly smaller than the experimental
errors presented in Ref. [10] for 1s pionic states in Sn isotopes.
Hence, we could conclude that we can neglect the residual

interaction effects in the analyses of data in Ref. [10] for deeply
bound pionic 1s states in Sn as in the cases of Pb. However, the
magnitude of the residual interaction effects are more or less
comparable to the experimental errors in the latest data and
the effects should be taken into account seriously in analyses
of data with higher accuracy than Ref. [10]. We think that it
is essentially important to study deeply bound pionic atoms
in future to deduce quantitative information on nuclear chiral
dynamics.

We thank Dr. Hirono Fukazawa for useful discussions on
the residual interaction effects on deeply bound pionic states.
This work is partly supported by the Grant-in-Aid for Scientific
Research (c) 16540254.
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