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Spin-orbit transition interactions
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The spin-orbit two-body interaction has been used for a long time in nuclear structure studies and is unique.
In contrast, two different expressions are used in nuclear scattering studies. One of them is stronger when the
eigenvalues of (� · σ ) of the two particles involved are opposite to each other, such as the interaction used in
nuclear structure studies for an even parity excitation. This expression of the spin-orbit interaction can be qualified
as “normal” in view of the similar behavior in these two applications. The other expression of the spin-orbit
interaction involves the sum of these two eigenvalues.
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The spin-orbit two-body interaction has been used for
a long time in nuclear structure studies and is unique. It
can be used also in the microscopic description of inelastic
nucleon–nucleus scattering: in the intermediate step of such
a calculation (after integration over the coordinates of one of
the interacting nucleons), it can be considered as a pattern for
a macroscopic approach. For “natural parity” excitations—the
only ones that have a macroscopic equivalent—the interaction
is expressed primarily in term of the difference of the
eigenvalues of (� · σ ) [1] and is stronger when (� − j ) =
−(�′ − j ′) than in the opposite case: we qualify this behavior as
“normal.” On the contrary, two different expressions are used
in nuclear scattering studies. One of them [2,3] is stronger
when the eigenvalues of (� · σ ) for the two particles involved
have opposite signs such as the two-body interaction after
integration over one variable. This expression of the spin-orbit
interaction can be qualified as “normal” in view of this similar
behavior. The other expression of the spin-orbit interaction [4]
involves only the half-sum of these two eigenvalues.

In a recent article [4], the authors describe in their
Appendix B the interaction they use. In the description of
the potential matrix element Vcc′ (r), where c and c′ denote the
quantum numbers of the bra and the ket, the authors write on
the second line of page 92:
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2αr
Wls{[� · s]c′ + [� · s]c}, (1)

which, with the two following lines, deals with the spin-orbit
interaction. This is an arbitrary generalization of the spin-orbit
potential of the optical model, which is as follows:
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A symmetrized form of this expression was used when first
asymmetry measurements in inelastic scattering with polarized
proton beams became available. The radial dependence of
Eq. (2) is what is obtained by elimination of the small com-
ponent of a Dirac radial equation, V (r) being the difference
between scalar and tensor potentials. The factor in front,
depending on the pion mass mπ is 2, such that the definition
of the spin-orbit interaction is 4(l · s) = 2(l · σ ) for particles
with spin 1/2: for convenience, σ is used instead of s in the
following.

Going back to the “full Thomas term” obtained for the
spin-orbit by transforming a Dirac equation into a Schrödinger
equation, J. S. Blair and H. Sherif [2,3] used the following
expression:

∇{V (r)} × ∇
i

· σ (3)

in computations for nucleon inelastic scattering. To show the
derivation of its expression in terms of the eigenvalues of (� · σ )
the “full Thomas form” for a multipole (λ,µ) can be written
as follows:

V LS
λ,µ(r) = (∇Vλ(r)Yµ

λ (r̂)
) × ∇

i
· σ (4)

The zeroth-order term of [4] is in V0,0(r), the first-order term
in the deformation parameter β2 is in V2,0(r); the second-order
terms in β2 contribute to V00(r), V20(r), and V40(r). Using the
following identities:
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(σ · �)(σ · r) = −(σ · r)(σ · �),

(σ · r)2 = r2,

V LS
λ,µ(r) can be written as follows:
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The terms with two derivatives cancel each other. The operator
(� · σ ) acting on Y

µ
λ (r̂) can be replaced by (� · σ )c − (� · σ )c′

because �c = �c′ + λ. The last term can be simplified, using
the relation:

(A × B) · (C × D) = (A · C)(B · D) − (B · C)(A · D) (7)
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which replaces the two cross products by r2(λ · �). But, as
(� · �) = (� · σ )2 + (� · σ ):

2(λ · �i) = ([� · σ ]c − [� · σ ]c′)

× ([� · σ ]c + [� · σ ]c′ + 1) − λ(λ + 1). (8)

With these manipulations, the result is obtained as follows:

V LS
λ,µ(r) = Y

µ
λ (r̂)

[
dVλ(r)

dr
[� · σ ]c′ + Vλ(r)

r
([� · σ ]c′
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d
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+ Vλ(r)

2r2

{
λ(λ + 1) − ([� · σ ]c

− [� · σ ]c′ )([� · σ ]c − [� · σ ]c′ ± 1)
}]

, (9)

where ±1 is +1 in this tridimensional derivation and is −1 if
the wave functions are multiplied by r as usual. Note that there
are three form factors:

1. 1
r

d
dr Vλ(r) which is the only one for elastic scattering and is

multiplied only by the eigenvalue for the ket.
2. Vλ(r)

2r2 which is, divided by r2, the true spin-orbit multipole
which disappears in elastic scattering for which λ = 0 and
[� · σ ]c′ = [� · σ ]c.

3. Vλ(r)
r

d
dr which is the form factor multiplying the derivative

of the ket radial function; integrating by part shows that the
whole is symmetric in c and c′.

Except for the first, the form factors differ from the ones
of Eq. (1). However, as the interaction of Eq. (1) is larger
when the eigenvalues for c and c′ are of the same sign and
the coefficients of the second and third form factors above are
larger in the opposite case, one can guess that the effect should
be quite different.

The hermiticity of Eq. (9) can be written as follows:(〈φc(r)|V LS
λ,µ(r)

)|φc′(r)〉− 〈φc(r)|(V LS
λ,µ(r)|φc′(r)〉)= 0,

(10)

where [〈φc(r)|V LS
λ,µ(r)] means that the operator acts on the left

with a change of sign for d/dr (third form factor listed above).
Using wave functions multiplied by r, Eq. (9) is ([� · σ ]c −
[� · σ ]c′) multiplied by the following:∫ ∞
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which vanishes in the applications because the wave functions
φ(r) vanish at the origin and the form factor Vλ(r) vanishes at
infinity.

The use of the spin-orbit deformation given by Eq. (9)
in coupled channel calculation is more difficult [5]. It was
the subject of codes ECIS (“Equations Couplées en Itérations

Séquentielles”) from ECIS68 to ECIS03 [6]. To compare
results obtained with the interactions given by Eq. (1) and
Eq. (9), the spin-orbit interaction is parameterized as follows:

1

r

dVλ(r)

dr
(z1 + z3[� · σ ]c′ + z4[� · σ ]c) + Vλ(r)

r

× z6([� · σ ]c′ − [� · σ ]c)
d
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+ Vλ(r)

2r2
z5[z2λ(λ + 1)

− ([� · σ ]c − [� · σ ]c′)([� · σ ]c − [� · σ ]c′ ± 1)] (12)

in all these codes. The coupling of Eq. (1) is obtained by setting

z1 = z2 = z5 = z6 = 0, z3 = z4 = 1
2 , (13)

the coupling of Eq. (9) multiplied by a parameter x (with x = 1
for the “unparametrized” case) is given by the following:

z1 = z4 = 0, z2 = 1, z3 = z5 = z6 = x. (14)

The parameter x allows to increase the strength of the spin-orbit
transition without deforming its form factor in the rotational
model. Equation (12) is hermitian only if z6 = z5 = z3 − z4,
as verified by Eq. (13) and Eq. (14); it allows the mixture of
the two interactions with two more ones, the spin independent
with the two nonderivative form factors.

For people who do not want to consider Dirac equation
at low energy, there is another justification of Eq. (9) based
on the nucleon-nucleon interaction [1,7,8]. The most recent
publication of this topic can be found in Ref. [9], formulas
(4.44) to (4.50). A natural parity excitation involves seven form
factors, of which two are for a derivative term. At the zero-
range limit [7,8] of the two-body spin-orbit interaction, these
form factors can be expressed with the product of a particle
and a hole function. Assuming that the sum of the eigenvalues
of � · s for the particles and holes vanishes (and also the sum
of products of particle by the derivative of hole functions) the
result differs by a factor 2 in front of λ(λ + 1) from Eq. (9)
with the product of the particle and the hole functions as Vλ.
This approach, with the most general consideration of the
two–body interaction has been the subject of a series of codes,
from DWBA70 to DWBA98 [10].

Both forms, Eq. (1) and Eq. (9), of the spin-orbit coupling
have been used with varying degrees of success to interpret the
scattering of spin 1/2 projectiles from nuclei for over 30 years.
Our focus here has been to stress that (a) it is the coupling
for inelastic scattering given by Eq. (9) that is linked closely
to the underlying nucleon-nucleon interaction (and/or to the
Dirac equation) and (b) more specifically, at the partial-wave
level these two forms of spin-orbit coupling are qualitatively
different. I thank the Service de Physique Théorique de Saclay
for allowing me to follow this kind of problems after my
retirement. I also thank H. Sherif for reading the manuscript
and for helpful correspondence.
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1970) p 75.

[8] J. Raynal, The Structure of Nuclei, ICTP International Course on
Nuclear Theory, Trieste, Italy, Jan. 13–March 12, 1971 (IAEA,
Vienna, 1972) p. 75.

[9] K. Amos, P. J. Dortmans, H. V. von Geramb, S. Karataglidis,
and J. Raynal, Adv. Nucl. Phys. 25, 275 (2000).

[10] J. Raynal, computer code DWBA98 (NEA 1209/05, 1999).

057602-3


