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Coupled-channel analysis of ω-meson production in π N and
γ N reactions for c.m. energies up to 2 GeV
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The pion- and photon-induced reactions for the final states γN, πN, 2πN, ηN , and ωN are studied within
a coupled-channel effective Lagrangian approach in the energy region from the pion threshold up to 2 GeV.
To investigate the role of the nucleon resonances in the different reactions we include all known states with
spin -1/2, -3/2, and -5/2 and masses below 2 GeV. We find a strong contribution from the D15(1675) resonance
to the πN → ωN reaction. While the F15(1680) state only slightly influences the ω meson production in the
πN scattering its role is enhanced in the ω photoproduction due to the large electromagnetic coupling of this
resonance. We predict the beam asymmetry �X to be a negative in the γp → ωp reaction near to the threshold.
Above the 1.85 GeV the asymmetry is found to change its sign and becomes positive at forward directions. The
presented findings can be experimentally tested at GRAAL, CLAS, and CB-ELSA facilities.
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I. INTRODUCTION

The investigation of the pion- and photon-induced reactions
on the nucleon in the resonance region is a very interesting
and intriguing issue. First, the study of the pion- and photon-
nucleon reactions provides very interesting information on the
elementary meson-baryon dynamics which is also inevitable
input for the investigation of in-medium effects in nuclear
matter either in the ground state or at finite temperature.
Thus, the information on the ωN elastic scattering cannot
be obtained experimentally, but can, in principle, be extracted
from an analysis of the (γ /π )N → ωN data provided that
all rescattering and threshold effects are carefully treated.
This requires a dynamical coupled-channel approach which
satisfies the very important condition of unitarity and is
constrained by experimental data from all open channels.
Secondly, the information on the baryon resonance spectrum
can be obtained to distinguish between different quark model
predictions and/or lattice QCD results. It is well known
that some quark models predict more resonance states than
discovered so far (see [1] and references therein). It has been
assumed that these “missing” resonances have small coupling
to πN and thereby are not seen in the elastic πN scattering
data. Thus, an extensive analysis of other reactions with
ηN,ωN,K�, and K� in the final state is necessary to identify
properties of those “hidden” resonances. With this aim in mind
we have developed a coupled-channel effective Lagrangian
model [2–7] that includes the γN, πN, 2πN, ηN,ωN,K�,
and K� final states and is used for simultaneous analysis
of all available experimental data in the energy region mN +
mπ �

√
s � 2 GeV. The premise is to use the same Lagrangians

for the pion- and photon-induced reactions, thereby generating
the u- and t-background contributions without introducing
any new parameters. In our last analysis of the pion-induced
reactions [8] it has been shown that while the spin-5/2
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states hardly influence the ηN,K�,K� final states, the
contributions from D15(1675) and F15(1680) to πN → ωN

are significant. However, due to the lack of hadronic data
it is not possible to draw a firm conclusion about relative
resonance couplings to the ωN channel until the ω meson
photoproduction data are included [2,3].

The ω meson photoproduction is under extensive discussion
in the literature because of the recently published high
precision data from the SAPHIR Collaboration [9]. Most of
the theoretical studies of this reaction are based on the single
channel “T-matrix” effective Lagrangian calculations [10–14].
All these findings agree on the importance of the t-channel
π0-exchange contributions, which has first been studied by
Friman and Soyeur [15]. However, some discrepancies exist
between the various models on the importance of different res-
onance contributions to the ωN final state. In the quark model
of Zhao [11] two resonance states P13(1720) and F15(1680)
give large contributions to the ω meson photoproduction. In
the approach of Titov and Lee [14] a resonance part of the
reaction is dominated by the D13(1520) and F15(1680) states.
An opposite observation has been made in the calculation of Oh
et al. [12] where large contributions to the ω-photoproduction
come from the “missing” N 3

2
+

(1910) and N 3
2

−
(1960) states.

In the model of Babacan et al. [13] resonance contributions to
ωN final state have been neglected thereby the reaction process
is described by the only nucleon and t-channel production
mechanisms. A good simultaneous description of all available
experimental data on the (π/γ )N → ωN reactions for

√
s �

2 GeV has been achieved in our previous study [2,3]. There,
strong resonance contributions to these reactions are found to
be from the P11(1710) and P13(1900) states.

Since all studies predict a different individual resonance
contributions to the ω photoproduction it is interesting to look
at the assumptions made in various models about the resonance
couplings to the ωN final state. In the approach of Oh et al. [12]
the ωNN∗ couplings were introduced by using the quark
model predictions from [16,17]. As a result, only resonances
with masses above the ωN threshold were taken into account.
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In the model of Zhao [11] the above problem is solved by
using the SU(6)× O(3) constituent quark model to also extract
contributions from the subthreshold states. However, due to the
absence of configuration mixing in this model the contributions
from some resonances [S11(1650),D15(1675),D13(1700)] are
strictly forbidden due to the Moorhouse selection rule [18].
Since the experimentally extracted helicity amplitude A

p
1
2

of

the S11(1535) resonance is finite and large this approach
was criticized by Titov and Lee in [14]. To overcome this
problem these authors perform another study of the γp → ωN

reaction [14] where a vector dominance model (VDM) is used
to determine the g∗

ωNN couplings at the corresponding effective
interaction Lagrangians. Therefore, this approach considers
only those resonances for which the electromagnetic helicity
amplitudes are given in PDG [19]. Another problem with
models based on the VDM assumption is that the ωNN∗
coupling cannot be fully constrained: while the AωN

1− 1
2

and

AωN

1+ 3
2

helicity amplitudes can be related with the corresponding

electromagnetic quantities, an additional assumptions should
be put forward to determine AωN

0+ 1
2
. Therefore, in the study

of [14] the γNN∗ ( ωNN∗ ) dynamics has been simplified by
using only one common coupling.

Assuming that some resonances might have small couplings
to the πN and γN final states (see [1,20]) they can only
be excited via rescattering effects in other channels (e.g.,
ηN,ωN, . . .). Thus, the use of a coupled-channel approach
where all open channel are taken into account is inevitable
to identify such resonance contributions. To our knowledge,
the only calculation where the ωN channel is treated within
a coupled-channel approach is a model of Lutz et al. [21],
where pointlike interactions are used. There, the lack of the

JP = 1
2

+
, J P = 3

2
+

, and JP = 5
2

±
contributions limits the

analysis to the near threshold region by assuming S-wave
dominance. There is also a work by Oh and Lee [22,23]
where the authors started to consider rescattering effects from
intermediate πN and ρN channels.

The Giessen model developed in [2,3] is based on a
unitary coupled-channel effective Lagrangian approach. It
has been successfully applied in the analysis of pion- and
photon-induced reactions in the energy region up to 2 GeV.
In this model the resonance couplings are simultaneously
constrained by available experimental data from all open
channels. Because of the complexity of the problem, our
previous analysis [2,3] has been restricted to the case of
resonances with spin J� 3/2. However, the contributions from
the spin-5/2 resonances to the final states under consideration
must be checked explicitly, thus enlarging the model space
and increasing the predictive power of the calculations. For
example, a strong coupling of P11(1710) to the ωN has been
found giving an excess structure in corresponding πN partial
wave which is not seen in the SAID group analysis. Since
it is not a priory clear, whether spin-5/2 couplings to the
ηN,ωN , etc., can be neglected, the calculations including
all possible contributions should be carried out in full. The
motivation of this paper is to perform a new combined study
of the (γ /π )N scattering with γN, πN, 2πN, ηN , and ωN in
the final state where the spin-5/2 resonances are included. We

check for all resonance contributions in the energy region up to
2 GeV.

Our primary interest is the ω meson production. As
compared to our previous findings [2,3] we expect significant
changes in the resonant ω meson production mechanisms by
inclusion of spin-5/2 resonance contributions. To provide an
additional constraint on the resonance couplings to ωN we also
include the recent data on the spin density matrix obtained by
the SAPHIR group [9]. In Sec. II we briefly outline the main
features of the applied model. The calculations of the γN →
πN, 2πN, ηN reactions and extracted resonance parameters
are presented in Sec. III. The results on the (γ /π )N → ωN

reaction are discussed in Sec. IV and we finish with a summary.

II. THE GIESSEN MODEL

The details of the Giessen model can be found in [2,3,5,8].
Here we only outline the main features of the model. The
Bether-Salpeter equation (BSE) needs to be solved to obtain
the scattering amplitude:

M(
√

s, p, p′) = K(
√

s, p, p′) + i

∫
d4q

(2π )4
V (

√
s, p, q)

× Im GBS(
√

s, q)M(
√

s, q, p′),
(1)

K(
√

s, p, p′) = V (
√

s, p, p′) +
∫

d4q

(2π )4
V (

√
s, p, q)

× Re GBS(
√

s, q)M(
√

s, q, p′),

where the equation is split into the two constituents containing
the real and imaginary parts of the propagator GBS. Here,
p (k) and p′ (k′) are the incoming and outgoing baryon
(meson) four momenta. To date, a full solution of Eq. (1)
in the meson-baryon domain only exists for the low-energy
πN scattering [24], where no other channels are important.
There are many different approximations to the BSE which
are mainly three-dimentional (3D) reductions of the original
equation. It has been shown that there are an infinite number
of ways to perform such a reduction [25] and there is no
overwhelming reason to choose one particular approximation
over another. Many of these approximations are intended to
avoid singularities in the kernel by performing an integration
over the relative energy in Eq. (1) explicitly. However, due to a
technical feasibility, most studies based on a 3D approximation
are limited to elastic pion-nucleon scattering and there are
only a few [26,27] where inelastic channels are also included.
To solve the coupled-channel scattering problem with a large
number of inelastic channels, we apply the so-called K-matrix
approximation where the real part of the BSE propagator GBS

is neglected. This is the only way which is feasible for the
multichannel problem and satisfies the important condition of
unitarity.

The imaginary part of the propagator can be written in the
form

iIm GBS(
√

s, q) = −iπ2 mBq

∑
sB

u(pq, sB)ū(pq, sB)

EBq
EMq

× δ
(
k0
q − EMq

)
δ
(
p0

q − EBq

)
, (2)
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thus, putting intermediate particles on their mass shells. After
the integration over the relative energy, Eq. (1) reduces to

T
λf λi

f i = K
λf λi

f i + i

∫
d
n

∑
n

∑
λn

T
λf λn

f n K
λnλi

ni , (3)

where Tf i is a scattering matrix and λi(λf ) stands for
the quantum numbers of initial (final) states f, i, n = γN ,
πN, 2πN, ηN,ωN,K�,K�. The matrix Tf i is related to
M through M = (4π )2√s/

√
pp′mNmN ′Tf i [2]. Using the

partial-wave decomposition of T ,K in terms of Wigner
functions (see [5]) the angular integration can be easily carried
out and the equation is further simplified to the algebraic form

T
J±,I
f i =

[
KJ±,I

1 − iKJ±,I

]
f i

. (4)

The validity of this approximation was demonstrated by
Pearce and Jennings in [28] by studying different approxima-
tions to the BSE for the πN scattering. Considering different
BSE propagators they concluded that an important feature of
the reduced intermediate two particle propagator is a delta
function on the energy transfer. It has been argued that there
is no much difference between physical parameters obtained
using the K-matrix approximation and other schemes. It has
also been shown in [29,30] that for πN and K̄N scattering
the main effect from the off-shell part is a renormalization
of couplings and masses. The assumptions made in the
K-matrix approach has been checked by Sato and Lee in
their calculations of the pion photoprodution [31]. They find
that K-matrix results are consistent with their dynamical
meson-exchange model.

It should be mentioned, however, that within the K-matrix
approach the nature of resonances as three-quark excitations
or an outcome of the meson-nucleon dynamics cannot be
established. There are findings that, for example, the Roper
P11(1440) resonance might be a quasibound σN state [32–34].
There are also studies based on the chiral model calculations
where the S11(1535) resonance is dynamically generated in
the K� and ηN channels [35,36]. Since in the K-matrix
approach the real part of GBS is neglected such resonances
cannot appear as a quasibound state but have to be included
into the potential explicitly. Note, however, that a plain
distinction between the three-quark and quasibound pictures
is very difficult, if not impossible at all. Such a study may
require more extended analysis of experimental data (including
electroproduction data) where information on the spatial
content of the resonances can be obtained as well.

Due to the smallness of the electromagnetic coupling the
photoproduction reactions can be treated perturbatively. This
is equivalent to neglecting γN in the sum over intermediate
states n in Eq. (3). Thus, for a photoproduction process Eq. (4)
can be rewritten as follows:

T
J±,I
f γ = K

J±,I
f γ + i

∑
n

T
J±,I
f n KJ±,I

nγ . (5)

In a similar way, the Compton scattering amplitude can be
defined as

T J±,I
γ γ = KJ±,I

γ γ + i
∑

n

T J±,I
γ n KJ±,I

nγ . (6)

(b) (c)(a)

ΝΝ

i f i

π, ρ, ...

f

Ν

fi

Ν, Ν∗

Ν Ν Ν
Ν, Ν ∗

FIG. 1. s-, u-, and t-channel contributions to the interaction
potential.

In Eqs. (5) and (6) summation index n runs only over hadronic
states. With such a treatment of Compton scattering problems
with the gauge invariance during the isospin decomposition
(see [3]) are avoided. The effects of the intermediate γN states
have been checked in [3] and found to be negligible.

A. K matrix

The interaction potential (K matrix) of the BSE is built up
as a sum of s-, u-, and t-channel contributions corresponding
to the tree level Feynman diagram shown in Fig. 1. Thus,
the resonance and background contributions are consistently
generated from the same effective interaction Lagrangians.
The Lagrangians used to construct the interaction potential
are given in Appendix A and are discussed in [2,3,5,8].
The t-channel contributions to the different final states are
summarized in Table I. Using the interaction Lagrangians and
values of the corresponding meson decay widths taken from
the PDG [19] the following hadronic coupling constants are
obtained:

gρππ = 6.020, gωρπ = 2.060,

ga0ηπ = −2.100, gf2ππ = 5.760,

gρπγ = 0.105, gρηγ = −0.928,

gωπγ = 0.313, gωηγ = −0.313,

gπγ γ = 0.037, gηγ γ = 0.142.

(7)

All other coupling constants are allowed to be varied during the
fit. To take into account the finite size of mesons and baryons
each vertex is dressed by a corresponding form factor:

Fp(q2,m2) = �4

�4 + (q2 − m2)2
. (8)

Here q is a c.m. four momentum of an intermediate particle
and � is a cutoff parameter. It has been shown in [2,3] that
Eq. (8) gives systematically better results therefore we do not

TABLE I. Properties of mesons which give contributions to
different reactions via the t-channel exchange. The notation (γ γ )
means γN → γN , etc.

Mass (GeV) J P I Reaction

π 0.138 0− 1 (γ, γ ), (γ, π ), (γ, ω)
η 0.547 0− 0 (γ, γ ), (γ, ω)
ω 0.783 1− 0 (γ, π ), (γ, η)
σ 0.650 0+ 0 (π, π )
f2 1.270 2+ 0 (π, π )
ρ 0.769 1− 1 (π, π ), (π,ω), (γ, π ), (γ, η)
a0 0.983 0+ 1 (π, η)
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FIG. 2. πN → πN elastic partial waves for I = 1/2. The solid
(dashed) lines corresponds to the real (imaginary) part of the
amplitude. Our previous best global results from [2] are shown by
the dash-dotted and dotted lines. The data are taken from the SAID
analysis [48].

use any other forms for F (q2). The cutoffs � in Eq. (8) are
treated as free parameters being varied during the calculation.
However, we demand the same cutoffs in all channels for a
given resonance spin J : �J

πN = �J
ππN = �J

ηN = . . . , etc.,
(J = 1/2, 3/2, 5/2). This greatly reduces the number of free
parameter; i.e., for all spin-5/2 resonances there is only one
cutoff � = � 5

2
for all decay channels.

The use of vertex form factors requires for a special
care on preserving the gauge invariance when the Born
contributions to photoproduction reactions are considered.
Since the resonance and intermediate meson vertices are
gauge invariant they can be independently multiplied by the
corresponding form factors. For the nucleon contributions to a
meson photoproduction we apply the suggestion of Davidson
and Workman [37] and use the crossing symmetric common
form factor:

F̃ (s,u,t) = F (s) + F (u) + F (t) − F (s)F (u)

− F (s)F (t) − F (u)F (t) + F (s)F (u)F (t). (9)

At present, the inelastic 2πN channel is described by means of
an effective ζN state where ζ is an effective isovector meson
with mass mζ = 2mπ . We allow only resonance coupling to
ζN therefore the decay N∗ → ζN represents a total resonance
flux to the ρN, π
, σN final states. To constrain contributions
to this channel we use as an input data the inelastic 2πN partial
wave cross sections extracted by Manley et al. [38]. In our
previous studies [2,3] it has been shown that a good description
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FIG. 3. πN → 2πN total partial wave cross sections and πN

inelasticities for I = 1/2. The solid (dashed) lines corresponds to
σ inel.

πN (σ2πN ). The data are taken from [38,48].

of the 2πN channel is possible and inelastic data are well
reproduced. Thus, in the present calculations we continue to
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TABLE II. Nucleon and t-channel couplings obtained in the
present study (first line) vs the results from [2,3] (second line).

g Value g Value

gNNπ 12.85 gNNσ · gσππ 36.01
12.85 22.92

gNNρ 4.40 κNNρ 2.33
4.53 1.47

gNNη 0.41 gNNa0 −69.70
0.10 −70.60

gNNω 4.19 κNNω −0.79
3.94 −0.94

gNNf2 5.75 hNNf2 −10.87
– –

use this simplified description of the 2πN channel keeping
in mind that for a more reliable description of this channel
a decomposition of the 2πN final state into intermediate
ρN, π
, σN (similar to [39,40]) is desirable.

B. t channel and Born contributions

The extracted t-channel and Born couplings are shown
in Table II. The obtained gπNN = 12.85 is slightly lower
than found in other analysis, for example by SAID group
[41,42]: gπNN = 13.13. Note, however, that the present
calculation examines a large energy region using only one
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FIG. 5. γN → πN neutron multipoles. Notation as in Fig. 4.

πNN coupling constant, thereby putting large constraints
through all production channels on this coupling and the
threshold region only plays a minor role. For example, the
πNNcoupling is especially influenced by the t-channel pion
exchange mechanism of the ωN photoproduction, which is
due to the restriction of using only one cutoff value �t for all
t-channel diagrams.

The ηNN coupling is found to be small. This corroborates
our previous findings [2,3,6,7] and the results from [43,44].
Compared to [2,3] also the contribution from the f2(1270)
meson exchange is taken into account. This produces an
additional background leading to a change of the gNNσ · gσππ

coupling constant which appears to be larger than in the
previous calculations, see Table II.

Since each interaction vertex is dressed by a form factor
(8), special care should be taken when the values from Table II
are compared to results from other calculations. Thus, we
obtain a smaller value for the gNNω = 4.19 coupling constant
as compared to, e.g., gNNω = 15.9 derived in the Bonn model
for the nucleon-nucleon scattering [45]. However, it has been
stressed, that taking relativistic effects into account requires
the reduce of gNNω in the NN interaction [46]. Moreover,
in the NN scattering the ωNN coupling is utilized to describe
the t-channel exchange thereby its contribution is modified
by a form factor. Therefore, the actual values can be used
only in combination with the attached form factor and in the
kinematical region where they have been applied to. Thus, in
the model of Titov and Lee [14] the value gπNN = 10.35 is
used with the form factor of the same shape as in Eq. (8).
However, due to the small cutoff values �ω = 0.5 applied
in [14] the contribution from the corresponding Born term is
considerably suppressed.

III. FIXING THE RESONANCE PARAMETERS

In our calculations we included the following 11 isospin
I = 1/2 resonances: P11(1440), D13(1520), S11(1535),
S11(1650), D15(1675), F15(1680), P11(1710), P13(1720), P13

(1900), F15(2000), and D13(1950), which is denoted as
D13(2080) by the PDG [19]. Thus, contributions from all
important resonance states in the energy region from the pion
threshold up to 2 GeV are taken into account.

In this energy range only N17(1990)∗ is not included
because this resonance has very large mass close to the upper
energy limit of our model. Thus, the contribution from this
state is expected to be small.

Since the resonant part of the ω meson production
amplitude is proportional to the two coupling constants
g(γ /π)NN∗gωNN∗ the resonance couplings gγNN∗ and gπNN∗ are
needed to be fixed first. Taking the best hadronic result from [8]
we perform a new coupled-channel calculation of the pion- and
photon-induced reactions in the region up to 2 GeV where free
coupling constants are constrained by full set of experimental
data in the γN, πN, 2πN, ηN,K�,K�, and ωN channels.
We obtain a significantly improved χ2 for the photon induced
reactions with ωN,K�, and K� in the final states: χ2 =
4.2(6.25), 2.1(3.95), 1.6(2.74), respectively, where the values
from our previous results are shown in brackets. For other
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FIG. 6. Differential cross sections of the
πN → ωN reaction. The experimental data are
taken from [54–57]. Our previous best global
result from [2] is shown by the dashed line.

channels the resulting χ2 are very similar to the values from
the best global fit in [2,3]. As pointed out before, in this paper
we concentrate on the ω meson production. The results on
the associated strangeness production are presented in [47].
First, we briefly discuss the results on the πN and 2πN

channels.

A. π N final state

The results for the elastic πN partial wave amplitudes with
isospin I = 1/2 in comparison with our previous findings
from [2] are shown in Fig. 2. The calculated total 2πN partial
wave cross sections and corresponding πN inelasticities are
presented in Fig. 3. Note, that the πN inelasticities are not
fitted but obtained as a sum of the individual contributions
from all open channels.

Since the SAID multipole data have rather small error
bars and but scatter a lot the description of the pion-
photoproduction multipoles turns out be a difficult task. The
calculated multipoles are shown in Figs. 4 and 5 in comparison
with the energy-independent SAID solution [49]. For those
energy region where the single-energy results were absent, the

gaps were filled by the energy-dependent solution of the SAID
group.

There are two resonances S11(1535) and S11(1650) which
are necessary to describe the S11 partial wave. In order to
describe the second resonance peak at

√
s =1650 MeV in

the E
p

0+ multipole the fit shifts the mass of S11(1650) to
the lower value 1661 MeV. This leads to a somewhat worse
description of the S11 partial wave in the second resonance
region, see Fig. 2. In the analyses [39,40,50] a third resonance
S11(2090) has been identified below 2 GeV. Moreover, in
the model of Chen et al. [51], a fourth S11 resonance has
been found above 2 GeV. We have also checked whether
the inclusion of a third resonance would improve the results.
However, the fit gives zero width for this resonance thereby
we do not find any support for this state in the present
calculations.

The inclusion of spin-5/2 resonance contributions greatly
changes the ω meson production mechanism. Through the
coupled-channel effects, the change in the ωN channel affects
other reactions which is also seen in the πN partial waves,
Fig. 2. In the present study we find minor contributions from
the P11 resonances to the ωN final state thereby a kink structure
at

√
s =1.72 GeV is not visible any more in the P11 partial
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FIG. 7. Left: The calculated total πN →
ωN cross section in comparison with our pre-
vious results from [2]. Right: The total cross sec-
tion calculated with and without the D15(1675)
resonance contributions. The experimental data
are taken from [54,55].
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wave, see Sec. IV. This is in line with the results of the SAID
analysis [48] which show an almost flat behavior in this energy
region. There are only minor changings in other partial waves
as compared to our previous calculations.

For the mass and width of the Roper resonance we find
M = 1517 MeV and � = 608 MeV which turn out to be
rather large in comparison with results from other studies, see
Table IV. However, the baryon analysis of Vrana et al. [40] give
490 ± 120 MeV for the total width. There are also calculations
of Cutkosky and Wang [52] where a width of 661 and 545 MeV
have been extracted from the analysis of the πN and 2πN data.
The properties of the P11(1440) are found to be very sensitive
to the background contributions, i.e., to the interference pattern
between nucleon and the t-channel ρ-meson exchange. Since
the description of the E

p/n

0+ multipole requires a rather soft

nucleon cutoff (see Table III), the description of the S11 and P11

wave becomes worse. The fit tried to compensate this effect by
enlarging the mass and width of P11(1440). Note, however, that
the πN and 2πN branching rations of P11(1440) are found to
be consistent with the result from other analysis, see Table IV.
We find a second state P11(1710) which is completely inelastic
and has a very small branching ratio to RπN as required by
the SAID data. However, the decrease in πN coupling of
this resonance is compensated by the increase of the R2πN

and RηN keeping the production RπN · R2πN and RπN · RηN

in line with the results from our previous global fit [2,3].
Hence a good description of the 2πN cross section and πN

inelasticity is possible, see Fig. 3. Note, that the vanishing
πN decay width of this resonance is also found by the SAID
group [48].
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FIG. 9. γN → ωN differential cross sec-
tions in comparison with the SAPHIR data [9]
and our previous results from [3].
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TABLE III. Cutoff values for the form factors (first line) in comparison with the previous global results
from [3] (second line). The lower index denotes the intermediate particle, i.e., N: nucleon, 1

2 : spin- 1
2 resonance,

3
2 : spin- 3

2 , 5
2 : spin- 5

2 resonance, t: t-channel meson. The upper index h(γ ) denotes whether the value is applied to
a hadronic or elctromagnetic vertex.

�N (GeV) �h
1
2

(GeV) �h
3
2

(GeV) �h
5
2

(GeV) �
γ
1
2

(GeV) �
γ
3
2
(GeV) �

γ
5
2

(GeV) �
h,γ
t (GeV)

0.952 3.80 0.970 1.13 1.67 4.20 1.167 0.77
0.960 4.30 0.960 – 1.69 4.30 – 0.70

The P13 inelasticity from the SAID analysis [48] in the
energy region between 1.55 and 1.7 GeV increases up to 4 mb
while the 2πN cross section extracted by Manley et al. [38]
is found to be zero, see Fig. 3. This might be an indication

that either the extracted 2πN cross section is inconsistent
with the SAID data or another inelastic channel (not 2πN )
gives noticeable contributions to this partial wave. The same
problem has also been reported by Manley and Saleski in

TABLE IV. Properties of I = 1/2 resonances extracted in the present study (first line) in comparison with the values from [39] (second
line), and [40] (third line). In brackets, the estimated errors are given. The mass and total width are given in MeV, the decay ratios in percent.
The decay ratio is given in 0.1%.

L2I,2S Mass �tot RπN R2πN RηN RωN g1
RNω g2

RNω g3
RNω

S11(1535) 1526 136 34.4 9.5(+) 56.1(+) – 3.79 6.50 –
1534(7) 151(27) 51(5)
1542(3) 112(19) 35(8) 51(5)

S11(1650) 1664 131 72.4 23.1(+) 1.4(−) – −1.13 −3.27 –
1659(9) 173(12) 89(7)
1689(12) 202(40) 74(2) 6(1)

P11(1440) 1517 608 56.0 44.0(+) 2.82 – 1.53 −4.35 –
1462(10) 391(34) 69(3)
1479(80) 490(120) 72(5) 0(1)

P11(1710) 1723 408 1.7 49.8(−) 43.0(+) 0.2 −1.05 10.5 –
1717(28) 480(230) 9(4)
1699(65) 143(100) 27(13) 6(1)

P13(1720) 1700 152 17.1 78.7(+) 0.2(+) – −6.82 −5.84 −8.63
1717(31) 380(180) 13(5)
1716(112) 121(39) 5(5) 4(1)

P13(1900) 1998 404 22.2 59.4(−) 2.5(−) 14.9 5.8 14.8 −9.9
1879(17) 498(78) 26(6)

NF

D13(1520) 1505 100 56.6 43.4(−) 1.2(+) – 3.35 4.80 −9.99
1524(4) 124(8) 59(3)
1518(3) 124(4) 63(2) 0(1)

D13(1950) 1934 859 10.5 68.7(+) 0.5(−) 20.1 −10.5 −0.6 17.4
1804(55) 450(185) 23(3)
2003(18) 1070(858) 13(3) 0(2)

D15(1675) 1666 148 41.1 58.5(+) 0.3(+) – 109 −99.00 83.5
1676(2) 159(7) 47(2)
1685(4) 131(10) 35(1) 0(1)

F15(1680) 1676 115 68.3 31.6(+) 0.0(+) – 12.40 −35.99 −78.28
1684(4) 139(8) 70(3)
1679(3) 128(9) 69(2) 0(1)

F15(2000) 1946 198 9.9 87.2(−) 2.0(−) 0.4 −19.6 19.3 23.14
1903(87) 490(310) 8(5)

NF
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FIG. 10. Left: Total and partial wave cross
sections from [3]. Right: Total and partial wave
cross sections calculated in the present study.

their combined analysis of the πN → πN and πN → 2πN

reactions [39]. These authors suggested that the discrepancy
between the data can be related with the inelastic contributions
from the 3πN final state. So far, no analysis has been made to
describe, e.g., the ρ
 channel. Therefore, we follow [39] and
increase the error bars of the original 2πN data to prevent the
calculations from putting much weight to this discrepancy.

There are two resonances P13(1720) and P13(1900) which
contribute to the P13 partial wave. The properties of the first
resonance are not well fixed: Manley and Saleski [39] give
for the total width 383 ± 179 MeV while in the analysis of
Vrana et al. [40] the another value of 121 ± 39 MeV has
been extracted. We obtain � = 152 MeV which is close to
the results of [40]. The second resonance P13(1900) is rated
by PDG by two stars and was only found in the calculations
of Manley and Saleski [39]. We also find a necessity of the
inclusion of this resonance to describe the P13 partial wave
data, see Fig. 2. However, only a satisfactory description of the
real part of the E

p

1+ multipole in the energy region between
1.5 and 2 MeV is still possible, see Fig. 4. This problem
is due to a missing background contributions to E

p

1+. Since
the problem starts at the same energy where the discrepancy
between the SAID inelasticity and the 2πN cross section in
the P13 partial wave is observed, it might be also related to the
lack of the 3πN contributions to this channel [3] as discussed
above. Therefore, it would be desirable to account for 3πN

contributions in future investigations.
The mass and width of D13(1520) extracted in the present

calculations are close to values obtained by Arndt et al. [41,49]:
1516 ± 10 and 106 ± 6 MeV, correspondingly. Manley and
Saleski [39] and Vrana et al. [40] give somewhat larger values,
see Table IV. Note, however, that the calculated πN and 2πN

branching ratios are very close to that of [39,40]. Apart from
the well-established resonance D13(1520) we also include
the second state D13(1950) which is denoted as D13(2080)
by the PDG [19]. This resonance is poorly established: in
all calculations it appears to be almost inelastic and weakly
coupled to πN . Despite on its small decay ration to πN , this
resonance turns out to be important due to rescattering effects.
Without this state the calculations result in considerably worse
χ2. The D13(1950) state is found to be rather broad in the
present calculations: the obtained width is about 860 MeV and
mass 1934 MeV. Other baryon analysis also identify this state
with a large width: Vrana et al. [40] find � = 1070 ± 858 MeV
and Manley and Saleski [39] obtain � = 447 ± 185 MeV.
Note, that we do not find any indication for the D13(1700)
resonance contribution in the energy region between 1.7 and
1.9 GeV as compared to results of [39,40]. In all calculations
the fit gives almost zero width for this resonance, hence its
contributions vanish.

There is a clear resonance peak in the D15 partial wave,
(see Fig. 2) which corresponds to the D15(1675) resonance.
The comparison of the 2πN total cross section extracted by
Manley et al. [38] with the SAID inelasticity shown in Fig. 3
reveals the missing inelastic flux of 2 mb around 1.65 GeV.
It has been shown in [8] that this flux cannot be absorbed by
either the ηN,K�, or K� channels. Thus, we conclude that
either the πN and 2πN data are inconsistent with each other
or other open channels (e.g., 3πN ) must be taken into account.
To overcome this problem and to describe the πN and 2πN

data in the D15 partial wave the error bars of the original 2πN

data [38] were weighted by a factor 3. The same procedure was
also used by Vrana et al. [40] and Cutkosky et al. [52] to fit the
inelastic data. We find an important subthreshold contributions
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FIG. 11. Role of the individual resonance

contributions in the ω meson photoproduction.
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FIG. 12. Spin density matrix elements in the helicity frame in comparison with the SAPHIR measurements [9].

from the D15(1675) resonance to the πN → ωN reaction, see
Sec. IV. Hence, the D15 inelastic contribution of about 1 mb
shifts from the 2πN channel to ωN above 1.8 GeV as shown
in Fig. 3.

Apart from the well established F15(1680) we also find an
indication for the second F15(2000) resonance to describe the
hight energy tail of the F15 partial wave amplitude, as seen
in Fig. 2 by the shoulder around 1950 MeV. The evidence for
this state was also found in earlier works [39,53]. A visible
inconsistency between the inelastic SAID data and the 2πN

cross section from [38] above 1.7 GeV can be seen in F15

wave, see in Fig. 3. The three data points at 1.7, 1.725, and
1.755 GeV are, therefore, excluded from the fitting procedure.

The parameters of the D15(1675) and F15(1680) resonances
are in line with the results from other groups [19,39,40]. The
properties of the F15(2000) state differ strongly in the various
analyses: Manley and Saleski [39] give 490 ± 310 MeV for
the total decay width while other studies [41,53] find it at
the level of 95–170 MeV. Moreover, this state has not been
identified in the investigations of [40,50]. Since the F15(2000)

resonance is found to be strongly inelastic with 84–88% of in-
elasticity absorbed by the 2πN channel, more 2πN data above
1.8 GeV (cf. Fig. 3) are needed for a reliable determination of
the properties of this state.

IV. RESULTS FOR ω MESON PRODUCTION

Our main interest is the ω-meson production mechanism in
the pion- and photon-induced reactions. As pointed out in [2,3],
using only the hadronic data is insufficient to determine the
reaction mechanism. Therefore, we carry out a new combined
study of the πN → ωN and γN → ωN reactions in up to
2 GeV energy region. The most significant improvements in
the present calculations is the inclusion of the contributions
from spin-5/2 resonances. In order to constrain the analysis
we include the full set of experimentally available informa-
tions into the energy region up to 2 GeV. We expect that
this extended analysis will provide a much deeper insights
into the production mechanism as before. As compared to the
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FIG. 13. Photon beam asymmetry �X at fixed energies as a function of the ω production angle.

previous calculations [2,3], the additional constraints from the
spin density matrix elements of the final ω meson measured
by SAPHIR are also taken into account.

A. π N → ωN

All experimental data on the ω-meson production in the
πN scattering have been measured before 1980 and therefore
have rather poor statistics. In total, there are 115 data points
which includes differential and total cross sections data.
The inclusion of spin-5/2 resonance contributions strongly
changes the relative resonance contributions to the ωN final
states in the present calculations, see Fig. 6. In contrast to the
findings in [2], the main contributions close to the threshold
come from the P13 and D15 partial waves. The resonance part

of the production amplitude is dominated by the D15(1675)
state. The result of our calculations without the D15(1675)
contribution is shown in Fig. 7. At the threshold, the reaction
mechanism is influenced by the S-wave contributions leading
to a rather flat angular distribution (see Fig. 6). The major
difference between the present calculations and the results
from [2] is seen at

√
s = 1.80 GeV where only the data of

Danburg et al. [55] are available. This experimental data shows
an increase of the differential cross section at forward angles.
In our previous calculations the reaction in this kinematical
region is dominated by the P11 wave contributions resulting
in a weakly angle dependent differential cross sections. The
inclusion of spin-5/2 resonances shifts this strength to the P13

and D15 partial waves and the cross section at
√

s = 1.80 GeV
follows the Danburg data.
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The partial wave decomposition of the πN → ωN reaction
is shown in Fig. 8 in comparison with our previous results
[2,3] where the contributions from the spin-5/2 resonances
have been neglected. Despite of the significant differences
in the production mechanisms, we find χ2

πω �= 1.25 in both
calculations. Thus, the distinction between various results is
difficult due to the lack of the hadronic data. However, the
results in other channels may be used to constrain the reaction
mechanism. In our previous global fit [2,3], large contributions
from the P11(1710) and P13(1900) resonances to this reaction
have been found. The mass of P11(1710) (M = 1752 MeV) has
been found to be above the ωN threshold M = 1.752 so that
this resonance dominated the production cross section from the
threshold up to 1.8 GeV. However, such a strong contributions
to the ωN channel lead to the excess structure in the real and
imaginary parts of the πN partial wave amplitude P11 around
1.73 GeV which is not visible by the SAID analysis [48], see
Sec. III A.

We also find strong contributions from the P13 partial wave
to the πN → ωN reaction what has been also reported in [2],
see Fig. 8. But in contrast to [2], the strength in this partial wave
is shifted to the lower energies and becomes more pronounced
near to the reaction threshold. The peaking behavior in the
P13 partial cross section is due to the interference pattern
between P13 resonances and background contributions to the
ωN channel. Since the major contributions to the πN → ωN

reaction come from the P13 and D15 waves, it is interesting
to look at the πN inelasticity for these partial waves. The
calculated σ inel

πN inelasticity in these waves is found to be in
line with the SAID data (see Fig. 3). While the P13 inelastic
data are also well described, it would be also desirable to
check the obtained results by including contributions from
other inelastic (3πN ) channels (see Sec. III A).

B. γ N → ωN

The differential ω meson photoproduction cross sections
are presented in Fig. 9 in comparison with our previous
results from [2,3]. In the pesent calculations we obtain
χ2

γω = 4.5 which is significantly better than our previous
result (χ2

γω = 6.25). This improvement strongly supports the
extended treatment applied in this work. All studies of this
reaction agree on the importance of the π0 exchange reported
first by Friman and Soyeur [15]. These contributions lead
to the peaking behavior of the calculated differential cross
sections at forward angles which also becomes visible in the
SAPHIR measurements [9] above 1.783 GeV, see Fig. 9.
More detailed information of the production mechanism is
obtained from observables measuring the spin degree of
freedom of the ω meson. For the t-channel spinless meson
exchange (c diagram in Fig. 1) the spin density matrix
ρrr ′ of the final ω mesons can be easily calculated, see
Appendix B3. In the Gottfried-Jackson frame, where the initial
photon and exchange particle are in their rest frame, and z

axis is in the direction of the incoming photon momentum, the
calculation gives ρGJ

00 = 0. On the other hand, the experimental
value of ρGJ

00 for forward directions, where the π0 exchange
dominates, was measured by SAPHIR and found to be in the
range of ρGJ

00 = 0.2, . . . , 0.3. Thus, the nonzero matrix element
testifies that even in this kinematical region other mechanisms
(rescattering effects, interference with resonances) must be
important.

There is a visible distinction between results from [3] and
present study at energies close to ωN threshold, see Fig. 9.
Above 1.835 GeV both calculations give similar results and
almost coincide at higher energies. However, the differences
in the reaction mechanisms can be seen in the partial wave
decomposition shown in Fig. 10. We find less contributions
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from the P11 partial wave as compared to [3]. However, this
channel is still important and gives sizeable strength near
1.8 GeV. In contrast to [2,3], the main contribution at the
reaction threshold comes from the D13 partial wave which also
leads to the change in the differential cross section behavior,
see Fig. 9. Since the spin-5/2 resonances were not included in
our previous analysis and at higher energies the cross section
was entirely dominated by the background contributions from
the partial waves with spin J > 3/2, see Fig. 10, left.

The largest contributions to the ω meson photoproduction
come from the π0 exchange and the subthreshold spin-5/2
resonances: D15(1675) and F15(1680). Since the π0 exchange
above 1.8 GeV strongly influences the γN → ωN reaction a
consistent identification of individual resonance contributions
from the only partial wave decomposition shown in Fig. 10,
right, is difficult. The P13(1900), and F15(2000), and
D13(1950) states which lie above the reaction threshold hardly
influence the reaction due to their small couplings to ωN ,
see Table IV. Despite of the small relative contribution from
the D15 and F15 waves to the ω photoproduction the cross
sections are strongly affected by spin-5/2 states because of
the destructive interference pattern between the π0 exchange
and these resonance contributions, see Fig. 11. The D13(1950)
state has a large branching ratio into the ωN final state, see
Table IV. However, the contributions from this resonance to
the photoproduction are moderate due to its large mass and
total width.

While F15(1680) plays only a minor role in the πN →
ωN reaction the contribution from this state becomes more
pronounced in the ω meson photoproduction because of
its large A

p
3
2

helicity amplitude, as seen in Table V. The

importance of the F15(1680) resonance to the ω meson
photoproduction was also found by Titov and Lee [14] and
in the model of Zhao [11]. However, in contrast to [14] where
also a large effect from D13(1520) was observed we do not
find any visible contribution from this state. In fact, the strong
contribution to the D13 partial wave seen in the right panel of
Fig. 10, resembling a resonance structure, comes indeed from
nonresonant π0 exchange.

It is interesting to note, that both resent study [11,14]
find no significant effect from D15(1675) state in the
ω meson photoproduction. Thus, in the quark model of Zhao
[11] the contributions from this state is strictly suppressed
by the Moorhouse selection rule [18]. While Titov and
Lee [14] account for the D15(1675) → ωN contributions the
corresponding ωNN∗ coupling is determined from the VDM
assumptions. Since the electromagnetic helicity amplitudes of
this resonance are relatively small, see Table V, the resulting
ωNN∗ coupling also has only marginal effect in this approach.

The ρrr ′ elements extracted from the SAPHIR data [9]
are an outcome of the averages over rather wide energy
and angle regions, see Fig. 12. Therefore, the original error
bars have been decreased by factor 3 to put an additional
weight to these data. The inclusion of measured ρrr ′ into
the calculations provides a strong additional constraint on the
relative partial wave contributions and finally on the resonance
couplings. The spin density matrix elements calculated at fixed
angles in the helicity frame are presented in Fig. 12. A good

TABLE V. Helicity decay amplitudes of I = 1/2 resonances ( in
10−3 GeV− 1

2 ) considered in the present study (first line); second line:
values from the PDG [19]; third line: results of SAID group [49];
“NG”: not given.

L2I,2S A
p
1
2

An
1
2

A
p
3
2

An
3
2

S11(1535) 92 −13 – –
90(30) −46(27) – –
60(15) −20(35) – –

S11(1650) 57 −25 – –
53(16) −15(21) – –
69(5) −15(5) – –

P11(1440) −84 138 – –
−65(4) 40(10) – –
−63(5) 45(15) – –

P11(1710) −50 68 – –
9(22) −2(14) – –
7(15) −2(15) – –

P13(1720) −65 1 35 −4
18(30) 1(15) −19(20) −29(61)

−15(15) 7(15) 7(10) −5(25)

P13(1900) −8 −19 0 6
NG

D13(1520) −13 −70 145 −141
−24(9) −59(9) 166(5) −139(11)
−38(3) −48(8) 147(10) −140(10)

D13(1950) 11 40 26 −33
NG

D15(1675) 9 −56 20 −84
19(8) −43(12) 15(8) −58(13)
15(10) −49(10) 10(7) −51(10)

F15(1680) 3 30 115 −48
−15(6) 29(10) 133(12) −33(9)
−10(4) 30(5) 145(5) −40(15)

F15(2000) 10 9 25 −4
NG

description of the spin density matrix is possible in a wide
energy region. Since the ρrr ′ data put strong constraints on
the γp → ωp reaction mechanism there is an urgent need
for precise measurements of the spin density matrix in more
narrow energy bins to pin down the reaction picture.

The calculated photon beam asymmetry �X (see
Appendix B2) is shown in Fig. 13. At energies close to the
threshold our calculations predict a negative values of �X.
In the energy region between 1.72−1.8 GeV the asymmetry
has an almost symmetric behavior. By increasing the c.m.
energy the π0 exchange becomes dominant at forward angles
leading to a change of the sign at �X above 1.85 GeV. Such a
behavior is especially interesting since it tests an interference
pattern between the resonance and background parts of the
transition amplitude. The role of this interference becomes
more pronounced in the �A and �B asymmetries, see Figs. 14
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FIG. 16. Elastic ωN scattering calculated in the present study.

and 15. For the pure π0 exchange production mechanism the
calculations give �A = −1 and �B =+1, see Appendix B3.
Therefore the deviation from these values testifies about mag-
nitude of the interference between the π0 exchange and other
production mechanisms. The experimental measurements of
these observables provide a good test for the presented model.

V. ωN ELASTIC SCATTERING

In the present calculations this process is completely
dominated by the nucleon resonance contributions. The effect
of the nucleon Born term is only marginal. The calculated
ωN elastic total cross section is shown in Fig. 16. The
extracted scattering lengths and effective ranges (as defined in
Appendix C) are

ā = −0.026 + i0.28, r̄ = 6.02 + i0.062. (10)

The result for Im ā = 0.28 fm is consistent with values
obtained by Lutz et al. [21] ā = −0.44 + i0.20 fm and
Klingl and Weise [58] a = 1.6 + i0.30 fm. Note, however
that calculated scattering lengths (10) should be taken with
care since the present calculations are not concentrated on
the description of the near to threshold region but consider a
rather wide energy range. Since the resonance ωN couplings
are constrained by the πN → ωN and γN → ωN data, the
extracted scattering lengths might suffer from the lack of
experimental information at the ωN threshold.

VI. SUMMARY

In the present study we perform a new analysis of the
ω meson production in πN and γN reactions within a
unitary effective Lagrangian coupled-channel formalism. We
have investigated contributions to the ωN final state from all
spin-1/2,-3/2, and spin-5/2 resonances with masses below
2 GeV. To fix the resonance couplings a coupled-channel
calculation has been carried out for the final states (γ /π )N →
γN, πN, 2πN, ηN , and ωN where free parameters of the
model are constrained by the all available experimental
reaction data for energies from the pion threshold and up to
2 GeV. The extracted resonance couplings to γN, πN, 2πN ,

and ηN are found in a good agreement with the results from
other analyses and the PDG.

Because of the inclusion of the spin-5/2 resonance con-
tributions we obtain a significantly better description of
the ω photoproduction data as compared to our previous
calculations. The experimental data on the spin density matrix
elements ρ00, ρ10, and ρ1−1 measured by SAPHIR, give
important constraints on the ω meson production mechanism.
We find a strong contribution from the D15(1675) resonance
to the ωN final state in the pion- and photon-induced
reactions. While the F15(1680) state hardly influences the
πN → ωN process the contribution from this resonance to
the ω meson photoproduction turns out to be significant due
to its large A

p
3
2

helicity amplitude. A strong contribution to the

ω photoproduction comes from the D13 partial wave which is
dominated by the π0 exchange. The effect from the D13(1520)
and D13(1950) states in this reaction is of minor importance.

Apart from the D15(1675) and F15(1680) resonance contri-
butions the ω meson photoproduction is strongly dominated
by the π0 exchange mechanism which has been also found
in the previous findings. We conclude that for the correct
description of the experimental data on the ω meson production
the contribution from the nucleson resonances should be taken
into account. However, due to the strong interference pattern
between resonances and the π0 exchange the separation of the
individual resonance contributions is difficult in this reaction.
Hence, a search for “hidden” resonances with the help of this
channel becomes questionable. We predict a negative sign
of the photon beam asymmetry in the ω photoproduction at
energies close to the threshold. Above the 1.85 GeV the �X

asymmetry changes its behavior and becomes positive at the
forward angle directions. Since polarization observables, such
as ρrr ′ and �X,�A, and �B are very sensitive to different
reaction mechanisms the more precise measurements of these
quantities are urgently needed to distinguish between various
model predictions. Our predictions for these observables can
easily be checked at GRAAL, CLAS, and CB-ELSA.
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APPENDIX A: COUPLINGS, DECAY WIDTHS, AND
HELICITY AMPLITUDES

All interaction Lagrangians for spin-1/2, 3/2 resonances
and Born terms can be found in [2,3,5]. Here, we list only those
couplings which are extensions of our previous calculations
keeping, however, the same notations. The Lagrangians given
below contain an isospin part, which is also discussed [2,3,5]
together with the isospin and partial wave decomposition.

1. Tensor meson coupling

The coupling of the tensor f2(1270) meson to the nucleon
field is described by
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LNNf2 = −ūN ′ (p′)
[
−i

gNNf2

mN

(
γµ∂̄ (N ′N)

ν + γν∂̄
(N ′N)
µ

)
f

µν

2

+ hNNf2

m2
N

∂̄ (N ′N)
µ ∂̄ν(N ′N)f

µν

2

]
uN (p) (A1)

with the asymptotic nucleons N,N ′ = N . The notation ∂̄ (N ′N)
µ

in Eq. (A1), related to the nucleon-(tensor)meson f µν coupling
means ∂̄ (N ′N)

µ = ∂ (N)
µ − ∂ (N ′)

µ where ∂ (N)
µ is a derivative over the

nucleon field. Such a definition leads to the same transition
amplitudes as defined in [59,60].

The decay f2(1270) → ππ is described by the
Lagrangian

Lf2ππ = −2gf2ππ

m2
f2

∂µπ∂νπf
µν

2 , (A2)

which is similar to the form used in [59,61]. This leads to the
vertex function for the f2 → ππ decay:

Vf2ππ = −gf2ππ

m2
f

(p1 − p2)µ(p1 − p2)νξ
µν. (A3)

p1 and p2 are outgoing pion momenta and εµν is a polarization
vector of the tensor meson. Using the spin-2 projection
operator (see [62–65])

Pµν;ρσ (p) = −1

3

(
−gµν + pµpν

m2
p

) (
−gρσ + pρpσ

m2
p

)

+ 1

2

(
−gµρ + pµpρ

m2
p

) (
−gνσ + pνpσ

m2
p

)

+ 1

2

(
−gµσ + pµpσ

m2
p

) (
−gνρ + pνpρ

m2
p

)
.

(A4)

The decay width f2(1270) → ππ is then given by

� = g2
f2ππ

80π
mf

(
1 − 4

m2
π

m2
f

) 5
2

. (A5)

2. Spin-5/2 baryon resonance interactions

For practical calculations we adopt the spin-5/2 propagator
in the form

Pµν,ρσ
5
2

(p) = (p/ + mp)

p2 − m2
p + iε

P
µν,ρσ
5
2

(p), (A6)

with

P
µν,ρσ
5
2

(p) = 1
2 (T µρT νσ + T µσT νρ) − 1

5 2T µνT ρσ

+ 1
10

(
T µλγλγδT

δρT νσ + T νλγλγδT
δσ T µρ

+ T µλγλγδT
δσ T νρ + T νλγλγδT

δρT µσ
)
, (A7)

and

T µν = −gµν + pµpν

m2
p

, (A8)

which has also been used in an analysis of K� photoproduc-
tion [66].

a. (Pseudo)scalar meson decay

The Lagrangian for the positive parity spin-5/2 resonance
decay to a final nucleon N and a (pseudo)scalar meson ϕ is
chosen in the form

L 5
2 Nϕ = gRNϕ

m2
π

ū
µν

R �νλ(aRNϕ)

(−iγ5

1

)
uN∂µ∂λϕ + h.c.,

(A9)

and for the negative-parity resonances

L 5
2 Nϕ = −gRNϕ

m2
π

ū
µν

R �νλ(aRNϕ)

(
1

iγ5

)
uN∂µ∂λϕ + h.c.,

(A10)

where the upper (lower) factor corresponds to pseudoscalar
(scalar) mesons ϕ.

The free spin-5/2 Rarita-Schwinger symmetric field
u

µν

R obeys the Dirac equation and satisfies the conditions
γµu

µν

R = ∂µu
µν

R = gµνu
µν

R = 0 [67]. The off-shell projector
�µν(a) is

�µν(a) = gµν − aγµγν, (A11)

where a is related to the commonly used off-shell parameter z

by a = (z + 1
2 ).

These couplings lead to the decay width (A9) are

�
5
2± = fI

g2
RNϕ

30πm4
π

k5
ϕ

EN ∓ mN√
s

. (A12)

The upper sign corresponds to the decay of the resonance into
a meson with the identical parity and vice versa. The isospin
factor fI is the same as for spin-1/2, 3/2 resonances (see [2]).
kϕ, EN , and mN are the meson momentum, energy, and mass
of the final nucleon, respectively.

b. Vector meson decay

The coupling of the spin-5/2 resonances to the ωN final state
is chosen to be

L 5
2 Nω = ū

µλ

R

(
1

iγ5

)(
g1

4m2
N

γ ξ + i
g2

8m3
N

∂
ξ

N + i
g3

8m3
N

∂ξ
ω

)

× (
∂ω
ξ gµν − ∂ω

µgξν

)
uN∂ω

λ ων + h.c., (A13)

where the upper (lower) factor corresponds to positive (nega-
tive) parity resonances and ∂

µ

N (∂ω
µ ) denotes the partial deriva-

tive of the nucleon and the ω-meson fields, respectively. Note
that, in the spin-3/2 case, the couplings are also contracted by
an off-shell projector (A11). Similar coupling was also used to
describe electromagnetic processes [14,66,68]. The couplings
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(A13) lead to the helicity-decay amplitudes

AωN
3
2

=
√

EN ± mN√
5mN

kω

4m2
N

[
−g1(mN ∓ mR)

+ g2

(
mREN − m2

N

)
2mN

+ g3
m2

ω

2m2
N

]
,

AωN
1
2

=
√

EN ± mN√
10mN

kω

4m2
N

{
g1[mN ± (mR − 2EN )]

(A14)

+ g2

(
mREN − m2

N

)
2mN

+ g3
m2

ω

2m2
N

}
,

AωN
0 =

√
(EN ± mN )√

5mN

kωmω

4m2
N

[
g1 ± g2

EN

2mN

± g3
(mR − EN )

2mN

]
,

with upper (lower) signs corresponding to positive (negative)
resonance parity. The lower indices stand for the helicity λ of
the final ωN state λ = λV − λN where we use an abbreviation
as follows: λ = 0 : 0 + 1

2 , 1
2 : 1 − 1

2 , 3
2 : 1 + 1

2 .

c. Radiative decay

The coupling of the spin-5/2 resonances to the γN final state
is chosen to be

L 5
2 Nγ = eū

µλ

R

(
1

iγ5

)(
g1

4m2
N

γ ν + i
g2

8m3
N

∂ν
N

)
uN∂λFνµ + h.c.,

(A15)

where the upper (lower) factor corresponds to positive
(negative) parity resonances. Note that, both couplings are
also contracted by an off-shell projector (A11). Similar
coupling was also used to describe electromagnetic processes
[14,66,68].

The electromagnetic helicity amplitudes, which are nor-
malized by an additional factor (2Eγ )−1/2 [69], are extracted:

A
γN
1
2

= + eξR

8m2
N

√
m2

R − m2
N√

5mN

(
m2

R − m2
N

2mR

)

×
(

g1
mN

mR

+ g2
mR ± mN

4mN

)
,

A
γN
3
2

= + eξR

4m2
N

√
m2

R − m2
N√

10mN

(
m2

R − m2
N

2mR

)

×
(

g1 + g2
mN ± mR

4mN

)
,

(A16)

for spin-5/2 resonances. The upper (lower) sign corresponds
to positive (negative) parity resonances. ξR denotes the phase
at the RNπ vertex. The lower indices correspond to the γN

helicities and are determined by the γ and nucleon helicities:
1
2 : λγ − λN = 1 − 1

2 = 1
2 and 3

2 : 1 + 1
2 = 3

2 .

3. Off-shell parameters

The off-shell parameters used at the interaction vertecies
are shown in Table VI. To reduce a number of free parameters
of the model we use one overall off-shell parameter for the
R

5
2 Nω couplings, so that aωN 3 = aωN 2 = aωN 1.

APPENDIX B: OBSERVABLES

1. Spin density matrix

The spin density matrix of the final ω mesons produced in
the unpolarized γN → ωN reaction is written as follows:

ρ0
λωλ′

ω
=

∑
λN ,λN ′ ,λγ

TλωλN ′ ,λγ λN
T ∗

λω′λN ′ ,λγ λN∑
λN ,λN ′ ,λγ λω

TλωλN ′ ,λγ λN
T ∗

λωλN ′ ,λγ λN

. (B1)

λN, λN ′ = ± 1
2 stand for the helicity of the initial and final

nucleon. λω = ± 1,0 and λγ = ± 1 correspond to the ω meson
and photon helicity, respectively. For polarized reactions one
can define

ρ1
λωλ′

ω
=

∑
λN ,λN ′ ,λγ

TλωλN ′ ,−λγ λN
T ∗

λω′λN ′ ,λγ λN∑
λN ,λN ′ ,λγ λω

TλωλN ′ ,λγ λN
T ∗

λωλN ′ ,λγ λN

. (B2)

2. Beam asymmetry for the ω photoproduction

The photon beam asymmetry for the meson photoproduc-
tion reactions is defined as

�X = dσ⊥ − dσ‖
dσ⊥ + dσ‖

, (B3)

TABLE VI. Off-shell parameters a of the spin-3/2, 5/2 resonances. aωN 3 = aωN 2 = aωN 1 for spin-5/2
resonances.

L2I,2S aγ1 aγ2 aπN aζN aηN aωN 1 ab
ωN 2 ab

ωN 3

P13(1720) 2.000 −1.273 −0.650 0.581 2.000 1.404 −1.000 0.951
P13(1900) −3.480 −0.998 −2.000 0.643 1.977 2.537 −2.000 1.483
D13(1520) 0.566 0.811 0.007 0.803 0.687 −1.000 2.000 2.000
D13(1950) 1.389 1.440 −0.238 0.069 −2.000 0.529 −1.999 0.108
D15(1675) 0.882 1.000 0.313 0.198 −1.500 1.398 – –
F15(1680) 0.408 0.955 0.179 0.006 0.387 −0.851 – –
F15(2000) 1.000 0.089 1.697 −0.426 0.999 −0.545 – –
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where dσ‖ (dσ⊥) is a differential cross section of the γp → ωp

reaction with linearly polarized photons in horizontal (vertical)
direction relative to the ωN production plane:

ξ ‖ = ξ x = −1√
2

(ξ+1 − ξ−1),

(B4)

ξ⊥ = ξ y = i√
2

(ξ+1 + ξ−1).

The coordinate system is defined by z = k/|k|, y = k ×
k′/|k × k′|, were k(k′) is a photon(meson) three-momentum.

The following asymmetries can be also defined to test the
reaction amplitude:

�A = ρ1
11 + ρ1

1−1

ρ0
11 + ρ0

1−1

,

(B5)

�B = ρ1
11 − ρ1

1−1

ρ0
11 − ρ0

1−1

.

The differences between �A and �B can be seen on the
example of the single π0 exchange mechanism (see below).

3. Single π 0 exchange contribution to the ω photoproduction

In the case of the single π0 exchange contribution cor-
responding to the (c) diagram in Fig. 1 the asymmetry
and spin density matrix of the γp → ωp reaction can be
easily calculated. The coupling for the ω → γπ0 decay is
proportional to

Lωγπ0 ∼ εµνρσFµν∂ρωσπ, (B6)

where ωσ (π ), and Fµν stand for the vector meson(pion)
field and the electormagnetic tensor respectively. εµνρσ is a
Levi-Chivita tenzor. Then the amplitude of the reaction can be
written as

ξγ
ν ξω

σ J νσ ∼ εµνρσ kµqρDπ (p −p′)M(p, p′, sN , sN ′ ),

(B7)

where p(sN ) and p′(sN ′) are the four momentum(spin) of the
initial and final nucleon respectively and k, q are the photon
and vector meson four momenta. The polarization vectors of
the photon and vector meson are

ξ
µ

±1 = ∓1√
2

(
ξµ
x ± iξµ

y

)
, (B8)

for λγ , λω = ±1 and

ξ
µ

0 = ξµ
z (B9)

for longitudinally polarized ω mesons. From Eqs. (B1)–(B5)
it follows that only the current

Jµσ = εµνρσ kµqρ (B10)

in Eq. (B7) contributes to the spin density matrix and
asymmetry. Then the final expressions for the spin density
matrices are

ρ0
λωλω′ = −1

2

[
m2

ω

(
kξ ∗

λω

)(
kξλ′

ω

)
(kq)2

+ (
ξ ∗
λω

ξλ′
ω

)]
,

(B11)
ρ1

λωλω′ = ρ0
λωλω′ − ξ

µ∗
λω

ξ ν
λ′

ω
δµ,2δν,2.

From Eqs. (B10) and (B11) one deduces that the single π0

exchange contribution in the helicity frame leads to � = 0,
�A = −1, and �B = +1.

In the Gottfried-Jackson frame defined as a center of mass
system of the incoming photon and the exchange pion where
the quantization axis is aligned with a photon momentum,
the spin density matrix elements given by Eq. (B11) becomes
ρ

0,GJ
11 = ρ

0,GJ
−1−1 = 1

2 and ρ
0,GJ
00 = 0.

APPENDIX C: ωN SCATTERING LENGHTS AND
EFFECTIVE RANGES

The spin averaged ωN scattering lengths and effective
ranges are calculated using the convention of Lutz et al. [21]:

ā = 1
3 ā

(
J = 1

2

) + 2
3 ā

(
J = 3

2

)
,

(C1)
r̄ = 1

3 r̄
(
J = 1

2

) + 2
3 r̄

(
J = 3

2

)
.

The ωN helicity state combinations at threshold are [21]∣∣ωN ; J = 1
2

〉 = ∣∣ωN, 1
2 ; J = 1

2

〉
+ 1√

2

∣∣ωN,+0; J = 1
2

〉
,

(C2)∣∣ωN ; J = 3
2

〉 = ∣∣ωN, 3
2 ; J = 3

2

〉 + 1√
3

∣∣ωN, 1
2 ; J = 3

2

〉
+

√
2
3

∣∣ωN,+0; J = 3
2

〉
.
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