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Nuclear phenomena derived from quark-gluon strings
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We propose a quantum chromodynamics (QCD) based many-body model for the nucleus where the strong
coupling regime is controlled by a three-body string force, and the weak coupling regime is dominated by a
pairing force. This model operates effectively with a quark-gluon Lagrangian containing a pairing force from
instantons, and a baryonic string term which contains a confining potential. The unified model for weak and
strong coupling regimes is, however, only consistent at the border of perturbative QCD. The baryonic string force
is necessary, as a stability and compressibility analysis shows, for the occurrence of the phases of nuclear matter.
The model exhibits a quark deconfinement transition and chiral restoration, which are ingredients of QCD and
give qualitatively correct numerics. The effective model is shown to be isomorphic to the Nambu–Jona-Lasinio
model and exhibits the correct chirality provided that the chiral fields are identified with the two-particle strings,
which are natural in a QCD framework. Moreover, the model is able to reconcile qualitatively such aspects of
hadronic physics as saturation density and binding energy of nuclear matter, surface density of finite nuclei, mass
of the scalar particle, medium range NN interaction, and fπ value in vacuum.
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I. INTRODUCTION

It has long been an important task for nuclear physicists to
accommodate the most accepted fundamental quark interac-
tion, quantum chromodynamics (QCD), in a field theoretical
setting. This is because the nucleus constitutes the most
important observational bound state system governed by
the strong interaction. Furthermore, since the nucleons, the
elements of the nuclear bound state, are believed to consist of
quarks for which the rigorous strong interaction field theory
applies, it is natural to try to describe the nucleus in terms of
quarks (and gluons) along with nucleons. The present paper
therefore aims at explaining nuclear properties and structure in
terms of quarks and gluons. Still, one could be skeptical about
using quarks with no direct observables in the description of
nuclear physics that is very much based on experimental data.
However, since the occurrence of strangeness excitations in
hypernuclear physics needs to be explained by isospin or flavor
quantum numbers that naturally come out of a quark model,
there are good arguments for including quarks in nuclear
physics.

There has been the obstacle of having a strong quark
coupling constant above unity in the interesting range of
the strong interaction which applies to the bound state
and resonance phenomena. This strong coupling regime is
characterized by low momentum transfer and corresponds to
the region where quarks are believed to be confined within the
hadrons, contrary to the high momentum transfer behavior in
the region where the coupling is small and quarks are believed
to be free. A coupling constant above unity in the region of
the strong interaction that is interesting for nuclear physics
will basically render a perturbative description of the strong
interaction field theory useless. We therefore use the trick
of putting in quark clustering by hand, so that nucleons are
treated as elementary particles, but quark structure is taken
into account in the interactions by assuming that the mass of

the nucleon depends on the medium through the local values of
the fields σ, �π . Once that is done, we try to perturb the energy
around the solution so obtained. We also appeal to similar
phenomena in other areas of physics (i.e., fluid dynamics)
whose solutions can be applied to the nuclear system.

In the beginning of the paper, we introduce the quark de-
scription of the nuclear system and then propose a many-body
Lagrangian for the nucleus. We continue with a description
inspired by fluid dynamics and try to derive phases that could
be relevant for nuclear physics. It is our aim to develop a model
which is able to reconcile, at least qualitatively, such aspects
of hadronic physics as saturation density and binding energy
of nuclear matter, surface density of finite nuclei, mass of the
scalar particle, medium range NN interaction, and fπ value in
vacuum.

II. A QUARK MODEL FOR NUCLEAR STRUCTURE

In the following chapters, we propose a general Lagrangian
for the nuclear system in terms of quarks and gluons that is
based on an interaction like that of gauge theories in the strong
interaction version of quantum chromodynamics, QCD.

We then describe the Lagrangian as a chiral model, but we
first list the various ingredients as they appear in the energy
functional of the model.

A. The pairing force

A starting point for a QCD model for the nucleus in terms of
quarks and gluons could be a kind of a bag model in analogy to
the well known Massachusetts Institute of Technology (MIT)
model [1] for baryons and mesons, but bearing in mind that the
nucleons themselves are MIT bags. In the usual setting of the
MIT model, there is a strong influence of phenomenological
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aspects that we eventually try to derive with field theoretical
interaction terms.

The generic form of the MIT bag model operates with a back
pressure that ensures that the quarks are confined to the bag and
there is a Coulomb force between the quarks. In the case where
the entire nucleus is to be considered as an MIT bag with quarks
moving within the boundaries of the bag, the bag pressure is
again an infinite potential well that keeps the quarks confined
to the nucleus. The quarks are, as usual, fermions with flavor
and color charges. As for the interaction between the quarks,
a crucial pairing force between the isospins ensures that the
total isospin is zero. In the next subsection, we introduce a
baryonic string force that is responsible for nucleon formation
and also for the bag pressure.

The pairing force which has been derived from instanton
contributions in QCD field theory [2] is able to account for
important features of nuclear structure. For the one-instanton
contribution, the pairing force is truly a two-body force. Its
expression is

P2 = gψ̄i(x)(1 + iγ5)ψi′(x)ψ̄j (x)(1 + iγ5)ψj ′(x)εi′j ′εij ,

where εij antisymmetrizes the isospin indices i, j .
In the color zero sector, this effective interaction can

be reduced to the Nambu–Jona-Lasinio (NJL) form [3,4],
β1β2[I1I2 − (�τ1γ

5
1 ) · (�τ2γ

5
2 )]. In that case, the missing terms,

which constitute the difference between both expressions

β1β2
{(

I1 + iγ 5
1

)(
I2 + iγ 5

2

)
(I1I2 + �τ1 · �τ2)

− [
I1I2 − (�τ1γ

5
1

) · (�τ2γ
5
2

)]}
,

average out to zero in a mean field approach.

B. The baryonic string force in the nuclear bag

In this subsection, we discuss the many-body string force
term. We therefore introduce a three-body string force to the
Hamiltonian. This force replaces the MIT bag pressure and
is supposed to be responsible for nucleon bag formation. The
string force is proportional to the distance between the quarks
and is a very dominating force, so perturbation theory with
the string force as a perturbation is not possible. On the other
hand, the strings will triplet-wise neutralize the color, leaving
us with only dipole or quadrupole moments. The string force
is a qualified guess as to a configuration—an ansatz.

We now specify the baryonic string configuration. We
have only limited information about nonperturbative string
configurations. Lattice QCD gives, in the strong coupling limit,
an indication of color tube strings between two heavy quarks.
To make a consistent picture of the pairing and baryonic forces,
we are staying within the border of perturbation theory, with
the strong coupling constant αQCD being around 1.

We can, however, resort to the dual string theories for help
concerning string parameters. Here, the string interaction is
proportional to the minimal length L of the string, so that

Vst = 1

2πα′ L = √
σL, (1)

where α′ is the Regge intercept, and σ is the string tension.
In the sequel, to avoid confusion with the σ field, we write
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FIG. 1. Baryonic string configurations. (a) The angles of the
triangle defined by a three-quark cluster are all less than 2π/3.
(b) One of the angles of the triangle defined by a three-quark cluster
is greater than 2π/3. (c) A six-quark cluster. This configuration is
here included as a possibility but not used in the full picture. It will
be discussed in a forthcoming paper.

κ = √
σ . The total three-body force is then, apart from color

0 projection operators,

V3 =
∫

dx1dx2dx3ψ̄(x1)ψ̄(x2)ψ̄(x3)Vstψ(x3)ψ(x2)ψ(x1).

(2)

The two possible [5] configurations between three quarks in
SU (3)-QCD when we require SU (3) gauge invariance are
shown in Fig. 1. This means that quarks cluster in multiples of
three. Within our approximation, we consider only two- and
three-body forces arising in the color neutral configurations
[see Fig. 1 (a, b)].

Mesons are, as usual, strings between a quark-antiquark
pair.

C. The chiral aspects of the Lagrangian

In this subsection, we briefly mention relevant aspects
of chiral symmetry, which we insist on having properly
implemented. This is important because one of our aims is
to describe chiral symmetry restoration in hadronic matter.
The pairing force is chirally symmetric. On the other hand,
following the procedure of Ref. [8], the string interaction,
which is not automatically chirally invariant, may be also
reconciled with chiral symmetry. In our approach, the Dirac see
is naturally responsible for the dynamical breaking of chiral
symmetry, contrary to an artificial device such as a Mexican
hat. Our calculation shall be based on effective Lagrangians,
of either the Nambu–Jona-Lasinio (NJL) or the σ model type.
We argue that the two models are equivalent as far as the
mean field description of bulk static properties of hadronic
matter is concerned. However, they lead, in the random phase
approximation (RPA) approximation, to manifestly distinct
dynamics, in spite of being equally consistent with chiral
symmetry, so that it really matters which model one considers
if, beyond bulk properties, we are interested in the surface
properties or the response of the system to an external probe.

III. THE EFFECTIVE ACTION AND THE DIRAC
EQUATIONS

In this section, we describe the general structure of the
effective action which is relevant for the present development,
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and we try to motivate, on the basis of the Dirac equation
of quark dynamics, the model that is considered in the next
section. The effective interaction is supposedly obtained by
integrating over the gauge fields.

Below, we describe all the terms appearing in the effective
Lagrangian, where the potential terms come out of a typical
cluster expansion in the quark fields. First comes the kinetic
term iψ̄γ µ∂µψ . Next come all the four-fermion terms making
up the two-body force,

ψ̄ψψ̄ψ + (ψ̄ �τψ)(ψ̄ �τψ) − (ψ̄γ5ψ)(ψ̄γ5ψ)

− (ψ̄ �τγ5ψ) · (ψ̄ �τγ5ψ),

which, following a common procedure, we, for simplicity,
replace by the combination which is familiar from the NJL
model [3],

ψ̄ψψ̄ψ − (ψ̄ �τγ5ψ)(ψ̄ �τγ5ψ). (3)

Finally come the six-quark terms contributing to the three-
body string force. In order to insure chiral invariance, these
three-body forces can be understood as reductions of appro-
priate chiral invariant four-body forces.

It is assumed that the string force is responsible for the
transformation of the quark degrees of freedom into nucleon
and σ, �π meson degrees of freedom, in the strong coupling
limit, at low energies. The σ -nucleon coupling may be taken
to be three times as large as the σ -quark coupling. However,
as shown in Refs. [6,7], the quark dynamics arising from the
confining force has the consequence that the nucleon coupling
constant decreases as the baryonic density increases. It is
argued below that this effect is important for saturation of
nuclear matter.

In Ref. [6], the confinement of quarks into nucleons is
described on the basis of the MIT bag model through the
solution of an appropriate Dirac equation,

i∂tψ = −iα · ∇ψ + VMITψ + gβσψ. (4)

The σ field is determined self-consistently, its source being
the scalar density due to ψ. If the MIT interaction VMIT [1] is
replaced by a string force m(r) = κr , where κ2 is the string
tension, in a form which is consistent with chiral symmetry,
the previous equation may be replaced by [8]

i∂tψ = −iα · ∇ψ + [
f −1

π m(r) + g
]
(σ − iγ5 �τ �π )ψ,

(5)
where σ, �π denote, respectively, the σ meson and the pion
field, and fπ is the pion decay constant in the vacuum. Here,
we have already factored out the three-body wave function into
a product described by three independent equations. There
are important differences between the models in Refs. [6]
and [8] which explain the extra factors we introduce, namely
[f −1

π m(r) + g], and which are of interest for the present
discussion, especially due to the fact that we insist on having
chiral invariance. Moreover, the σ field in our case couples to
positive and negative energy states, and therefore is nonzero
in the vacuum. The relevant consequence of this, which is
explained below with respect to the phase analysis, is that
we expect a much stronger saturation effect at a high density
of hadronic matter, and hence an enhancement of asymptotic
freedom phenomena for quarks.

We now check the consistency of our string configuration
and the string potential m(r) by analyzing the spectrum of the
Dirac operator,{

αrpr + i

r
αrβk + βσ

[
f −1

π m(r) + g
]}

ψ = ε(σ )ψ, (6)

where

αr =
[

0 −i

i 0

]
, β =

[
1 0
0 −1

]
, (7)

and k = ±1,±2, · · ·. Here, we have used spherical symmetry.
We take, for r < 1 fm, g + f −1

π m(r) = κf −1
π r , where κ is the

same as defined in connection with Eq. (1). This gives us

ψ(r) = 1

r

[
F (r)
G(r)

]
, (8)

[
ε(σ ) − σf −1

π κr
]
F + dG

dr
+ k

r
G = 0,

(9)[
ε(σ ) + σf −1

π κr
]
G − dF

dr
+ k

r
F = 0.

Eliminating one of the variables, we obtain a second order
equation in the other which may be solved numerically. The
equations will have the form(

1 + σf −1
π κ

ε2
ρ

)
G +

(
d

dρ
− k

ρ

)

×
(

1 − σf −1
π κ

ε2
ρ

)−1 (
d

dρ
+ k

ρ

)
G = 0, (10)

and similarly for F. We have defined ρ = εr.

A few qualitative observations can now be made on the basis
of Eq. (10). This equation is singular for σf −1

π κ = ±ε2. This
gives certain rules for the energy eigenvalue ε(σ ). It should be
noticed that the string interaction is proportional to the σ field.

The QCD vacuum, which is studied in these calculations,
is a very complex object, not least because of the strong
contributions from both positive and negative energy states.
In our model, it is described as a collection of nucleonic
bags arising out of the solution of the Dirac equation, in all
possible momentum states P such that |P | � �, where � is
a regularizing cutoff. In the framework of the independent
particle approach, which has been described, the mass of the
nucleonic bag is approximately M(σ ) = 3ε(σ ). The scalar
density ρS and the energy of the vacuum are also important
quantities, and their calculation, which is given in Sec. IV, is
very informative concerning this point. The vacuum value of
the σ field is set to fπ , i.e., σ = fπ if the Fermi momentum
vanishes (pF = 0).

The asymptotic solution for G and F fields in the Dirac
equation can easily be found by approximating the equation to

G − ε2

κρ

d

dρ

(
ε2

κρ

d

dρ
G

)
= 0.

Thus, the asymptotic solution for G and F will be

G ∼ exp

(
−κρ2

2ε2

)
.
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Here, we can easily read out the size of the nucleon bag to be
1/

√
κ , which becomes approximately 0.8 fm, in vacuum.

IV. THE MODEL

To be more specific, we present now in greater detail the
basic scheme which supports our calculation. This framework
is motivated by the previous discussion and is based on the
assumption that quarks and gluons are the building blocks
of nucleons. We assume that the interaction between quarks
originates from an instanton force and from a confining string
interaction, the latter being responsible for the clustering of
quarks into nucleons, and the former for the emergence of a
σ field which mediates the interaction between nucleons and
is understood as a quark-antiquark disturbance of the vacuum.
According to this picture, the well known σ model Lagrangian
density may be extended to read

L = iψ̄γ µ∂µψ − gs(σ, �π )[(ψ̄ψ)σ + i(ψ̄γ 5 �τψ) · �π ]

+ gv(ψ̄γµψ)ωµ − 1
2m2

σ (σ 2 + �π2) + 1
2m2

vωµωµ

+ 1
2 (∂µσ∂µσ + ∂µ �π∂µ �π ) − 1

4ωµνωµν, (11)

where ψ denotes the nucleon field (not the quark field).
This Lagrangian density describes an assembly of nucleons,
regarded as composite particles, which interact with σ, �π and
ωµ fields. The familiar Mexican hat does not appear in Eq. (11).
However, terms involving the ω field are introduced, as in the
Walecka model [9]. In a conventional model, with elementary
particles, gs is a constant. In our model, which we call the
extended σ model (ESM), the composite nature of the particles
reflects itself in the fact that gs depends on the local values of
the fields �π, σ . We assume that

gs(σ, �π ) = g0

√√√√1 −
√

1 − 4g2
0a

2(σ 2 + �π2)

2g2
0a

2(σ 2 + �π2)

≈ g0

[
1 + 1

2
g2

0a
2(σ 2 + �π2)

]
, (12)

where a, g0 are phenomenological parameters. For consis-
tency, we require |2g0aσ | � 1. For an extended system, �π = 0.

The dynamically generated mass of the nucleon becomes then
M(σ ) = gs(σ )σ . From Eq. (12), it follows that

M(σ ) = g0σ

√√√√1 −
√

1 − 4g2
0a

2σ 2

2g2
0a

2σ 2
≈ g0σ

(
1 + 1

2
g2

0a
2σ 2

)
.

(13)

We have circumvented the laborious problem of determining
the mass M(σ ) of a nucleon subject to an external field σ by
making an ansatz. According to our assumption, M(σ ) behaves
as g0 σ for small σ, but increases faster for large σ . We also
have

σ 2 = M2

g2
0

(1 − a2M2).

The energy of an assembly of nucleons is

E(σ, ω) = −η
∑

pF ≤|P |≤�

√
P2 + g2

s σ 2 − η
∑

|P |≤pF

gvω

+ 1

2
m2

σ σ 2V − 1

2
m2

vω
2V,

or, after eliminating σ in favor of M and “minimization”
with respect to ω,

E(σ ) = −η
∑

pF ≤|P |≤�

√
P 2 + M2 + m2

σ

2g2
0

M2

× (1 − a2M2)V + g2
vp

6
F η2

2332m2
vπ

4
V . (14)

Here, V is the normalization volume, pF is the Fermi momen-
tum, � is the regularizing cutoff momentum, and η = 2Nf is
the degeneracy. The natural assumption has been made that
the wave function of the assembly of nucleons is a Slater
determinant. Minimizing E(σ ), we obtain the generalized gap
equation

g2
0η

m2
σV

∑
pF ≤|P |≤�

1√
P 2 + M2

= 1 − 2a2M2. (15)

The coupling constant depends on σ , and, through σ , on the
baryonic density. The coupling constant increases essentially
linearly with σ 2. The practical consequence of such a behavior
is the emergence of a rapid increase of the energy with
density, tantamount to the onset of a repulsive contribution.
This behavior plays a decisive role in fixing the saturation
density.

V. NJL VERSUS σ MODEL

As mentioned in Sec. II, the quark nuclear model we
propose incorporates, along with the string force, the usual NJL
model with the characteristic four-fermionic term, actually
coming out of an instanton gas. In this section, we discuss
briefly the equivalence of the σ model to the NJL model [3],
as far as the mean field description of bulk properties of
hadronic matter is concerned. The NJL model is defined by
the Lagrangian density

L = ψ̄(iγ µ∂µ)ψ + GS

2
[(ψ̄ψ)2 + (ψ̄iγ5 �τψ)2]. (16)

The σ model is defined by Eq. (11), provided we replace
the coupling parameter gs(σ, �π ) by a constant. A regularizing
momentum cutoff � is part of both models. Using standard
procedures, the Lagrangian (16) leads to the Hamiltonian

HNJL =
N∑

k=1

Pk · αk + GS

2

N∑
k,l=1

δ(rk − r l)

× βkβl

(
1 − γ 5

k γ 5
l �τk �τl

)
. (17)

The vacuum is described by a Slater determinant |�0〉 created
by the operators b

†
P,−, satisfying |P | < �, associated with

plane wave negative energy eigenstates of the single particle
Hamiltonian h = P · α + βM, and by the operators b

†
P,+,
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satisfying |P | < pF , so that pF is the Fermi momentum,
associated with positive energy eigenfunctions of the same
operator. The nucleon “constituent mass” M is a variational
parameter.

The energy expectation value E = 〈�0|HNJL|�0〉 reads

E = −η

�∑
|P |=pF

P 2

εP

− GS

2V


η

�∑
|P |=pF

M

εP




2

= − ηV

2π2

∫ �

pF

dP
P 4

εP

− GSV

2

[
η

2π2

∫ �

pF

dP
MP 2

εP

]2

,

(18)

where εP = √
P 2 + M2, V is the normalization volume, η is

the degeneracy, and for nuclear matter, GS is 9 times bigger
than the corresponding quark matter value. For quark matter,
η = 2NcNf , while for nuclear matter, η = 2Nf . The condition
∂E/∂M = 0 leads to the gap equation

1 = ηGS

V

�∑
|P |=pF

1

εP

= ηGS

2π2

∫ �

pF

dP
P 2

εP

, (19)

which fixes M. For nuclear matter, we fix � so that M =
939 MeV. For quark matter, we fix � so that M = 313 MeV.
If we take

GS = 9g2
0

m2
σ

,

this is essentially the same gap equation as (15), except that
the quantity 1 − 2a2M2 in the right-hand side (rhs) of (15) is
here replaced by 1.

Notice also that the minimum of E given by Eq. (18) is the
same as the minimum of E(σ ) given by Eq. (14), if a is set
equal to 0 in the expression for M(σ ), Eq. (13).

An extended NJL (ENJL) model essentially equivalent to
(11) is easily obtained and reads

LENJL = ψ̄(iγ µ∂µ)ψ + GS

2
[(ψ̄ψ)2 + (ψ̄iγ5 �τψ)2]

+ K

12
[(ψ̄ψ)2 + (ψ̄iγ5 �τψ)2]2

+ GV

2
[(ψ̄γµψ)(ψ̄γ µψ)]. (20)

A similar model has been studied in Ref. [13].

TABLE I. Parameters of ESMI and ESMII.

gs gv � (MeV) a

ESMI 5.81 10.75 477 0.30
ESMII 8.12 13.16 387 0.25

VI. THE PHASES OF NUCLEAR MATTER AND QUARK
CLUSTERING

In order to get a good understanding of the various phases
nuclear matter can exhibit at different energies, it is useful to
introduce some descriptors for the various nuclear processes.
We usually describe quantum field interactions in terms of
the momentum transfer of the strong interaction scattering
involving quarks and gluons. One can as well picture the
energy per nucleon as a function of pressure.

There are two distinct transitions that are important in
the nuclear phase diagram [10] when varying pressure or
momentum transfer. One is the chiral restoration transition,
mostly determined by the instanton pairing force [2,11].
Secondly, there is the quark deconfinement transition when
the nuclear “fluid” changes from “water” to “metallic fluid.”
This is a consequence of the diminishing baryonic string force,
predominantly due to the behavior of the effective coupling
constant.

We wish now to calculate the energy per particle of nuclear
matter as a function of the density. As pointed out above, our
two main ingredients are the pairing force and the baryonic
string force. We take these contributions separately since they
apply mostly to different scales. The effect of the string force
is to confine quarks within nucleons, while the pairing force
comes from instantons.

We have considered two extreme parametrizations of the
ESM, denoted ESMI and ESMII. The corresponding results
are shown in Tables I and II and Figs. 2 and 3. The parameters
of the model, gs, gv , and a, were chosen in order to reproduce
the saturation properties of nuclear matter, namely, binding
energy, saturation density, and effective mass at saturation.
The compressibility and fπ are outputs of the calculation. We
are now able to make the plots of the energy per nucleon
as a function of density, shown in Fig. 2. The dotted line
applies to a quark gas described by the Lagrangian (16) with
quarks. The coupling constant GS = 2.14/�2 was chosen so
that fπ = 93 MeV and � = 654 MeV. This cutoff reproduces
the correct quark mass in vacuum mq = 313 MeV. We see that
the quark equation of state (EOS) exhibits no binding, although
it shows a local minimum corresponding to chiral symmetry
restoration. This occurs at around 0.2 fm−3, which corresponds

TABLE II. Properties of nuclear matter according to ESMI and ESMII: binding energy, equilibrium density,
incompressibility, pion decay constants, fπ in vacuum, f ∗

π at saturation, chiral transition density, and deconfinement
density.

EB ρ0 M/M0 K fπ f ∗
π ρχ ρde

(MeV) (fm−3) (MeV) (MeV) (MeV) (fm−3) (fm−3)

ESMI −15.75 0.15 0.7 225 150 134 0.46 0.687
ESMII −15.75 0.148 0.587 240 108 66 0.3 0.36
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FIG. 2. Phase diagram of hadronic matter energy as a function
of the density. The dotted line applies to a quark gas. The dash-
dotted curve corresponds to the so-called NL3 parametrization of
the Walecka model [15]. The solid curve and the long-dashed curve
present, respectively, the results of ESMI and ESMII. The dashed
curve corresponds to the quark-meson coupling model [6].

to the generally accepted deconfinement transition expected at
a temperature of about 200 MeV in the vacuum. The solid
curve and the long-dashed curve represent the effect of quark
clustering according to ESMI and ESMII, respectively. The
cutoff � is such that chiral symmetry breaking of the vacuum
reproduces the correct nucleon mass. The clear binding shown
by these curves is due to the reduction in the kinetic energy
arising from the clustering of three quarks into nucleons [12].
This latter behavior is crucial for stability. Our model takes
into account not only the effect of quark clustering, but
also the repulsion between the nucleonic bags. The interplay
between these effects is described by Eqs. (11), (12), (14), (15).
In Fig. 2, chiral symmetry restoration is shown as a dis-
continuity of the second derivative of the ESMI and ESMII
curves. Deconfinement occurs close to the point where these
curves intercept the quark-EOS dotted curve, being determined
by the intercept of the pressure versus chemical potential
curves. Although our calculation is indeed based on the ESM

(fm   )−3ρ

M
 (

M
eV

)/
   

  (
M

eV
)

σ M

σ

 0

 200

 400

 600

 1000

 0.10 0.2 0.3 0.4 0.5 0.6

 800
ESMI 

ESMII

FIG. 3. Effective mass of the nucleon and σ field as function of
the density for ESMI and ESMII. Chiral symmetry restoration occurs
when these quantities vanish.

(fm−3)ρ

ESMI 

ESMII
quark

P
 (

M
eV

 fm
− 3

)

 1

 10

 100

 0.20 0.4 0.6 0.8 1

FIG. 4. Pressure versus density for ESMI and ESMII. Phase
transitions are shown as discontinuities in the slopes of the curves.

[Eq. (11)], we observe that it would be equally possible to use
the ENJL model [Eq. (20)], which also reflects the influence
of the medium on the nucleon properties (see, for instance,
Refs. [13] or [14]; in [14], a density dependent coupling is
used, in contrast to our assumption of a coupling depending
on the local value of the σ field). However, we insist that
the equivalence between the ESM [Eqs. (11), (12)] and ENJL
models [Eq. (20)] applies only to the description of bulk
properties. These models differ in the description of surface
properties and in the predicted dynamics, such as the masses
of scalar excitations, for which they lead to distinct dispersion
relations. Also, for the value of fπ in vacuum, both models
lead to different expressions and quite distinct values.

It has been argued in Ref. [6] that the quark structure of the
nucleon induces a mechanism for saturation by weakening,
at high density, the attraction due to the σ meson. We find
that the contribution of this effect to the energy per particle is
equivalent to a term essentially proportional to ρ2. In order to
fit the high energy scattering nuclear experiment, it is important
that the slope in the high energy end (large pressure) not be
too steep, meaning a fluid of nuclear matter that is not too
incompressible.

In principle, one may expect to find two critical limits:
the limit of chiral symmetry restoration, when the mass of
the nucleon vanishes, and the deconfinement limit, when the
baryonic string force becomes small and quarks get liberated.
For ESMI, chiral symmetry restoration is depicted in Figs. 2, 3,
and 4 at ρ/ρ0 ≈ 3.1, while the transition from the confined
phase to a deconfined phase is shown in Figs. 2 and 4
at ρ/ρ0 ≈ 4.5. For ESMII, chiral symmetry restoration is
depicted at ρ/ρ0 ≈ 2.0, and the transition from the confined
phase to a deconfined phase takes place at ρ/ρ0 ≈ 2.4.

One may question the fact that the values of the cutoff or
scale parameter � for hadronic matter, 477 MeV for ESMI
and 387 MeV for ESMII, are rather small. Indeed, they are
only about 10% higher than the Fermi momentum for which
the deconfinement transition is predicted to occur, namely
427 MeV for ESMI and 324 MeV for ESMII. However,
these values for the Fermi momenta are obtained at the
critical point for deconfinement. The scale parameter of the
deconfined phase � = 654 MeV, is sufficiently large, even
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for considerably higher quark densities. On the other hand,
using two different models for the confined phase and the
deconfined phases is admittedly a rough approximation. Since
a more rigorous treatment within a single model should be
performed, our conclusions concerning deconfinement are of
a qualitative nature. The present description of deconfinement
is intended to give an order of magnitude of densities at which
the transition will occur. Chiral symmetry restoration, which
in our model occurs at a lower density, is not affected by these
drawbacks.

We note that the equation of state predicted by ESMI is
consistent with the one predicted by the quark-meson coupling
model [6], and it is much softer than the one predicted by the
so-called NL3 parametrization of the Walecka model [15].
The equation of state predicted by ESMII is also rather soft.
Our model is consistent with the occurrence of a superfluid
exotic phase of hadronic matter between the critical points
corresponding to chiral symmetry restoration and deconfine-
ment. In particular, this phase might be composed by Bose
particles, each particle being constituted by six quarks. Our
model is also consistent with the occurrence of the so-called
color-flavor-locked phase, above the second critical point.

The values obtained for the pion decay constant, identified
with the value of σ , constitute an interesting by-product of
our model, being qualitatively reasonable. Indeed, for the
parametrization ESMI, we find fπ = 150.5 MeV in vacuum,
and at saturation, we have fπ = 110.5 MeV. The value of the
pion decay constant is sensitive to the values of the effective
mass and in lesser degree, of the saturation density considered
for fitting the model parameters. So, for the parametrization
ESMII, we find fπ = 108 MeV in vacuum, and at saturation,
we have fπ = 66.3 MeV.

In the present treatment, we have only considered quark
matter in the normal phase, since our main concern was the
description of hadronic matter. It is well known, however, that
the color superconducting [16] phase plays an important role
in quark matter, considerably reducing its energy per quark.
An excellent discussion of color superconductivity within the
NJL model is presented in Ref. [17], where, for the two flavor
case, a decrease of about 60 MeV on the energy per particle
is already predicted, according to figure 4.4 of that work.
This effect is important because it will significantly reduce
the Fermi momentum, pushing it away from the undesirable
zone.

A comment on the considerable difference in behavior
predicted by parametrizations ESMI and ESMII is in order.
Parametrization EMSII is only of interest because it illustrates
an extreme situation, almost at the border of applicability
of our model, showing a more reasonable value of fπ in
vacuum, but at the cost of lower values of the cutoff � and
of the saturation (not transition) density ρ0. In fact, the large
difference in the behavior of the EOS of ESMI and II is not
due to the � value but to the large difference in the effective
nucleon mass at saturation. A smaller effective nucleon mass
at saturation means a chiral symmetry restoration at a smaller
density and a stronger repulsive effect coming from the vector
meson contribution at smaller densities. This same effect is
also present in other relativistic hadronic models such as the
nonlinear Walecka model.

Finally, we wish to mention a recent attempt pursued by
Chanfray and collaborators [18] to reconcile the Walecka
model with chiral symmetry, although along different lines.

VII. SUMMARY AND CONCLUSIONS

In the present article, we have constructed a realistic quark
model of nuclear structure phenomena which is inspired by
the QCD quantum field theory, being formulated with very
few free parameters, namely �, a, g0, gv . In its final form, our
model resembles the conventional NJL model for nucleons
with, however, consequential differences reflecting the influ-
ence of the medium on the properties of the nucleons. In order
to meet important requirements of chiral symmetry arising in
the description of nuclear phenomena at a subnuclear level,
we have added to the starting Lagrangian, which describes
the dynamics at the quark scale, important terms coming from
chiral fields that appear at a higher order of QCD, in a cluster
expansion sense. Such a unified model of nuclear physics is
consistent with important data about nuclear phases from low
energy physics and astrophysics [19], such as chiral symmetry
restoration and quark deconfinement. The present model is
able to reconcile qualitatively such aspects of hadronic physics
as saturation density and binding energy of nuclear matter,
surface density of finite nuclei, mass of the scalar particle,
medium range NN ineraction, and fπ value in vacuum.
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APPENDIX: RPA TREATMENT OF THE NJL AND
EXTENDED σ MODELS

We argue that although the extended NJL model and the
extended σ model proposed here are equivalent as far as the
mean field description of bulk static properties of hadronic
matter is concerned, they lead, in the RPA approximation, to
manifestly distinct dynamics.

For simplicity, we forget about the σ dependence of
the coupling coefficient gσ . The Lagrangian (11) is chiral
invariant. Therefore, one of the RPA modes comes at zero
energy. This is the pion. Avoiding straightforward algebraic
developments, we present the quadratic Hamiltonian which
describes the RPA modes having zero momentum,

H(2) =
∑

pF <|k|<�

εk

(
c
†
k,τ ck,τ + d

†
k,τ dk,τ

)

+ mσ

(
a
†
0a0 + b

0†
0 b0

0 + b
+†
0 b+

0 + b
−†
0 b−

0

) + g√
2mσV

×
∑

pF <|k|<�

|k|
εk

(
c
†
k,τ d

†
−k,−τ − ck,τ d−k,−τ

)(
a0 + a

†
0

)
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+ g√
2mσV

∑
pF <|k|<�

{
c
†
k,τ d

†
−k,−τ ′

[
T +

τ,τ ′
(
b

−†
0 + b+

0

)
+ T −

τ,τ ′
(
b

+†
0 + b−

0

) + 2T 0
τ,τ ′

(
b

0†
0 + b0

0

)]− ck,τ d−k,−τ ′

× [
T +

τ,τ ′
(
b

+†
0 + b−

0

) + T −
τ,τ ′

(
b

−†
0 + b+

0

)
+ 2T 0

τ,τ ′
(
b

0†
0 + b0

0

)]}
.

Here, εk = √
k2 + M2, c†, c, d†, and d are fermion and an-

tifermion operators; a† and a are scalar meson operators;
and b0†, b0, b+†, b+, b−†, and b− are pseudoscalar meson
operators. The quantities (T +

τ,τ ′ + T −
τ,τ ′), i(T +

τ,τ ′ − T −
τ,τ ′), and

2T 0
τ,τ ′ are Pauli matrices, or more precisely, they are tensor

products of Pauli matrices in isospin times identity matrices
in spin, the indices τ being pairs of spin-isospin indices.
Summation over repeated τ, τ ′ indices is understood. Terms
responsible for the excitation of finite momentum RPA modes
have been deliberately omitted. The quantities

c
†
k,τ d

†
−k,−τ , c

†
k,τ d

†
−k,−τ ′T

j

τ,τ ′ ,

d−k,−τ ′ck,τ T
j

τ,τ ′ , j ∈ {+,−, 0}
behave as quasibosons. For instance,[

d−k,−τ ′′′ck,τ ′′ , c
†
k,τ d

†
−k,−τ ′

]
T

j

τ ′′,τ ′′′T
k
τ,τ ′ ≈ δjkηk,

η+ = η− = 4, η0 = 2,[
d−k,−τ ′ck,τ ′ , c

†
k,τ d

†
−k,−τ

] ≈ 4.

The result requires replacing such quantities as d
†
−k,−τ ′d−k,−τ ′′′

and c
†
k,τ ck,τ ′′ by 0, which is their ground state expectation value.

Notice also that[
c
†
k,τ ′′ck,τ ′′ , c

†
k,τ d

†
−k,−τ ′

]
T k

τ,τ ′

= [
d
†
−�k,−τ ′′d−�k,−τ ′′ , c

†
k,τ d

†
−k,−τ ′

]
T k

τ,τ ′

= c
†
k,τ d

†
−k,−τ ′T

k
τ,τ ′ .

As an example, we present now more explicitly the computa-
tion of charged pseudoscalar modes. The following commuta-
tors are easily obtained:[
H(2), c

†
k,τ d

†
−k,−τ ′T

+
τ,τ ′

]≈ 2εkc
†
k,τ d

†
−k,−τ ′T

+
τ,τ ′

+ 4g√
2mσV

(
b−

0 + b
+†
0

)
,

[H(2), ck,τ d−�k,−τ ′T
−
τ,τ ′] ≈ −2εkc�k,τ d−k,−τ ′T −

τ,τ ′

+ 4g√
2mσV

(
b−

0 + b
+†
0

)
,

[
H(2), b

+†
0

]= mσb
+†
0 + g√

2mσV

∑
pF <|�k|<�

× (
c
†
k,τ d

†
−k,−τ ′T

+
τ,τ ′ − ck,τ d−k′,−τ T

−
τ,τ ′

)
,

[H(2), b−
0 ] = −mσb−

0 − g√
2mσV

∑
pF <|k|<�

× (
c
†
k,τ d

†
−k,−τ ′T

+
τ,τ ′ − ck,τ d−k,−τ ′T −

τ,τ ′
)
.

It follows that[
H(2),

∑
pF <|k|<�

xk

(
c
†
k,τ d

†
−k,−τ ′T

+
τ,τ ′ + ck,τ d−k,−τ ′T −

τ,τ ′
)

− (
b−

0 − b
+†
0

)] ≈
∑

pF <|k|<�

(
2xkεk + 2g√

2mσV

)

× (
c
†
k,τ d

†
−k,−τ ′T

+
τ,τ ′ − ck,τ d−k,−τ ′T −

τ,τ ′
)

+

 ∑

pF <|k|<�

8gxk√
2mσV

+ mσ


 (

b−
0 + b

+†
0

) = 0.

The result clearly follows from the gap equation, for

xk = − g√
2mσV εk

.

This is the RPA pseudoscalar mode, and its eigenfre-
quency is 0.

Similarly, we find that the eigenfrequency of the RPA scalar
mode is close to mσ . We present the computation of scalar
modes. The following commutators are easily obtained:[

H(2), c
†
k,τ d

†
−k,−τ

]≈ 2εkc
†
k,τ d

†
−k,−τ

+ 4g√
2mσV

|k|
εk

(
a−

0 + a
+†
0

)
,

[H(2), ck,τ d−k,−τ ] ≈ −2εkck,τ d−k,−τ

+ 4g√
2mσV

|k|
εk

(
a−

0 + a
+†
0

)
,

[
H(2), a

+†
0

]= mσa
+†
0 + g√

2mσV

∑
pF <|k|<�

|k|
εk

× (
c
†
k,τ d

†
−k,−τ − ck,τ d−k,−τ

)
,

[H(2), a−
0 ] = −mσa−

0 − g√
2mσV

∑
pF <|k|<�

|k|
εk

× (
c
†
k,τ d

†
−k,−τ − ck,τ d−k,−τ

)
.

It follows that[
H(2),

∑
pF <|k|<�

(
Xkc

†
k,τ d

†
−k,−τ + Ykck,τ d−k,−τ

)

− ηa−
0 + ξa

+†
0

]
≈

∑
pF <|k|<�

2εk

(
X�kc

†
k,τ d

†
−�k,−τ

− Y�kck,τ d−k,−τ

) +
∑

pF <|k|<�

(η + ξ )g√
2mσV

|k|
εk

(
c
†
k,τ d

†
−k,−τ

− ck,τ d−k,−τ

) +
∑

pF <|k|<�

4g(Xk + Yk)√
2mσV

|k|
εk

(
a−

0 + a
+†
0

)

+ mσ

(
ηa−

0 + ξa
+†
0

) = �s

[ ∑
pF <|k|<�

(
Xkc

†
k,τ d

†
−k,−τ

+ Ykck,τ d−k,−τ

) − ηa−
0 + ξa

+†
0

]
.
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The RPA equations read

2εkXk + (η + ξ )g√
2mσV

|k|
εk

= �sXk,

2εkYk + (η + ξ )g√
2mσV

|k|
εk

= −�sYk,

∑
pF <|k|<�

4g(Xk + Yk)√
2mσV

|k|
εk

+ mσξ = �sξ,

∑
pF <|k|<�

4g(Xk + Yk)√
2mσV

|k|
εk

+ mση = −�sη,

where Xk, Yk, ξ, and η are the RPA amplitudes, and �s is the
renormalized σ mass.

Let Gk = 2g√
2mσ V

|k|
εk

. The dispersion relation is obtained as

1 = 2mσ

�2 − m2
σ

∑
pF <|k|<�

G2
k

4εk

�2 − 4ε2
k

,

showing that �s ≈ mσ < 2M . Indeed, the left-hand side
(l.h.s.) of the dispersion equation becomes infinite for �2 =
m2

σ and for �2 = 4ε2
k , changing sign at each place. The zero

�2
s lies slightly below m2

σ . Between m2
σ and 4M2, the l.h.s.

of the dispersion equation is negative. Between 4M2 + 4p2
F

and 4M2 + �2, we find a continuum of Landau damped
modes.

Next, we consider the quadratic Hamiltonian which, for the
NJL model, describes the RPA modes having zero momentum,

H(2)
NJL =

∑
pF <k<�

εk

(
c
†
k,τ ck,τ + d

†
k,τ dk,τ

) − 2Gs

∑
pF <|k|,|k′|<�

×
[ |k|

εk

(
c
†
k,τ d

†
−k,−τ − ck,τ d−k,−τ

) |k′|
ε′
k

(
c
†
k′,τ ′d

†
−k′,−τ ′

− ck′,τ ′d−k′,−τ ′
) + (

c
†
k,τ d

†
−k′,−τ ′T

+
τ,τ ′

− ck,τ d−k,−τ ′T −
τ,τ ′

)(
c
†
k′,τ ′′d

†
−k′,−τ ′′′T

−
τ ′′,τ ′′′

− ck′,τ ′′d−k′,−τ ′′′T +
τ ′′,τ ′′′

)+ (
c
†
k,τ d

†
−k,−τ ′T

−
τ,τ ′

− ck,τ d−k,−τ ′T +
τ,τ ′

)(
c
†
k′,τ ′′d

†
−k′,−τ ′′′T

+
τ ′′,τ ′′′

− ck′,τ ′′d−k′,−τ ′′′T −
τ ′′,τ ′′′

)+ 2
(
c
†
k,τ d

†
−k,−τ ′T

0
τ,τ ′

− ck,τ d−k,−τ ′T 0
τ,τ ′

)(
c
†
k′,τ ′′d

†
−k′,−τ ′′′T

0
τ ′′,τ ′′′

− ck′,τ ′′d−k′,−τ ′′′T 0
τ ′′,τ ′′′

)]
.

The following commutators are easily obtained:[
H(2)

NJL, c
†
k,τ d

†
−k,−τ ′T

+
τ,τ ′

]
≈ 2εkc

†
k,τ d

†
−k,−τ ′T

+
τ,τ ′− 16Gs

∑
pF <|k′|<�

(
c
†
k′,τ ′′d

†
−k′,−τ ′′′T

+
τ ′′,τ ′′′

− ck′,τ ′′d−k′,−τ ′′′T −
τ ′′,τ ′′′

)
,[

H(2)
NJL, ck,τ d−k,−τ ′T −

τ,τ ′
]

≈ −2εkck,τ d−k,−τ ′T −
τ,τ ′ − 16Gs

∑
pF <|k′|<�

(
c
†
k′,τ ′′d

†
−k′,−τ ′′′T

+
τ ′′,τ ′′′

− ck′,τ ′′d−k′′′,−τ ′T −
τ ′′,τ ′′

)
.

Thus,
H(2)

NJL,
∑

pF <|k|<�

1

2εk

(
c
†
k,τ d

†
−k,−τ ′T

+
τ,τ ′ + ck,τ d−k,−τ ′T −

τ,τ ′
)

≈

1 −

∑
pF <|k′|<�

16Gs

εk′


 ∑

pF <|k|<�

×(
c
†
k,τ d

†
−k′,−τ ′T

+
τ,τ ′ − ck,τ d−k,−τ ′T −

τ,τ ′
) = 0.

This is the pion mode. Notice that the NJL gap equation reads

1 −
∑

pF <|k|<�

16Gs

εk

= 0,

and Gs > 0.

We present next the computation of scalar modes. The
following commutators are easily obtained:

[
H(2)

NJL, c
†
k,τ d

†
−k,−τ

] ≈ 2εkc
†
k,τ d

†
−k,−τ − 16Gs

|k|
εk

∑
pF <|�k′|<�

× |k′|
εk′

(
c
†
k′,τ ′d

†
−k′,−τ ′ − ck′,τ ′d−k′,−τ ′

)
,

[
H(2)

NJL, ck,τ d−k,−τ

] ≈ −2εkck,τ d−k,−τ − 16Gs

|k|
εk

∑
pF <|k′|<�

× |k′|
εk′

(
c
†
�k′,τ ′d

†
−�k′,−τ ′ − ck′,τ ′d−k′,−τ ′

)
.

It follows that
H(2)

NJL,
∑

pF <|k|<�

(
Xkc

†
k,τ d

†
−k,−τ + Ykck,τ d−k,−τ

)
≈

∑
pF <|k|<�

2εk

(
Xkc

†
k,τ d

†
−k,−τ − Ykck,τ d−k,−τ

)

− 16Gs

∑
pF <|k|<�

(Xk + Yk)
|k|
εk

×
∑

pF <|k′|<�

|k′|
εk′

(
c
†
k′,τ ′d

†
−k′,−τ ′− ck′,τ ′d−k′,−τ ′

)

= �s

∑
pF <|k|<�

(
Xkc

†
k,τ d

†
−k,−τ + Ykck,τ d−k,−τ

)
.

The RPA equations read

2εkX�k − 16Gs

|k|
εk

∑
pF <|k′|<�

(Xk′ + Yk′)
|k′|
εk′

= �sXk,

2εkYk − 16Gs

|k|
εk

∑
pF <|k′|<�

(Xk′ + Yk′)
|k′|
εk′

= −�sYk,

where Xk, Yk are the RPA amplitudes, and �s is the renormal-
ized σ mass. The dispersion relation is obtained as

1 = −16Gs

∑
pF <|k|<�

k2

ε2
k

4εk

�2 − 4ε2
k

,
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showing that �s = 2M . Indeed, replacing �2 by 4M2 in the
l.h.s. of the dispersion equation, we obtain an identity, in view
of the NJL gap equation,

1 = −16Gs

∑
pF <|k|<�

k2

ε2
k

4εk

4m2 − 4ε2
k

= −16Gs

∑
pF <|k|<�

k2

ε2
k

4εk

−4k2
= 1.

In conclusion, we have shown that both models generate
pseudoscalar modes with zero mass. However, the σ model
generates a scalar mode with mass close to mσ , while the
NJL model for nucleons generates a scalar mode with an
unacceptable mass, equal to 2M.
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