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Influence of the α-d motion in 6Li on Trojan horse applications
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4Gesellschaft für Schwerionenforschung mbH, Theorie, Darmstadt, Germany
(Received 1 December 2004; published 31 May 2005)

The α-d cluster structure of 6Li has been extensively investigated in the past few decades. In particular the
width of the α momentum distribution in 6Li has been studied as a function of the transferred momentum. These
investigations are now reviewed and updated after recent experiments. Trojan horse method applications are
also discussed because the momentum distribution of the spectator particle inside the Trojan horse nucleus is a
necessary input for this method. The impact of the width (FWHM) variation in the extraction of the astrophysical
S(E) factor is discussed for the 6Li(d, α)4He reaction.
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In the 1970s and 1980s, significant theoretical and exper-
imental efforts were devoted to the study of 6Li since it was
considered the simplest nucleus that could be described in
the framework of cluster models. Its low dissociation energy
(Eb = 1.47 MeV) into a deuteron and an α particle suggested
a description in terms of these two clusters: 6Li = α ⊕ d.
The study of the relative α-d motion was mainly carried out
through quasifree reactions [1]. The experimental momentum
distribution of the α cluster was studied as a function of the
transferred momentum [2] and the intercluster wave function
χ (r) turned out to be well described by several functional forms
(e.g., by the Hankel function).

These studies have been recently updated because of the
importance of weakly bound nuclei (Trojan horse nuclei;
hereafter TH nuclei) in the framework of the Trojan horse
method (THM). The main features of this method are ex-
tensively discussed elsewhere [3–10]. Basically the method
allows us to measure the bare-nucleus two-body cross sections
[or equivalently the bare-nucleus astrophysical S(E) factors]
by means of quasifree three-body reactions.

Since the extraction of the bare-nucleus S(E) factor uses
the momentum distribution of the spectator cluster inside the
TH nucleus, it is important to evaluate the impact of the
uncertainty of the momentum distribution width on the final
result.

The present paper can be regarded as part of an experimental
as well as theoretical work aimed at analyzing the behavior
of the momentum distribution width in the TH nuclei as a
function of the transferred momentum. In particular, this work
focuses on the investigation of the α-d momentum distribution
within 6Li. We have reanalyzed our previous data [2] and have
derived new results from the recent 6Li(6Li, αα)4He three-
body experiments. This study evaluates the dependence of the
THM astrophysical factor on the momentum distribution width
(FWHM), which might introduce additional uncertainties. The
S(E) factor for the 6Li(d, α)4He two-body reaction extracted
via the THM from the reaction 6Li(6Li, αα)4He has been
reanalyzed according to this perspective.

A typical three-body reaction can be written as

a + A → C + c + s,

where, in the case of a quasifree process, a is the projectile,
A is the TH nucleus, s is the spectator, and c and C are the
detected ejectiles. We will assume that the quasifree breakup
takes place in A = x ⊕ s, with x as a participant to the a(x, c)C
reaction.

In the framework of the impulse approximation (IA) the
theoretical triple-differential cross section is given by [11,12]
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where

(i) (dσ/d�)off
c.m. is the off-energy-shell differential cross

section for the two-body a(x, c)C reaction at the center-
of-mass energy Ec.m. given in postcollision prescription
by [13]

Ec.m. = Ec−C − Q2b, (2)

with Q2b the two-body Q value of the a(x, c)C reaction
and Ec−C the relative energy between the outgoing
particles c and C;

(ii) KF is a kinematical factor; and
(iii) |�( �ps)|2 is the momentum distribution of the spectator.

The |�( �ps)|2 factor in Eq. (1) is the square of the Fourier
transform of the intercluster wave function χ (�r):

�( �ps) = (2πh̄)−3/2
∫

e−i �ps ·�r/h̄χ (�r)d3r. (3)

As already mentioned the intercluster motion is well described
by the Hankel function with cutoff radius Rc [1].

In the standard THM approach the two-body cross section
is obtained by inverting Eq. (1), so that(
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where the product KF·|�( �ps)|2 is calculated by means of a
Monte Carlo simulation and the three-body cross section is
measured. The intercluster wave function for a s-wave motion
between the two clusters can be written as

χ (�r) = R(r)Y00(θ, φ). (4)

It was shown in previous works [1] that the width w(qt ) of
the momentum distribution is not sensitive to the choice of the
wave function if a cutoff radius Rc > 2 fm is introduced. The
role of the cutoff radius is to take into account reabsorption
effects, or even to simulate the inadequacy of the cluster model
for small intercluster distances [1]. The introduction of Rc in
the intercluster wave function is such that

R(r) = 0 for r < Rc.

This ensures that the main features in the shape of momen-
tum distributions for spectator momenta value lower than
100 MeV/c, calculated in the plane wave impulse approxima-
tion (PWIA) or in the distorted wave impulse approximation
(DWIA), are essentially the same [14–17]. The PWIA has been
widely used because of its simplicity and since it predicts
reasonably well the shape of the experimental momentum
distribution in the region away from its zeros [16]. Since in
the experimental TH applications one generally selects events
with low momentum, this approximation is well justified.

In previous works [2,18] it has been shown that the w(qt ) for
the α-d momentum distribution in 6Li slowly increases with
increasing transferred momentum qt . This can be defined [2]
for quasifree processes as

�qt = �pa − �pc + �pC

2
, (5)

where �pa, �pc, and �pC are the momenta of the projectile and
ejectiles c and C, respectively. Thus �qt is defined as the mean
transferred momentum between the momentum transferred to
c, �qtc, and to C, �qtC [i.e., �qt = 0.5(�qtc + �qtC)].

A width (FWHM) of around 73 MeV/c corresponds to
values of the transferred momentum larger than 300 MeV/c, in
agreement with the asymptotic value predicted by both PWIA
and DWIA. The narrowing of the momentum distribution
with decreasing qt was interpreted as related to distortion or
absorption effects [19,20].

The explanation of this behavior (see Fig. 2) is the
following. In the scattering of electromagnetic probes (e.g.,
electron scattering) the momentum transfer to the center of
mass of the probe is the same as the momentum transfer
to the nucleus. However, because of strong absorption, this
relationship is not valid for nucleus-nucleus scattering. The
momentum transfer to nuclear excitation is spread up to a
value close to the cm momentum transfer. This means that
after a certain value q∗

t , all values of the internal momentum
distribution inside 6Li are probed [21]. However, for small
values of qt large values of ps , (i.e., ps � q∗

t ) are suppressed,
thus narrowing the momentum distribution probed in the
scattering.

We have improved these results for the 6Li nucleus with
new data taken from recent experiments [3,22]. |�( �ps)|2 was
calculated by using a Hankel function for the s state given

FIG. 1. Experimental momentum distribution for the α particle
inside 6Li derived according to the guidelines given in the text for
the 6Li(6Li, αα)4He reaction. The upper and lower parts refer to the
target and projectile breakup cases, respectively.

by [23]

|�( �ps)|2 = N
1(
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)2

[
sin ksRc
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β

]
(6)

with ks = ps/h̄, Rc the cutoff radius, and β defined by
means of the α-d binding energy EB in 6Li, according to
β = (2µEB/h̄2)1/2, where µ is the reduced mass.

The width of the momentum distribution was extracted for
the 6Li(6Li, αα)4He reaction at different energies. The experi-
mental details of these experiments are reported elsewhere [3].

The standard procedure for the extraction of the momentum
distribution is described in [10]. As shown in Eq. (1) the
PWIA allows us to directly relate the three-body differential
cross section to the spectator momentum distribution. Thus
this equation can be applied to derive |�( �ps)|2 once the other
quantities are known. Although KF can be easily calculated,
the energy behavior of (dσ/d�)off

c.m., which is the quantity
one wants to obtain in TH applications, is generally not
known. What is usually done is to select coincidence events
in the Ec.m. versus ps plot in such a narrow energy range
(∼100 keV) that, when projected onto the ps axis, (dσ/d�)off

c.m.

for those events is nearly constant.
Thus dividing the triple differential cross section by the

kinematical factor one obtains directly the shape of the experi-
mental momentum distribution in arbitrary units. Experimental
results referring to the 6Li(6Li, αα)4He process are reported in
Fig. 1; the upper and lower parts refer to the case of target and
projectile breakup, respectively. In both cases the appropriate

058801-2



BRIEF REPORTS PHYSICAL REVIEW C 71, 058801 (2005)

TABLE I. Transferred momentum for different quasi-free reac-
tions and beam energies together with the measured width (FWHM)
and the fitted Rc, according to the text.

Reaction Ebeam qt (MeV/c) w(qt ) Ref.
(MeV) (MeV/c)

6Li(6Li, αα)4He 2.1 71 49 ± 4
2.7 50 43 ± 4
2.7 87 53 ± 4
3.6 96 40 ± 5 [26]
4.2 107 40 ± 5 [26]
4.7 115 45 ± 5 [26]
5.7 125 49 ± 5 [26]
5.9 136 61 ± 5 [3]
6.7 138 63 ± 5 [26]

44 398 72 ± 15

3He(6Li, pα)4He 5 83 40 ± 3 [22]
6 90 55 ± 3 [22]

Hankel function [Eq. (6)] was used to fit the data (solid line
in the figure) and the width (FWHM) was easily derived. The
cutoff radius Rc was considered as a free parameter.

Other measurements for the 6Li(6Li, αα)4He reaction were
performed at different beam energies. With the same procedure
the w(qt ) estimates were deduced. Details for all the performed
experiments are reported in Table I.

FIG. 2. (Color online) Width (FWHM) for the α momentum
distribution inside 6Li as a function of the transferred momentum qt

(see text). Diamonds represent previous results by [2,18], full dots and
stars are new data from the 6Li(6Li, αα)4He (blue projectile breakup,
red target breakup) and 3He(6Li, pα)4He experiments [3,7,22,24].
The solid line represents an empirical fit described in the text. On the
lower picture only the low transferred momenta region is represented.

FIG. 3. Experimental 6Li(d, α)4He S(E) factor, extracted via
the THM, for different choices of the w(qt ) for the α momentum
distribution inside 6Li. The solid line represents the case of w(qt ) =
70 MeV/c, the dashed line is for w(qt ) = 61 MeV/c, and dotted line
is for w(qt ) = 50 MeV/c.

Figure 2 shows the trend of the width for the α-d
relative motion as a function of the transferred momentum
qt . Previous data from [2,18] are presented as diamonds and
our 6Li(6Li, αα)4He recent results at different energies [3,7]
are shown as full dots. The stars refer to the 3He(6Li, pα)4He
[24] experiment. It is evident how, at low qt , the w(qt )
smoothly increases until the predicted PWIA asymptotic value
(73 MeV/c) [16,19] is reached around 250–300 MeV/c.

These data confirm the behavior already discussed in [2]. A
fit on the data was performed by using the following function:

w(q) = f0(1 − e−qt /q0 ), (7)

where f0 represents the asymptotic width value of 73 MeV/c
and q0 is the fitting parameter, set to 122 ± 3.5 MeV/c.

Until now the determination of the TH S(E) factor was
performed by assuming the FWHM asymptotic value in
Eg. (1). These new results for 6Li confirm that the w(qt )
could be significantly lower than this value, especially for
low qt .

This variation was taken into account in a reanalysis
of the quasifree 6Li(6Li, αα)4He data at 5.9 MeV [3]. The
corresponding transferred momentum is 136 MeV/c, whereas
the measured width and the value calculated with the fitting
function 7 are, respectively, 61 ± 5 MeV/c and 50 MeV/c. The
Monte Carlo simulation to evaluate the KF · |�( �ps)|2 product
was performed for three choices of w(qt ): 50 Mev/c [the
value from Eq. (7)], 61 Mev/c (the experimental value), and
73 MeV/c (the theoretical value). The corresponding energy
trends of the S(E) factor are reported in arbitrary units in
Fig. 3.

The S(E) factor undergoes a variation of about 6% by
changing the width with respect to the previous determination.
However, in that experiment [3,25] the S(E) factor was
affected by a total error of about 15%. This work updates the
previous TH value of S(E = 0) from S(0) = 16.9 ± 2.5 MeV·b
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to S(0) = 15.9 ± 2.7 MeV·b after adding the error arising from
the w(qt ) variation.

In conclusion, the FWHM for the momentum distribution
of α-d system in 6Li was investigated as a function of the
transferred momentum. Previous results [2] were updated
using new experimental 6Li(6Li, αα)4He data and were con-
firmed.

The dependence of the width (FWHM) was parametrized in
terms of the transferred momentum, thus allowing, once qt is
fixed, an a priori evaluation of its approximate value. In such a
way it is possible to optimize the selection of the experimental

regions where the sequential processes are expected to be
negligible.

More precise calculations of the (dσ/d�)off
c.m. cross section

from d3σ/(dE1d�1d�2) are thus possible.
This procedure was applied in the case of the 6Li(d, α)4He

reaction. The uncertainty of 6% in the S(E) factor is signifi-
cantly lower than the total error (∼15%) and has been taken
into account.
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careful reading of the manuscript and for fruitful comments.
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