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Polarization observables for two-pion production off the nucleon
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We develop polarization observables for the processes γN → ππN and πN → ππN , using both a helicity
and hybrid helicity-transversity basis. Such observables are crucial if processes that produce final states consisting
of a spin-1/2 baryon and two pseudoscalar mesons are to be fully exploited for baryon spectroscopy. We derive
relationships among the observables, as well as inequalities that they must satisfy. We also discuss the observables
that must be measured in “complete” experiments and briefly examine the prospects for measurement of some
of these observables in the near future.
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I. INTRODUCTION AND MOTIVATION

Polarization asymmetries are an essential ingredient in the
interpretation of various meson production reactions in terms
of the various resonances that contribute to the processes as
real or virtual intermediate states. For instance, much of the
information that we have on the light baryon resonances has
been garnered from pion-nucleon and kaon-nucleon scatter-
ing experiments. In addition, photoproduction experiments
have augmented the database of measurements that provide
information on these resonances. The differential and total
cross sections for these reactions, together with various
polarization observables, are used to extract the amplitudes
for the process, and these are then interpreted as arising
from a number of resonant and nonresonant contributions
[1,2].

For processes in which the final state consists of a nucleon
(or a spin-1/2 baryon, in general) and a pseudoscalar meson,
the polarization observables, their relationship to helicity or
transversity amplitudes, and the measurements needed to
extract each observable are all well documented [1–6]. For
processes in which the final state contains two pseudoscalar
mesons (along with a nucleon), the state of development is
much less complete. For the most part, the final state with
two pseudoscalar mesons and a nucleon (mainly Nππ ) has
been treated as arising from either of the quasi-two-body
states �π or Nρ, followed by the decay of the � or the
ρ [4,7]. The Nρ channel in particular, or more generally,
the NV channel, where V is a vector meson, has received
some attention in recent years [8]. A number of authors have
formulated treatments based on more general quasi-two-body
approaches [9].

This approach has been reasonably successful in the
past, as the available data came from high-energy experi-
ments. With today’s facilities running at all energies from
threshold up to relatively high energies, a more complete
description of polarization observables for the three-body
final state such as we have been describing is warranted.
Indeed, such a description is essential to fully exploit
the high-precision data that will be forthcoming. It must
be stressed that experiments with more than a single

pseudoscalar in the final state have been touted as our best
hope for finding the so-called missing resonances [10]. It is
therefore timely and crucial that the polarization observ-
ables for such processes be elucidated in a more gen-
eral framework, one that goes beyond the quasi-two-body
assumption.

The importance of polarization observables cannot be
overstated. In the case of photoproduction of a single pseu-
doscalar meson, four complex amplitudes of some sort—
helicity, transversity, or Lorentz covariant, for example—are
required to describe the process. Because one phase will
always remain ambiguous, this means that seven “numbers”
are required at each kinematic point. The differential cross
section provides information only on the sum of the abso-
lute squares of these amplitudes. Polarization observables
allow extraction of more information, including phases. For
production of two pseudoscalar mesons, the same holds
true. The process is described in terms of a number of
amplitudes, and the differential cross section, in the form
of mass distributions, angular distributions, or even fivefold
differential distributions, provides information only on the
sum of the absolute squares of these amplitudes. This is woe-
fully inadequate for arriving at an unambiguous description
of the process. As with the processes in which a single
pseudoscalar meson is produced, polarization information is
crucial.

The rest of this article is organized as follows. For
definiteness, we refer to the final state that we treat as Nππ ,
but the formalism we present is valid for any final state that
consists of a spin-1/2 baryon and two pseudoscalar mesons. In
addition, we also discuss final states with a single pseudoscalar
meson in the final state, for the sake of comparison and
completeness. In the next section we discuss the kinematics
for the two- and three-body final states that we consider. In
Sec. III we introduce the formalism and notation by discussing
the processes πN → πN and πN → ππN . In Sec. IV, we
turn our attention to the processes γN → πN and γN →
ππN . In Sec. V, we discuss the prospects for measurements
of some of these observables at present facilities, especially
the Thomas Jefferson National Accelerator Facility, as well as
our conclusions.
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II. KINEMATICS AND CROSS SECTIONS

A. Introduction

For all of the processes we discuss, we work in the center-
of-mass (c.m.) frame and define the momentum of the beam
particle (pion or photon) to be

k = (ω, 0, 0,K) ≡ (ω, K), (1)

with the momentum of the target nucleon being

p1 = (
√

s − ω, 0, 0,−K). (2)

For the recoil nucleon, we choose

p2 = (E,−Q sin θ, 0,−Q cos θ ) ≡ (E,−Q). (3)

The momentum of the single pion (for Nπ final states)
or the pair of pions (for Nππ final states) is chosen
to be

q = (
√

s − E, Q). (4)

For the Nππ final state, the pion momenta are denoted q1

and q2, with q = q1 + q2. The x, y, and z axes are then
defined as

ẑ = K̂, ŷ = K × Q
|K × Q| , x̂ = ŷ × ẑ. (5)

It is also useful to define a set of axes in which the z′ axis is
parallel to the momentum of the recoil nucleon. In this system,
the y axis coincides with the y axis of the collision plane. In
terms of momenta, the axes for this system are

ẑ′ = P̂, ŷ ′ = P × K
|P × K| , x̂ ′ = ŷ ′ × ẑ′. (6)

B. π N → π N

In the c.m. frame, we choose the momenta of the initial
pion and nucleon as in Eqs. (1) and (2), whereas those for the
final pion and nucleon are, respectively,

q = (ω,Q sin θ, 0,Q cos θ ),
(7)

p2 = (
√

s − ω,−Q sin θ, 0,−Q cos θ ), Q = K,

and
√

s is the total center-of-mass energy. The Mandelstam
variables of interest are

s = (k + p1)2 = (q + p2)2,

t = (q − k)2 = (p1 − p2)2

(8)
= 2m2 − 2(

√
s − ω)2 + 2K2 cos θ

= −2K2(1 − cos θ ),

where m is the nucleon mass. The energies and momenta
are

ω = s + µ2 − m2

2
√

s
,

(9)
Q = K = λ1/2(s,m2, µ2)/(2

√
s),

where λ(a, b, c) = a2 + b2 + c2 − 2ab − 2bc − 2ac is
K� allen’s function and µ is the pion mass.

The cross section for the process is

dσ = |Mf i |2
4
√

(p1.k)2 − m2µ2
(2π )4δ4(p1 + k − p2 − q)

× d3p2

(2π )32E

d3q

(2π )32ω
. (10)

After integration, this yields

dσ = |Mf i |2d
2

16(2π )2s
.

C. γ N → π N

In the c.m. frame, for real photons, the beam and target
momenta are again as in Eqs. (1) and (2), but now K = ω.
For the pion and nucleon in the final state, the momenta
are

q = (ω′,Q sin θ, 0,Q cos θ ),
(11)

p2 = (
√

s − ω′,−Q sin θ, 0,−Q cos θ ).

The Mandelstam variable s has the same definition as before,
but t now takes the form

t = (q − k)2 = (p1 − p2)2

= 2m2 − 2(
√

s − ω)(
√

s − ω′) + 2QK cos θ,
(12)

K = ω = s − m2

2
√

s
,

ω′ = s + µ2 − m2

2
√

s
, Q = λ1/2(s,m2, µ2)/(2

√
s).

After phase-space integrations, the cross section for this
process is

dσ = Q |Mf i |2d
2

16(2π )2sK
.

D. π N → ππ N

For this process, k, p1, and p2 are defined as in the πN →
πN process. q1 and q2 are the momenta of the two final state
pions, and momentum conservation gives

p1 + k = p2 + q1 + q2. (13)

The momentum of the recoiling nucleon is taken to be

p2 =
(

s − sππ + m2

2
√

s
,−Q sin θ, 0,−Q cos θ

)
, (14)

where

sππ = (q1 + q2)2 (15)

and

Q = λ1/2(s, sππ ,m2)

2
√

s
. (16)
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Here, we are using the recoiling nucleon, or, more pre-
cisely, the recoiling pair of pions, to define the colli-
sion plane. The momentum of one of the pions may be
written

�q1 = Q1(sin θ1 cos φ1, sin θ1 sin φ1, cos θ1), (17)

where Q1, θ1, and φ1 can be written in terms of s, sππ , θ , and
the angles describing the motion of the pair of pions in their
c.m. frame. The complicated expressions that result are not
not reproduced here, particularly as they are not crucial for the
discussion that follows.

We define the Mandelstam variables s and t as

s = (k + p1)2, t = (p1 − p2)2. (18)

In addition, we may define a number of other Mandelstam
variables as

sNπ1 = (p2 + q1)2, sNπ2 = (p2 + q2)2,
(19)

t1 = (k − q1)2, t2 = (k − q2)2.

Note that sππ , sNπ1 , and sNπ2 are not all independent, as they
satisfy

sππ + sNπ1 + sNπ2 = s + m2 + 2µ2. (20)

The differential cross section for this process is described
in terms of five kinematic variables. These may be, for
instance, two Lorentz invariants and three angles. One obvious
choice for one of the invariants is s. The choice of the
other four quantities can be fairly arbitrary and will depend
on what information is being presented. One choice is the
scattering angle of the nucleon, θ , or equivalently, t. For the
other three variables, we can choose, for example, sππ and
d
�

ππ ≡ dθ�
ππdφ�

ππ , consistent with the way we define the
momenta. Another equally valid choice would be sNπ1 and
d
�

Nπ1
, where the solid angle is defined in the rest frame of

the nucleon-pion pair. In this work, we choose the kinematic
variables s, t, sππ , and d
�

ππ .
The differential cross section is

dσ = |M|2
4
√

(k · p1)2 − m2µ2

× (2π )4δ4(p1 + k − p2 − q1 − q2)

× d3p2

(2π )32E2

d3q1

(2π )32ω1

d3q2

(2π )32ω2
, (21)

where M is the amplitude for the transition, E2 is the energy
of the recoiling nucleon, and ωi is the energy of the ith
pion. Carrying out the integrations using standard techniques
yields

d5σ

dsππd
�
ππd cos θ

= 1

4

1

128(2π )4s3/2Ksππ

× |M|2λ 1
2 (sππ , µ2, µ2)λ

1
2 (s, sππ ,m2), (22)

where 4µ2 � sππ � (s − m)2 and K = λ1/2(s,m2, µ2)/(2
√

s).

E. γ N → ππ N

The kinematic treatment of this process is very much the
same as for the process πN → ππN . The main difference
arises in the fact that, for the initial photon, k2 = 0. We
therefore do not discuss the kinematics of this process any
further at this point, except to write down the form for the
differential cross section. This is

d5σ

dsππd
�
ππd cos θ

= 1

4

1

128(2π )4(s − m2)ssππ

× |M|2λ 1
2 (sππ , µ2, µ2)λ

1
2 (s, sππ ,m2). (23)

III. OBSERVABLES IN π N → π N AND π N → ππ N

For the processes πN → πN and πN → ππN , the matrix
element M can be written

iM = χ †(A + �σ · �B)φ, (24)

where χ and φ are the Pauli spinors representing the final and
initial nucleons, respectively. Here, the quantity A + �σ · �B is
the most general 2 × 2 matrix that can be constructed, and
A and �B are quantities that will contain all of the details
of the “model” used to describe the particular reaction being
considered. At this point, their exact form is of no consequence.
For both processes, we choose the nucleon momenta as defined
in Eqs. (2) and (7).

These two processes may be described in either the
helicity or transversity basis. In the helicity basis, the axis
of quantization of the spin of each nucleon is its direction
of motion. For the initial nucleon, the helicity spinors
are

φ+ =
( 0

1

)
, φ− =

( 1
0

)
, (25)

whereas for the final nucleon, they are

χ+ =
(

−sin θ
2

cos θ
2

)
, χ− =

(
cos θ

2

sin θ
2

)
. (26)

In the transversity basis, the axis of quantization of the
spin of each nucleon is the y axis, which is as previously
defined. For either initial or final nucleon, the transversity
spinors are

φ+
T = 1√

2

(−i

1

)
, φ−

T = 1√
2

(
i

1

)
, (27)

where the plus and minus refer to the spin projection relative
to the y axis.

For either of the processes being discussed,

A + �σ · �B =
(
A + B3 B−
B+ A − B3

)
≡

(
A+ B−
B+ A−

)
, (28)

where we have defined

A± ≡ A ± B3, B± ≡ B1 ± iB2, (29)

and the Bi are the Cartesian components of �B.
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In terms of these, the four possible helicity amplitudes,
iMλN λ′

N
, are

iM++ = A− cos
θ

2
− B− sin

θ

2
≡ M1,

iM+− = A− sin
θ

2
+ B− cos

θ

2
≡ M2,

(30)
iM−+ = −A+ sin

θ

2
+ B+ cos

θ

2
≡ M3,

iM−− = A+ cos
θ

2
+ B+ sin

θ

2
≡ M4.

In these equations, λN is the helicity of the target nucleon,
whereas λN ′ is that of the recoil nucleon. Note that in the
form written above, A− and B− occur in one block of helicity
amplitudes, whereas A+ and B+ occur in another block, with
no “mixing” between the blocks. This makes inverting the
equations very easy, yielding

A = 1

2

[
(M1 + M4) cos

θ

2
+ (M2 − M3) sin

θ

2

]
,

B1 = 1

2

[
(M2 + M3) cos

θ

2
+ (M4 − M1) sin

θ

2

]
,

(31)

B2 = i

2

[
(M2 − M3) cos

θ

2
− (M1 + M4) sin

θ

2

]
,

B3 = 1

2

[
(M4 − M1) cos

θ

2
− (M2 + M3) sin

θ

2

]
.

At this point, we have not yet used the parity properties of the
helicity amplitudes. This is discussed later.

Two sets of transversity amplitudes may be defined. The
first set are obtained by direct application of the transver-
sity spinors defined above. We define these to be ibτN τ ′

N
,

where τi = ± is the projection of the spin of the state i
along the y axis (with the 1/2 suppressed), and these take
the form

ib++ = A + B2 ≡ b1,

ib+− = −(B3 + iB1) ≡ b2,
(32)

ib−+ = −(B3 − iB1) ≡ b3,

ib−− = A − B2 ≡ b4.

The block structure is again apparent, and inverting these
gives

A = 1

2
(b1 + b4), B1 = i

2
(b2 − b3),

B2 = 1

2
(b1 − b4), B3 = −1

2
(b2 + b3).

For observables defined in terms of these transversity am-
plitudes, the x ′, y ′, and z′ axes that define the Cartesian
components of polarization observables coincide with the axes
that define the initial state. This is because the transversity
spinors contain no explicit information about the angles
defining the motion of the recoil nucleon.

We can write the reaction rate I as

ρf I = I0
[
1 + ��i · �P + �σ · �P ′ + �α

i σ β ′Oαβ ′
]
, (33)

where �P represents the polarization asymmetry that arises
if the target nucleon is polarized, ρf = 1

2 (1 + �σ · �P ′) is the
density matrix of the recoiling nucleon, and Oαβ ′ is the ob-
servable if the Cartesian α component of the target polarization
is known and the β ′ component of the recoil polarization is
measured. The primes indicate that the recoil observables,
defined in terms of helicity amplitudes, are measured with
respect to the set of axes x ′, y ′, and z′, previously defined. If
the observables are defined in terms of transversity amplitudes,
the x ′, y ′, and z′ axes are the same as the x, y, and z axes. ��i

is the polarization of the initial nucleon.
The 16 polarization observables that are possible are shown

in Table I. These 16 quantities are not all independent, as a
number of relationships can be obtained among them. We
first list six relationships that arise from considering the
absolute magnitudes of the transversity amplitudes. These
are

(Px ′ ± Oyx ′ )2 + (Pz′ ± Oyz′ )2 = (1 ± Py)2−(Py ′ ± Oyy ′ )2,

(Px ± Oxy ′ )2 + (Pz ± Ozy ′ )2 = (1 ± Py ′ )2−(Py ± Oyy ′ )2,

(Oxx ′ ± Ozz′ )2 + (Oxz′ ∓ Ozx ′ )2 = (1 ± Oyy ′ )2−(Py ± Py ′ )2.

(34)

These six identities may be used to place limits on the absolute
magnitudes of some of the observables. Because the left-hand
sides of all six of these equations are positive definite, we
obtain the inequalities

|1 ± Py | � |Py ′ ± Oyy ′ |,
|1 ± Py ′ | � |Py ± Oyy ′ |,

|1 ± Oyy ′ | � |Py ± Py ′ |.
These are similar to the inequalities usually reported in the
literature for pion photoproduction, for instance. In fact, simple
rearrangement of the equations above allow a larger set of
inequalities to be written. These are

|1 ± Py | � {|Py ′ ± Oyy ′ |, |Px ′ ± Oyx ′ |, |Pz′ ± Oyz′ |},
|1 ± Py ′ | � {|Py ± Oyy ′ |, |Px ± Oxy ′ |, |Pz ± Ozy ′ |},

|1 ± Oyy ′ | � {|Py ± Py ′ |, |Oxx ′ ± Ozz′ |, |Oxz′ ∓ Ozx ′ |}.

Further manipulation of these inequalities leads to

1 + P 2
y �

{
P 2

y ′ + O2
yy ′ , P

2
x ′ + O2

yx ′ , P
2
z′ + O2

yz′
}
,

1 + P 2
y ′ �

{
P 2

y + O2
yy ′ , P

2
x + O2

xy ′ , P
2
z + O2

zy ′
}
,

1 + O2
yy ′ �

{
P 2

y + P 2
y ′ ,O2

xx ′ + O2
zz′ ,O2

xz′ + O2
zx ′

}
.

Of the 16 observables, ten are therefore independent. We
can further reduce the number of independent observables
by using the relationships that exist among the phases of
the transversity amplitudes. Because there will be one overall
phase that is unmeasurable, only three of the relative phases
are independent. This means that three relative phases can
be eliminated, providing three more relationships among the
observables, leaving seven independent observables. The three
identities obtained this way can be displayed in a number
of different ways, depending on, for instance, which phases
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TABLE I. Polarization observables in single- and double-pion production using a pion beam, expressed in terms of helicity and transversity
amplitudes. Variables labeled with a T require a polarized target with recoil polarization unmeasured, whereas those labeled with an R require
an unpolarized target, but the recoil polarization is measured. Those denoted TR require polarized targets, with recoil polarization measured.
The measurements required are shown by the pair {t, r}, which denote the component of the target (t) or recoil (r) polarization that must known
or measured. For the target polarization, the x, y, and z axes are as defined in the text. The x ′, y ′, and z′ axes are also defined in the text, as is
the notation for the transversity amplitudes.

Observable Helicity form Transversity form Expt. required Type

I0 |M1|2 + |M2|2 + |M3|2 + |M4|2 |b1|2 + |b2|2 + |b3|2 + |b4|2 {−; −}
I0Px 2�(M1M∗

3 + M2M∗
4) −2
(b1b

∗
3 + b2b

∗
4) {x; −} T

I0Py −2
(M1M∗
3 + M2M∗

4) |b1|2 + |b2|2 − |b3|2 − |b4|2 {y; −}
I0Pz −|M1|2 − |M2|2 + |M3|2 + |M4|2 −2�(b1b

∗
3 + b2b

∗
4) {z; −}

I0Px′ −2�(M1M∗
2 + M3M∗

4) 2
(b1b
∗
2 + b3b

∗
4) {−; x ′} R

I0Py′ 2
(M1M∗
2 + M3M∗

4) |b1|2 − |b2|2 + |b3|2 − |b4|2 {−; y ′}
I0Pz′ |M1|2 − |M2|2 + |M3|2 − |M4|2 −2�(b1b

∗
2 + b3b

∗
4) {−; z′}

I0Oxx′ −2�(M2M∗
3 + M1M∗

4) 2�(−b2b
∗
3 + b1b

∗
4) {x; x ′} TR

I0Oxy′ 2
(−M2M∗
3 + M1M∗

4) −2
(b1b
∗
3 − b2b

∗
4) {x; y ′}

I0Oxz′ 2�(M1M∗
3 − M2M∗

4) 2
(b2b
∗
3 + b1b

∗
4) {x; z′}

I0Oyx′ 2
(M2M∗
3 + M1M∗

4) 2
(b1b
∗
2 − b3b

∗
4) {y; x ′}

I0Oyy′ 2�(−M2M∗
3 + M1M∗

4) |b1|2 − |b2|2 − |b3|2 + |b4|2 {y; y ′}
I0Oyz′ −2
(M1M∗

3 − M2M∗
4) 2�(−b1b

∗
2 + b3b

∗
4) {y; z′}

I0Ozx′ 2�(M1M∗
2 − M3M∗

4) 2
(b2b
∗
3 − b1b

∗
4) {z; x ′}

I0Ozy′ −2
(M1M∗
2 − M3M∗

4) 2�(−b1b
∗
3 + b2b

∗
4) {z; y ′}

I0Ozz′ −|M1|2 + |M2|2 + |M3|2 − |M4|2 2�(b2b
∗
3 + b1b

∗
4) {z; z′}

(or phase differences) are chosen to be the independent ones.
Writing bi = ρie

iφi and defining all phase differences relative
to φ4, we obtain

−Px ′ + Oyx ′

Pz′ + Oyz′

= (Oxz′ − Ozx ′ )(Ozy ′ − Pz) − (Oxx ′ + Ozz′ )(Oxy ′ − Pz)

(Oxx ′ + Ozz′ )(Ozy ′ − Pz) + (Oxz′ − Ozx ′ )(Oxy ′ − Px)
,

Px + Oxy ′

Pz + Ozz′

= (Oxz′ − Ozx ′ )(Oyz′ − Pz′ ) − (Oxx ′ + Ozz′ )(Px ′ − Oyx ′ )

(Oxx ′ + Ozz′ )(Oyz′ − Pz′ ) + (Oxz′ − Ozx ′ )(Px ′ − Oyx ′ )
,

Oxz′ + Ozx ′

Ozz′ − Oxx ′

= (Oxy ′ − Px)(Oyz′ − Pz′ ) − (Px ′ − Oyx ′ )(Ozy ′ − Pz)

(Ozy ′ − Pz)(Oyz′ − Pz′ ) + (Oxy ′ − Px)(Px ′ − Oyx ′ )
.

(35)

We emphasize here that we have considered only the rela-
tionships among the observables. The number 7 does not
necessarily represent a “minimal set” that must be measured
for the so-called “complete” experiment. We postpone such a
discussion until later in this section.

It is interesting to note that we can obtain a different set of
relationships among the observables by consideration of the
helicity amplitudes instead of the transversity ones. Proceeding
in this way, the relationships obtained are

(Px ± Oxz′ )2 + (Py ± Oyz′ )2 = (1 ± Pz′ )2 − (Pz ± Ozz′ )2,

(Oxx ′ ± Oyy ′ )2 + (Oxy ′ ∓ Oyx ′ )2 = (1 ± Ozz′ )2 − (Pz ± Pz′ )2,

(Px ′ ± Ozx ′ )2 + (Py ′ ± Ozy ′ )2 = (1 ± Pz)
2 − (Pz′ ± Ozz′ )2.

(36)

The corresponding inequalities obtained from these
are

|1 ± Pz′ |� {|Pz ± Ozz′ |, |Px ± Oxz′ |, |Py ± Oyz′ |},
|1 ± Ozz′ |� {|Pz ± Pz′ |, |Oxx ′ ± Oyy ′ |, |Oxy ′ ∓ Oyx ′ |}, (37)

|1 ± Pz|� {|Pz′ ± Ozz′ |, |Px ′ ± Ozx ′ |, |Py ′ ± Ozy ′ |}
and

1 + P 2
z′ �

{
P 2

z + O2
zz′ , P

2
x + O2

xz′ , P
2
y + O2

yz′
}
,

1 + O2
zz′ �

{
P 2

z + P 2
z′ ,O2

xx ′ + O2
yy ′ ,O2

xy ′ + O2
yx ′

}
, (38)

1 + P 2
z �

{
P 2

z′ + O2
zz′ , P

2
x ′ + O2

zx ′ , P
2
y ′ + O2

zy ′
}
.

In a similar manner, a set of relationships may be obtained by
considering the phases of the helicity amplitudes.

A. Required experimental measurements in π N → ππ N

Information on baryon spectroscopy is obtained from
processes such as πN → πN by extracting the helicity or
transversity (or partial wave) amplitudes for the process. These
amplitudes are then interpreted in terms of baryon resonances.
There is therefore a great deal of interest in knowing how
many measurements must be made at each kinematic point to
extract the amplitudes. For this discussion, we focus on the
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process πN → ππN , because such discussions have already
been documented for πN → πN .

If we write bi = ρie
iφi , then the quantities I0, Py, Py ′ , and

Oyy ′ must be measured at each kinematic point to provide
the information needed to extract the ρi unambiguously. In
the bilinear combinations of transversity amplitudes, there are
six phase differences that occur, but only three of these are
independent. Any three can be chosen, so we discuss φ12 ≡
φ1 − φ2, φ34 ≡ φ3 − φ4, and φ23 ≡ φ2 − φ3.

To access φ12, two of the four quantities Px ′ , Pz′ ,Oyx ′ , and
Oyz′ should be measured at each kinematic point. The pair of
measurements Px ′ and Oyx ′ , or Pz′ and Oyz′ , would provide
“cleaner” solutions for φ12. Note that these measurement
would also provide φ34, and both of these phase differences
would be subject to the well-known “quadrant ambiguities”
[6].

This leaves one more phase difference to be determined.
If we choose this to be φ23, then measurement of one of
Oxx ′ ,Ozx ′ ,Oxz′ , or Ozz′ will allow its extraction. To do this,
however, the other phase that occurs in these observables, φ14,
will have to be written in terms of the two phases already
extracted and φ23 as

φ14 = φ1 − φ4 = φ1 − φ2 + φ2 − φ3 + φ3 − φ4

= φ12 + φ23 + φ34. (39)

Then the only unknown in the measured quantity would
be φ23.

A similar analysis can be made in terms of the helicity
amplitudes. In this case, I0, Pz, Pz′ , andOzz′ must be measured
at each kinematic point to determine the magnitudes of
the helicity amplitudes. Two measurements from among
Px ′ , Py ′ ,Ozx ′ , and Ozy ′ will provide enough information to
determine two of the relative phases, for instance, and one
measurement from among Px, Py,Oxz′ , and Oyz′ will provide
enough information to determine the last phase needed.

The bottom line is that to extract reliable information on
baryon properties, the helicity or transversity amplitudes must
be extracted with some degree of certainty, and this can be done
only if at least seven judiciously chosen measurements are
performed at each kinematic point. This also means that both
single and double polarization measurements will be essential.
This is similar to the conclusion of Ref. [6] in their analysis
of pion photoproduction and is independent of whether the
observables are described in terms of helicity, transversity, or
other amplitudes.

B. Parity conservation

The properties of the helicity and transversity amplitudes
for a process a + b → c + d are well known. For πN →
πN , the relationships among the helicity amplitudes are
written [11]

M−λN −λ′
N

(θ ) = (−1)λN −λ′
NMλNλ′

N
(θ ), (40)

where θ is as defined in Eq. (7). The corresponding relation-
ships for transversity amplitudes are [12]

bτN τ ′
N

(θ ) = (−1)τN−τ ′
N bτNτ ′

N
(θ ). (41)

Parity conservation therefore means that some of the transver-
sity amplitudes vanish exactly.

In general, a minimum of three angles are needed to
describe the scattering amplitude for a process a + b →
c + d + e. For the specific case of πN → ππN , we choose
these angles to be as defined in Eqs. (14) and (17). The
relationships that arise among the helicity amplitudes may
then be written

M−λN −λ′
N

(θ, θ1, φ1) = (−1)λN −λ′
NMλNλ′

N
(θ, θ1, 2π − φ1).

(42)

These relations cannot be used to decrease the number of
independent helicity amplitudes, but they can be used to
determine which of the observables are even or odd under
the transformation φ1 ↔ 2π − φ1.

C. Construction of transition amplitudes

1. π N → π N

For this process, A must be a scalar and �B an axial vector.
With the kinematics for this process as previously defined, we
can write A and �B as

A = α,
(43)

�B = β
k̂ × q̂

|k̂ × q̂| ,

where α and β are scalar quantities that contain all of the details
of whatever model is constructed to describe the process. These
can be compared to the form usually written for this process
[1], namely

iM = χ †(f + g�σ · n̂)φ, (44)

where n̂ = k̂ × q̂/|k̂ × q̂|. This means that we can identify α =
f and β = g. With these kinematics, B1 = B3 = 0, leading
to

M1 = M4, M2 = −M3 (45)

in the helicity basis or

b2 = b3 = 0 (46)

in the transversity basis. Two of the transversity amplitudes
(the “transversity-flip” amplitudes) vanish identically (as
expected), meaning that this process is exactly “transver-
sity conserving.” The relationships among the helicity am-
plitudes expected from considerations of parity symmetry
are therefore obtained. Many of the polarization observables
now become redundant or vanish identically

Px = Pz = Px ′ = Pz′ = Oxy ′ = Oyx ′ = Oyz′ = Ozy ′ = 0,

I0 = |M1|2 + |M2|2 = |b1|2 + |b2|2 = Oyy ′ ,

Py = 2
(M1M∗
2) = |b1|2 − |b2|2 = Py ′ , (47)

Oxx ′ = −|M1|2 + |M2|2 = 2�(b1b
∗
4) = Ozz′ ,

Oxz′ = −2�(M1M∗
2) = 2
(b1b

∗
4) = −Ozx ′ ,
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and at this point there are four observables left. From consid-
eration of the transversity amplitudes, it is “obvious” why Oyy ′

and I0 are equal. The relationships among observables reduces
to a single relationship in this case, namely

P 2
y + O2

xx ′ + O2
xz′ = 1. (48)

This last equation means that only three of the remaining four
observables are independent.

We note that the convention has been to choose both sets
of axes for this process to be the same. This introduces
explicit factors of cos θ and sin θ into the observables. If we
choose unrotated primed axes, the relationships among the
observables we have defined and those found in the literature
are

R = Oxx ′ cos θ − Oxz′ sin θ,

A = Oxx ′ sin θ + Oxz′ cos θ.

In terms of A and R, the identity that must be satisfied
is

P 2
y + R2 + A2 = 1. (49)

2. π N → ππ N

For this process, there are three independent three-
momenta, which we can choose to be �k, �p2, and �q1, where
�q1 is the momentum of one of the final pions. These have all
been defined previously. In this case,Amust be a pseudoscalar
quantity, whereas B must be a vector. The only possibilities
are

A = αk̂ · p̂2 × q̂1,
(50)�B = β1k̂ + β2p̂2 + β3q̂1,

where α and the βi depend only on scalar products of the vec-
tors in the problem. For this case, �B has x, y, and z compo-
nents and all of the four helicity amplitudes are independent.
Furthermore, none of the polarization observables vanish
exactly, and none are redundant. However, using the proper-
ties of the helicity amplitudes, we can predict that the obser-
vables Px, Pz, Px ′ , Pz′ , Oxy ′ , Oyx ′ , Oyz′ , and Ozy ′ are all
odd under the transformation φ1 ↔ 2π − φ1. The other eight
observables are all even under this transformation.

IV. OBSERVABLES IN π N → π N AND π N → ππ N

We can treat these two processes in a framework sim-
ilar to that used for πN → πN and πN → ππN by
writing

iM = χ †(Aj + σiBij )φεj , (51)

where �ε is the polarization vector of the initial photon, Aj

are the components of a vector (γN → ππN ) or an axial
vector (γN → πN ), and Bij is a tensor (γN → πN ) or
pseudotensor (γN → ππN ). The amplitude takes the form

iM = χ †
(

A+j B−j

B+j A−j

)
φεj , (52)

where

A±j ≡ Aj ± B3j , B±j ≡ B1j ± iB2j , (53)

in analogy with our treatment of πN → πN and πN →
ππN .

Defining the helicity amplitudes

iMλ
++ ≡ Mλ

1,

iMλ
+− ≡ Mλ

2,
(54)

iMλ
−+ ≡ Mλ

3,

iMλ
−− ≡ Mλ

4,

where λ is the helicity of the photon and the transversity
amplitudes

ibλ
++ ≡ bλ

1 ,

ibλ
+− ≡ bλ

2 ,
(55)

ibλ
−+ ≡ bλ

3 ,

ibλ
−− ≡ bλ

4 ,

we find

Aj εj (λ) = 1

2

[(
Mλ

1 + Mλ
4

)
cos

θ

2
+ (

Mλ
2 − Mλ

3

)
sin

θ

2

]

= 1

2

(
bλ

1 + bλ
4

)
,

B1j εj (λ) = 1

2

[(
Mλ

2 + Mλ
3

)
cos

θ

2
+ (

Mλ
4 − Mλ

1

)
sin

θ

2

]

= i

2

(
bλ

2 − bλ
3

)
,

B2j εj (λ) = i

2

[(
Mλ

2 − Mλ
3

)
cos

θ

2
− (

Mλ
1 + Mλ

4

)
sin

θ

2

]

= 1

2

(
bλ

1 − bλ
4

)
,

B3j εj (λ) = 1

2

[(
Mλ

4 − Mλ
1

)
cos

θ

2
− (

Mλ
2 + Mλ

3

)
sin

θ

2

]

= 1

2

(
bλ

2 + bλ
3

)
. (56)

Note that the amplitudes bλ
i are not strictly transversity

amplitudes, as the photon spin is still quantized along its
direction of motion. Quantizing along the transverse direction
requires construction of the combinations D±

i = b+
i ± b−

i .
The transversity spinors of Eq. (27) can be written as linear

superpositions of the helicity spinors of Eqs. (25) and (26).
The expressions are

φ+
T = 1√

2
(φ+ − iφ−) = 1√

2
eiθ/2(χ+ − iχ−),

(57)

φ−
T = 1√

2
(φ+ + iφ−) = 1√

2
e−iθ/2(χ+ + iχ−).

This allows yet another set of amplitudes, iT λγ

τN τ ′
N

, to be defined
in terms of the helicity amplitudes. These are
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iT ±
++ ≡ T ±

1 = 1

2
e−iθ/2

[
M±

1 + M±
4 + i

(
M±

2 − M±
3

)]
,

iT ±
+− ≡ T ±

2 = 1

2
eiθ/2

[
M±

1 − M±
4 − i

(
M±

2 + M±
3

)]
,

(58)

iT ±
−+ ≡ T ±

3 = 1

2
e−iθ/2

[
M±

1 − M±
4 + i

(
M±

2 + M±
3

)]
,

iT ±
−− ≡ T ±

4 = 1

2
eiθ/2

[
M±

1 + M±
4 − i

(
M±

2 − M±
3

)]
.

Full transversity amplitudes can be constructed from these as
Dτγ

i = T +
i ± T −

i . For γN → πN , the resulting amplitudes
are similar to those found in the literature, but the phases e±iθ/2

are absent from the published forms (see Ref. [3], p. 270).
We can write the reaction rate I as

ρf I = I0
{(

1 + ��i · �P + �σ · �P ′ + �α
i σ β ′Oαβ ′

)
+ δ�

(
I� + ��i · �P � + �σ · �P �′ + �α

i σ β ′O�
αβ ′

)
+ δ�

[
sin 2β

(
I s + ��i · �P s + �σ · �P s′ + �α

i σ β ′Os
αβ ′

)
+ cos 2β

(
I c + ��i · �P c + �σ · �P c′ + �α

i σ β ′Oc
αβ ′

)]}
,

where �P represents the polarization asymmetry that arises
if the target nucleon is polarized, ρf = 1

2 (1 + �σ · �P ′) is
the density matrix of the recoiling nucleon, and Oαβ ′ is
the observable if both the target and recoil polarization
are measured. The primes indicate that the recoil observables
are measured with respect to a set of axes x ′, y ′, and z′, in
which z′ is along the direction of motion of the recoiling nu-
cleon and y ′ = y. δ� is the degree of circular polarization in the
photon beam, whereas δ� is the degree of linear polarization,
with the direction of polarization being at an angle β to the
x axis.

The polarization observables that arise for these two
processes are given in Tables II–V. Note that there are 64
polarization observables in general.

As was the case with the pion-induced reactions, there
are a number of relationships among these 64 polarization
observables. In fact, there are 28 relations that arise from
consideration of the absolute magnitudes of the helicity or
transversity amplitudes and another 21 that arise from con-
sideration of their phases, leaving 15 independent quantities.
We list here the relations that arise from considerations of the
absolute magnitudes of the amplitudes bi :

[
Px ′ + ξOyx ′ + ζ

(
P �

x ′ + ξO�
yx ′

)]2 + [
Pz′ + ξOyz′ + ζ

(
P �

z′ + ξO�
yz′

)]2

= [
1 + ξPy + ζ

(
I� + ξP �

y

)]2 − [
Py ′ + ξOyy ′ + ζ

(
P �

y ′ + ξO�
yy ′

)]2
,[

Px + ξOxy ′ + ζ
(
P �

x + ξO�
xy ′

)]2 + [
Pz + ξOzy ′ + ζ

(
P �

z + ξO�
zy ′

)]2

= [
1 + ξPy ′ + ζ

(
I� + ξP �

y ′
)]2 − [

Py + ξOyy ′ + ζ
(
P �

y + ξO�
yy ′

)]2
,[

Oxz′ − ξOzx ′ + ζ
(
O�

xz′ − ξO�
zx ′

)]2 + [
Oxx ′ + ξOzz′ − ζ

(
O�

xx ′ + ξO�
zz′

)]2

= [
1 + ξOyy ′ − ζ

(
I� + ξO�

yy ′
)]2 − [

Py + ξPy ′ − ζ
(
P �

y + ξP �
y ′

)]2
,[

I s + ξOs
yy ′ + ζ

(
P s

y + ξP s
y ′
)]2 + [

I c + ξOc
yy ′ + ζ

(
P c

y + ξP c
y ′
)]2

(59)

= [
1 + ξOyy ′ + ζ (Py + ξPy ′ )

]2 − [
I� + ξO�

yy ′ + ζ
(
P �

y + ξP �
y ′

)]2
,[

P s
x ′ + ξOs

yx ′ + ζ
(
P c

z′ + ξOc
yz′

)]2 + [
P s

z′ + ξOs
yz′ − ζ

(
P c

x ′ + ξOc
yx ′

)]2

= [
1 + ξPy + ζ

(
P �

y ′ + ξO�
yy ′

)]2 − [
I� + ξP �

y + ζ (Py ′ + ξOyy ′ )
]2

,[
P s

x + ξOs
xy ′ + ζ

(
P c

z + ξOc
zy ′

)]2 + [
P s

z + ξOs
zy ′ − ζ

(
P c

x + ξOc
xy ′

)]2

= [
1 + ξPy ′ − ζ

(
P �

y + ξO�
yy ′

)]2 − [
I� + ξP �

y ′ − ζ (Py + ξOyy ′ )
]2

,[
Os

xx ′ + ξOs
zz′ + ζ

(
Oc

xz′ − ξOc
zx ′

)]2 + [
Os

xz′ − ξOs
zx ′ − ζ

(
Oc

xx ′ + ξOc
zz′

)]2

= [
1 + ξOyy ′ + ζ

(
P �

y ′ + ξP �
y

)]2 − [
I� + ξO�

yy ′ + ζ (Py ′ + ξPy)
]2

.

In each of these equations, ξ and ζ can independently take
either of the values ±1, meaning that the seven equations
shown above actually represent 28 identities. We can also
obtain another 21 identities from considering the phases of
the transversity amplitudes, but we do not display these
here. We also point out that the equations above were
obtained from considering the transversity amplitudes. Had we
considered the helicity amplitudes instead, we would obtain a

different set of 28 identities among the observables from the
magnitudes of the amplitudes and another 21 identities from
their phases. In either case, we are left with 15 independent
observables.

As was done in the case of πN → ππN , we can use the
identities above to write a number of inequalities that the
polarization observables for γN → ππN must satisfy. These
inequalities are
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TABLE II. Polarization observables of single- and double-pion photoproduction in terms of the helicity and transversity amplitudes. These
observables arise with an unpolarized photon beam. Variables labeled with a T require a polarized target with recoil polarization unmeasured,
whereas those labeled with an R require an unpolarized target, but the recoil polarization is measured. Those denoted TR require polarized
targets, with recoil polarization measured. The measurements required are shown by the set {b, t, r}, which denote the component of the beam
(b), target (t) or recoil (r) polarization that must known or measured. For the target polarization, the x, y, and z axes are as defined in the text.
The x ′, y ′, and z′ axes are also defined in the text, as is the notation for the transversity amplitudes.

Observable Helicity form Transversity form Expt. Type

I0 |M−
1 |2 + |M+

1 |2 + |M−
2 |2 + |M+

2 |2 |b−
1 |2 + |b+

1 |2 + |b−
2 |2 + |b+

2 |2 {−; −; −}
+ |M−

3 |2 + |M+
3 |2 + |M−

4 |2 + |M+
4 |2 + |b−

3 |2 + |b+
3 |2 + |b−

4 |2 + |b+
4 |2

I0Px 2�(M−
1 M−∗

3 + M+
1 M+∗

3 + M−
2 M−∗

4 + M+
2 M+∗

4 ) −2
(b−
1 b−∗

3 + b+
1 b+∗

3 + b−
2 b−∗

4 + b+
2 b+∗

4 ) {−; x; −} T

I0Py −2
(M−
1 M−∗

3 + M+
1 M+∗

3 + M−
2 M−∗

4 + M+
2 M+∗

4 ) |b−
1 |2 + |b+

1 |2 + |b−
2 |2 + |b+

2 |2 {−; y; −}
− |b−

3 |2 − |b+
3 |2 − |b−

4 |2 − |b+
4 |2

I0Pz −|M−
1 |2 − |M+

1 |2 − |M−
2 |2 − |M+

2 |2 −2�(b−
1 b−∗

3 + b+
1 b+∗

3 + b−
2 b−∗

4 + b+
2 b+∗

4 ) {−; z; −}
+ |M−

3 |2 + |M+
3 |2 + |M−

4 |2 + |M+
4 |2

I0Px′ −2�(M−
1 M−∗

2 + M+
1 M+∗

2 + M−
3 M−∗

4 + M+
3 M+∗

4 ) 2
(b−
1 b−∗

2 + b+
1 b+∗

2 + b−
3 b−∗

4 + b+
3 b+∗

4 ) {−; −; x ′} R

I0Py′ 2
(M−
1 M−∗

2 + M+
1 M+∗

2 + M−
3 M−∗

4 + M+
3 M+∗

4 ) |b−
1 |2 + |b+

1 |2 − |b−
2 |2 − |b+

2 |2 {−; −; y ′}
+ |b−

3 |2 + |b+
3 |2 − |b−

4 |2 − |b+
4 |2

I0Pz′ |M−
1 |2 + |M+

1 |2 − |M−
2 |2 − |M+

2 |2 −2�(b−
1 b−∗

2 + b+
1 b+∗

2 + b−
3 b−∗

4 + b+
3 b+∗

4 ) {−; −; z′}
+ |M−

3 |2 + |M+
3 |2 − |M−

4 |2 − |M+
4 |2

I0Oxx′ −2�(M−
2 M−∗

3 + M+
2 M+∗

3 + M−
1 M−∗

4 + M+
1 M+∗

4 ) 2�(−b−
2 b−∗

3 − b+
2 b+∗

3 + b−
1 b−∗

4 + b+
1 b+∗

4 ) {−; x; x ′} TR

I0Oxy′ 2
(−M−
2 M−∗

3 − M+
2 M+∗

3 + M−
1 M−∗

4 + M+
1 M+∗

4 ) −2
(b−
1 b−∗

3 + b+
1 b+∗

3 − b−
2 b−∗

4 − b+
2 b+∗

4 ) {−; x; y ′}
I0Oxz′ 2�(M−

1 M−∗
3 + M+

1 M+∗
3 − M−

2 M−∗
4 − M+

2 M+∗
4 ) 2
(b−

2 b−∗
3 + b+

2 b+∗
3 + b−

1 b−∗
4 + b+

1 b+∗
4 ) {−; x; z′}

I0Oyx′ 2
(M−
2 M−∗

3 + M+
2 M+∗

3 + M−
1 M−∗

4 + M+
1 M+∗

4 ) 2
(b−
1 b−∗

2 + b+
1 b+∗

2 − b−
3 b−∗

4 − b+
3 b+∗

4 ) {−; y; x ′}
I0Oyy′ 2�(−M−

2 M−∗
3 − M+

2 M+∗
3 + M−

1 M−∗
4 + M+

1 M+∗
4 ) |b−

1 |2 + |b+
1 |2 − |b−

2 |2 − |b+
2 |2 {−; y; y ′}

− |b−
3 |2 − |b+

3 |2 + |b−
4 |2 + |b+

4 |2
I0Oyz′ −2
(M−

1 M−∗
3 + M+

1 M+∗
3 − M−

2 M−∗
4 − M+

2 M+∗
4 ) 2�(−b−

1 b−∗
2 − b+

1 b+∗
2 + b−

3 b−∗
4 + b+

3 b+∗
4 ) {−; y; z′}

I0Ozx′ 2�(M−
1 M−∗

2 + M+
1 M+∗

2 − M−
3 M−∗

4 − M+
3 M+∗

4 ) 2
(b−
2 b−∗

3 + b+
2 b+∗

3 − b−
1 b−∗

4 − b+
1 b+∗

4 ) {−; z; x ′}
I0Ozy′ −2
(M−

1 M−∗
2 + M+

1 M+∗
2 − M−

3 M−∗
4 − M+

3 M+∗
4 ) 2�(−b−

1 b−∗
3 − b+

1 b+∗
3 + b−

2 b−∗
4 + b+

2 b+∗
4 ) {−; z; y ′}

I0Ozz′ −|M−
1 |2 − |M+

1 |2 + |M−
2 |2 + |M+

2 |2 2�(b−
2 b−∗

3 + b+
2 b+∗

3 + b−
1 b−∗

4 + b+
1 b+∗

4 ) {−; z; z′}
+ |M−

3 |2 + |M+
3 |2 − |M−

4 |2 − |M+
4 |2

∣∣1 + ξPy + ζ
(
I� + ξP �

y

)∣∣ �
{∣∣Py ′ + ξOyy ′ + ζ

(
P �

y ′ + ξO�
yy ′

)∣∣,∣∣Px ′ + ξOyx ′ + ζ
(
P �

x ′ + ξO�
yx ′

)∣∣, ∣∣Pz′ + ξOyz′ + ζ
(
P �

z′ + ξO�
yz′

)∣∣},∣∣1 + ξPy ′ + ζ
(
I� + ξP �

y ′
)∣∣ �

{∣∣Py + ξOyy ′ + ζ
(
P �

y + ξO�
yy ′

)∣∣,∣∣Px + ξOxy ′ + ζ
(
P �

x + ξO�
xy ′

)∣∣, ∣∣Pz + ξOzy ′ + ζ
(
P �

z + ξO�
zy ′

)∣∣},∣∣1 + ξOyy ′ − ζ
(
I� + ξO�

yy ′
)∣∣ �

{∣∣Py + ξPy ′ − ζ
(
P �

y + ξP �
y ′

)∣∣,∣∣Oxz′ − ξOzx ′ + ζ
(
O�

xz′ − ξO�
zx ′

)∣∣, ∣∣Oxx ′ + ξOzz′ − ζ
(
O�

xx ′ + ξO�
zz′

)∣∣},
|1 + ξOyy ′ + ζ (Py + ξPy ′ )| � {∣∣I� + ξO�

yy ′ + ζ
(
P �

y + ξP �
y ′

)∣∣,
(60)∣∣I s + ξOs

yy ′ + ζ
(
P s

y + ξP s
y ′
)∣∣, ∣∣I c + ξOc

yy ′ + ζ
(
P c

y + ξP c
y ′
)∣∣},∣∣1 + ξPy + ζ

(
P �

y ′ + ξO�
yy ′

)∣∣ �
{∣∣I� + ξP �

y + ζ (Py ′ + ξOyy ′ )
∣∣,∣∣P s

x ′ + ξOs
yx ′ + ζ

(
P c

z′ + ξOc
yz′

)∣∣, ∣∣P s
z′ + ξOs

yz′ − ζ
(
P c

x ′ + ξOc
yx ′

)∣∣}
∣∣1 + ξPy ′ − ζ

(
P �

y + ξO�
yy ′

)∣∣ �
{∣∣I� + ξP �

y ′ − ζ (Py + ξOyy ′ )
∣∣,∣∣P s

x + ξOs
xy ′ + ζ

(
P c

z + ξOc
zy ′

)∣∣, ∣∣P s
z + ξOs

zy ′ − ζ
(
P c

x + ξOc
xy ′

)∣∣},∣∣1 + ξOyy ′ + ζ
(
P �

y ′ + ξP �
y

)∣∣ �
{∣∣I� + ξO�

yy ′ + ζ (Py ′ + ξPy)
∣∣,∣∣Os

xx ′ + ξOs
zz′ + ζ

(
Oc

xz′ − ξOc
zx ′

)∣∣, ∣∣Os
xz′ − ξOs

zx ′ − ζ
(
Oc

xx ′ + ξOc
zz′

)∣∣}.
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TABLE III. Polarization observables of single- and double-pion photoproduction in terms of the helicity and transversity amplitudes. These
observables arise with circularly polarized photons. The notation is as in Table II. B� indicates that a circularly polarized photon beam is
needed for these measurements.

Observable Helicity form Transversity form Expt. Type

I0I
� −|M−

1 |2 + |M+
1 |2 − |M−

2 |2 + |M+
2 |2 −|b−

1 |2 + |b+
1 |2 − |b−

2 |2 + |b+
2 |2 {c; −; −} B�

−|M−
3 |2 + |M+

3 |2 − |M−
4 |2 + |M+

4 |2 −|b−
3 |2 + |b+

3 |2 − |b−
4 |2 + |b+

4 |2
I0P

�
x 2�(−M−

1 M−∗
3 + M+

1 M+∗
3 − M−

2 M−∗
4 + M+

2 M+∗
4 ) 2
(b−

1 b−∗
3 − b+

1 b+∗
3 + b−

2 b−∗
4 − b+

2 b+∗
4 ) {c; x; −} B�T

I0P
�
y 2
(M−

1 M−∗
3 − M+

1 M+∗
3 + M−

2 M−∗
4 − M+

2 M+∗
4 ) −|b−

1 |2 + |b+
1 |2 − |b−

2 |2 + |b+
2 |2 {c; y; −}

+|b−
3 |2 − |b+

3 |2 + |b−
4 |2 − |b+

4 |2
I0P

�
z |M−

1 |2 − |M+
1 |2 + |M−

2 |2 − |M+
2 |2 2�(b−

1 b−∗
3 − b+

1 b+∗
3 + b−

2 b−∗
4 − b+

2 b+∗
4 ) {c; z; −}

−|M−
3 |2 + |M+

3 |2 − |M−
4 |2 + |M+

4 |2
I0P

�
x′ 2�(M−

1 M−∗
2 − M+

1 M+∗
2 + M−

3 M−∗
4 − M+

3 M+∗
4 ) −2
(b−

1 b−∗
2 − b+

1 b+∗
2 + b−

3 b−∗
4 − b+

3 b+∗
4 ) {c; −; x ′} B�R

I0P
�
y′ −2
(M−

1 M−∗
2 − M+

1 M+∗
2 + M−

3 M−∗
4 − M+

3 M+∗
4 ) −|b−

1 |2 + |b+
1 |2 + |b−

2 |2 − |b+
2 |2 {c; −; y ′}

−|b−
3 |2 + |b+

3 |2 + |b−
4 |2 − |b+

4 |2

I0P
�
z′ −|M−

1 |2 + |M+
1 |2 + |M−

2 |2 − |M+
2 |2 2�(b−

1 b−∗
2 − b+

1 b+∗
2 + b−

3 b−∗
4 − b+

3 b+∗
4 ) {c; −; z′}

−|M−
3 |2 + |M+

3 |2 + |M−
4 |2 − |M+

4 |2
I0O�

xx′ 2�(M−
2 M−∗

3 − M+
2 M+∗

3 + M−
1 M−∗

4 − M+
1 M+∗

4 ) 2�(b−
2 b−∗

3 − b+
2 b+∗

3 − b−
1 b−∗

4 + b+
1 b+∗

4 ) {c; x; x ′} B�TR

I0O�
xy′ 2
(M−

2 M−∗
3 − M+

2 M+∗
3 − M−

1 M−∗
4 + M+

1 M+∗
4 ) 2
(b−

1 b−∗
3 − b+

1 b+∗
3 − b−

2 b−∗
4 + b+

2 b+∗
4 ) {c; x; y ′}

I0O�
xz′ 2�(−M−

1 M−∗
3 + M+

1 M+∗
3 + M−

2 M−∗
4 − M+

2 M+∗
4 ) −2
(b−

2 b−∗
3 − b+

2 b+∗
3 + b−

1 b−∗
4 − b+

1 b+∗
4 ) {c; x; z′}

I0O�
yx′ −2
(M−

2 M−∗
3 − M+

2 M+∗
3 + M−

1 M−∗
4 − M+

1 M+∗
4 ) −2
(b−

1 b−∗
2 − b+

1 b+∗
2 − b−

3 b−∗
4 + b+

3 b+∗
4 ) {c; y; x ′}

I0O�
yy′ 2�(M−

2 M−∗
3 − M+

2 M+∗
3 − M−

1 M−∗
4 + M+

1 M+∗
4 ) −|b−

1 |2 + |b+
1 |2 + |b−

2 |2 − |b+
2 |2 {c; y; y ′}

+|b−
3 |2 − |b+

3 |2 − |b−
4 |2 + |b+

4 |2
I0O�

yz′ 2
(M−
1 M−∗

3 − M+
1 M+∗

3 − M−
2 M−∗

4 + M+
2 M+∗

4 ) 2�(b−
1 b−∗

2 − b+
1 b+∗

2 − b−
3 b−∗

4 + b+
3 b+∗

4 ) {c; y; z′}
I0O�

zx′ 2�(−M−
1 M−∗

2 + M+
1 M+∗

2 + M−
3 M−∗

4 − M+
3 M+∗

4 ) −2
(b−
2 b−∗

3 − b+
2 b+∗

3 − b−
1 b−∗

4 + b+
1 b+∗

4 ) {c; z; x ′}
I0O�

zy′ 2
(M−
1 M−∗

2 − M+
1 M+∗

2 − M−
3 M−∗

4 + M+
3 M+∗

4 ) 2�(b−
1 b−∗

3 − b+
1 b+∗

3 − b−
2 b−∗

4 + b+
2 b+∗

4 ) {c; z; y ′}
I0O�

zz′ |M−
1 |2 − |M+

1 |2 − |M−
2 |2 + |M+

2 |2 2�(−b−
2 b−∗

3 + b+
2 b+∗

3 − b−
1 b−∗

4 + b+
1 b+∗

4 ) {c; z; z′}
− |M−

3 |2 + |M+
3 |2 + |M−

4 |2 − |M+
4 |2

These inequalities can also be manipulated (as was done for πN → ππN ) to lead to

1 + P 2
y + (I�)2 + (

P �
y

)2 �
{
P 2

y ′ + O2
yy ′ + (

P �
y ′

)2 + (
O�

yy ′
)2

,

P 2
x ′ + O2

yx ′ + (
P �

x ′
)2 + (

O�
yx ′

)2
, P 2

z′ + O2
yz′ + (

P �
z′

)2 + (
O�

yz′
)2}

,

1 + P 2
y ′ + (I�)2 + (

P �
y ′

)2 �
{
P 2

y + O2
yy ′ + (

P �
y

)2 + (
O�

yy ′
)2

,

P 2
x + O2

xy ′ + (
P �

x

)2 + (
O�

xy ′
)2

, P 2
z + O2

zy ′ + (
P �

z

)2 + (
O�

zy ′
)2}

,

1 + O2
yy ′ + (I�)2 + (

O�
yy ′

)2 �
{
P 2

y + P 2
y ′ + (

P �
y

)2 + (
P �

y ′
)2

,

O2
xz′ + O2

zx ′ + (
O�

xz′
)2 + (

O�
zx ′

)2
, O2

xx ′ + O2
zz′ + (

O�
xx ′

)2 + (
O�

zz′
)2}

,

1 + O2
yy ′ + P 2

y + P 2
y ′ �

{
(I�)2 + (

O�
yy ′

)2 + (
P �

y

)2 + (
P �

y ′
)2

,
(61)

(I s)2 + (
Os

yy ′
)2 + (

P s
y

)2 + (
P s

y ′
)2

, (I c)2 + (
Oc

yy ′
)2 + (

P c
y

)2 + (
P c

y ′
)2}

,

1 + P 2
y + (

P �
y ′

)2 + (
O�

yy ′
)2 �

{
(I�)2 + (

P �
y

)2 + P 2
y ′ + O2

yy ′ ,(
P s

x ′
)2 + (

Os
yx ′

)2 + (
P c

z′
)2 + (

Oc
yz′

)2
,

(
P s

z′
)2 + (

Os
yz′

)2 + (
P c

x ′
)2 + (

Oc
yx ′

)2}
1 + P 2

y ′ + (
P �

y

)2 + (
O�

yy ′
)2 �

{
(I�)2 + (

P �
y ′

)2 + P 2
y + O2

yy ′ ,(
P s

x

)2 + (
Os

xy ′
)2 + (

P c
z

)2 + (
Oc

zy ′
)2

,
(
P s

z

)2 + (
Os

zy ′
)2 + (

P c
x

)2 + (
Oc

xy ′
)2}

,

1 + O2
yy ′ + (

P �
y ′

)2 + (
P �

y

)2 �
{
(I�)2 + (

O�
yy ′

)2 + P 2
y ′ + P 2

y ,(
Os

xx ′
)2 + (

Os
zz′

)2 + (
Oc

xz′
)2 + (

Oc
zx ′

)2
,

(
Os

xz′
)2 + (

Os
zx ′

)2 + (
Oc

xx ′
)2 + (

Oc
zz′

)2}
.
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TABLE IV. Polarization observables of single- and double-pion photoproduction in terms of the helicity and transversity amplitudes. These
observables arise with linearly polarized photons, and are proportional to sin 2β in the cross section. The notation is as in Table II. B� indicates
that a circularly polarized photon beam is needed for these measurements. L(θ1, θ2) indicates that the measurements require photon beams that
are linearly polarized at angles θ1 and θ2 to the scattering plane.

Obs. Helicity form Transversity form Expt. Type

I0I
s −2
(M+

1 M−∗
1 + M+

2 M−∗
2 + M+

3 M−∗
3

+ M+
4 M−∗

4 )
−2
(b+

1 b−∗
1 + b+

2 b−∗
2 + b+

3 b−∗
3 + b+

4 b−∗
4 ) {L(± π

4 ); −; −} B�

I0P
s
x −2
(M+

1 M−∗
3 − M−

1 M+∗
3 + M+

2 M−∗
4

− M−
2 M+∗

4 )
2�(−b+

1 b−∗
3 + b−

1 b+∗
3 − b+

2 b−∗
4 + b−

2 b+∗
4 ) {L(± π

4 ); x; −} B�T

I0P
s
y 2�(−M+

1 M−∗
3 + M−

1 M+∗
3 − M+

2 M−∗
4

+ M−
2 M+∗

4 )
−2
(b+

1 b−∗
1 + b+

2 b−∗
2 − b+

3 b−∗
3 − b+

4 b−∗
4 ) {L(± π

4 ); y; −}

I0P
s
z 2
(M+

1 M−∗
1 + M+

2 M−∗
2 − M+

3 M−∗
3 + M+

4 M−∗
4 ) 2
(b+

1 b−∗
3 − b−

1 b+∗
3 + b+

2 b−∗
4 − b−

2 b+∗
4 ) {L(± π

4 ); z; −}
I0P

s
x′ 2
(M+

1 M−∗
2 − M−

1 M+∗
2 + M+

3 M−∗
4 − M−

3 M+∗
4 ) 2�(b+

1 b−∗
2 − b−

1 b+∗
2 + b+

3 b−∗
4 − b−

3 b+∗
4 ) {L(± π

4 ); −; x ′} B�R
I0P

s
y′ 2�(M+

1 M−∗
2 − M−

1 M+∗
2 + M+

3 M−∗
4

− M−
3 M+∗

4 )
−2
(b+

1 b−∗
1 − b+

2 b−∗
2 + b+

3 b−∗
3 − b+

4 b−∗
4 ) {L(± π

4 ); −; y ′}

I0P
s
z′ −2
(M+

1 M−∗
1 − M+

2 M−∗
2 + M+

3 M−∗
3

− M+
4 M−∗

4 )
2
(b+

1 b−∗
2 − b−

1 b+∗
2 + b+

3 b−∗
4 − b−

3 b+∗
4 ) {L(± π

4 ); −; z′}

I0Os
xx′ 2
(M+

2 M−∗
3 −M−

2 M+∗
3 +M+

1 M−∗
4 −M−

1 M+∗
4 ) 2
(b+

2 b−∗
3 − b−

2 b+∗
3 − b+

1 b−∗
4 + b−

1 b+∗
4 ) {L(± π

4 ); x; x ′} B�TR
I0Os

xy′ 2�(−M+
2 M−∗

3 + M−
2 M+∗

3 + M+
1 M−∗

4

− M−
1 M+∗

4 )
2�(−b+

1 b−∗
3 + b−

1 b+∗
3 + b+

2 b−∗
4 − b−

2 b+∗
4 ) {L(± π

4 ); x; y ′}

I0Os
xz′ −2
(M+

1 M−∗
3 − M−

1 M+∗
3 − M+

2 M−∗
4

+ M−
2 M+∗

4 )
2�(b+

2 b−∗
3 − b−

2 b+∗
3 + b+

1 b−∗
4 − b−

1 b+∗
4 ) {L(± π

4 ); x; z′}

I0Os
yx′ 2�(M+

2 M−∗
3 − M−

2 M+∗
3 + M+

1 M−∗
4

− M−
1 M+∗

4 )
2�(b+

1 b−∗
2 − b−

1 b+∗
2 − b+

3 b−∗
4 + b−

3 b+∗
4 ) {L(± π

4 ); y; x ′}

I0Os
yy′ 2
(M+

2 M−∗
3 − M−

2 M+∗
3 − M+

1 M−∗
4 + M−

1 M+∗
4 ) −2
(b+

1 b−∗
1 − b+

2 b−∗
2 − b+

3 b−∗
3 + b+

4 b−∗
4 ) {L(± π

4 ); y; y ′}
I0Os

yz′ 2�(−M+
1 M−∗

3 + M−
1 M+∗

3 + M+
2 M−∗

4

− M−
2 M+∗

4 )
2
(b+

1 b−∗
2 − b−

1 b+∗
2 − b+

3 b−∗
4 + b−

3 b+∗
4 ) {L(± π

4 ); y; z′}

I0Os
zx′ −2
(M+

1 M−∗
2 − M−

1 M+∗
2 − M+

3 M−∗
4

+ M−
3 M+∗

4 )
2�(b+

2 b−∗
3 − b−

2 b+∗
3 − b+

1 b−∗
4 + b−

1 b+∗
4 ) {L(± π

4 ); z; x ′}

I0Os
zy′ 2�(−M+

1 M−∗
2 + M−

1 M+∗
2 + M+

3 M−∗
4

− M−
3 M+∗

4 )
2
(b+

1 b−∗
3 − b−

1 b+∗
3 − b+

2 b−∗
4 + b−

2 b+∗
4 ) {L(± π

4 ); z; y ′}

I0Os
zz′ 2
(M+

1 M−∗
1 − M+

2 M−∗
2 − M+

3 M−∗
3 + M+

4 M−∗
4 ) −2
(b+

2 b−∗
3 − b−

2 b+∗
3 + b+

1 b−∗
4 − b−

1 b+∗
4 ) {L(± π

4 ); z; z′}

A. Required experimental measurements in γ N → ππ N

As in the case of πN → ππN , we can examine which
observables need to be measured to extract information on
the helicity or transversity amplitudes. As there are eight such
amplitudes, a minimum of eight measurements must be made
at each kinematic point (recall that these observables depend
on five kinematic variables) to obtain the absolute magnitudes
of the helicity or transversity amplitudes. In terms of our choice
of transversity basis, these measurements are the differential
cross section, along with Py, Py ′ ,Oyy ′ , I�, P �

y , P �
y ′ , and O�

yy ′ .
The eight phases of the transversity amplitude mean that

there are seven independent phase differences that can be
extracted, and seven measurements are needed for this. For
instance, the relative phases (in what should be an obvi-
ous notation) φ−

1 − φ−
2 , φ+

1 − φ+
2 , φ−

3 − φ−
4 , and φ+

3 − φ+
4

require measurement of any four of the eight observables
Px ′ , Pz′ ,Oyx ′ ,Oyz′ , P �

x ′ , P
�
z′ ,O�

yx ′ , and O�
yz′ . φ−

1 − φ−
3 , and

φ−
1 + φ+

3 may then be extracted from measurement of any two
observables from among Px, Pz,Oxy ′ ,Ozy ′ , P �

x , P �
z ,O�

xy ′ ,
and O�

zy ′ , along with use of the identities φ±
2 − φ±

4 = (φ±
2 −

φ±
1 ) + (φ±

1 − φ±
3 ) + (φ±

3 − φ±
4 ). The remaining independent

phase can then be extracted from one of the observables that
arise from linearly polarized photons. A “complete” set of
experiments will therefore require measurement of single,
double, and triple polarization observables, in addition to the
differential cross section.

B. Parity conservation

For the process γN → πN , parity conservation leads to
the relationships

M−λγ

−λN −λ′
N

(θ ) = (−1)λγ −λN +λ′
NMλγ

λNλ′
N

(θ ). (62)

The relationships that arise among the helicity amplitudes
for γN → ππN are

M−λγ

−λN −λ′
N

(θ, θ1, φ1) = (−1)λγ −λN +λ′
NMλγ

λNλ′
N

(θ, θ1, 2π − φ1).
(63)

As was the case with πN → ππN , these relations cannot be
used to decrease the number of independent helicity ampli-
tudes, but they can be used to determine which observables
are even or odd under the transformation φ1 ↔ 2π − φ1.

055201-11



W. ROBERTS AND T. OED PHYSICAL REVIEW C 71, 055201 (2005)

TABLE V. Polarization observables of single- and double-pion photoproduction in terms of the helicity and transversity amplitudes. These
observables arise with linearly polarized photons, and are proportional to cos 2β in the cross section. The notation is as in Table II. B� indicates
that a circularly polarized photon beam is needed for these measurements. L(θ1, θ2) indicates that the measurements require photon beams that
are linearly polarized at angles θ1 and θ2 to the scattering plane.

Obs. Helicity form Transversity form Expt. Type

I0I
c −2�(M+

1 M−∗
1 + M+

2 M−∗
2 + M+

3 M−∗
3

+ M+
4 M−∗

4 )
2�[−(b+

1 b−∗
1 ) − b+

2 b−∗
2 − b+

3 b−∗
3 − b+

4 b−∗
4 ] {L( π

2 , 0); −; −} B�

I0P
c
x −2�(M+

1 M−∗
3 + M−

1 M+∗
3 + M+

2 M−∗
4

+ M−
2 M+∗

4 )
2
(b+

1 b−∗
3 + b−

1 b+∗
3 + b+

2 b−∗
4 + b−

2 b+∗
4 ) {L( π

2 , 0); x; −} B�T

I0P
c
y 2
(M+

1 M−∗
3 + M−

1 M+∗
3 + M+

2 M−∗
4 +M−

2 M+∗
4 ) 2�[−(b+

1 b−∗
1 ) − b+

2 b−∗
2 + b+

3 b−∗
3 + b+

4 b−∗
4 ] {L( π

2 , 0); y; −}
I0P

c
z 2�(M+

1 M−∗
1 + M+

2 M−∗
2 − M+

3 M−∗
3

− M+
4 M−∗

4 )
2�(b+

1 b−∗
3 + b−

1 b+∗
3 + b+

2 b−∗
4 + b−

2 b+∗
4 ) {L( π

2 , 0); z; −}

I0P
c
x′ 2�(M+

1 M−∗
2 + M−

1 M+∗
2 + M+

3 M−∗
4

+ M−
3 M+∗

4 )
−2
(b+

1 b−∗
2 + b−

1 b+∗
2 + b+

3 b−∗
4 + b−

3 b+∗
4 ) {L( π

2 , 0); −; x ′} B�R

I0P
c
y′ −2
(M+

1 M−∗
2 + M−

1 M+∗
2 + M+

3 M−∗
4

+ M−
3 M+∗

4 )
2�[−(b+

1 b−∗
1 ) + b+

2 b−∗
2 − b+

3 b−∗
3 + b+

4 b−∗
4 ] {L( π

2 , 0); −; y ′}

I0P
c
z′ 2�(−M+

1 M−∗
1 + M+

2 M−∗
2 − M+

3 M−∗
3

+ M+
4 M−∗

4 )
2�(b+

1 b−∗
2 + b−

1 b+∗
2 + b+

3 b−∗
4 + b−

3 b+∗
4 ) {L( π

2 , 0); −; z′}

I0Oc
xx′ 2�(M+

2 M−∗
3 + M−

2 M+∗
3 + M+

1 M−∗
4

+ M−
1 M+∗

4 )
2�(b+

2 b−∗
3 + b−

2 b+∗
3 − b+

1 b−∗
4 − b−

1 b+∗
4 ) {L( π

2 , 0); x; x ′} B�TR

I0Oc
xy′ 2
(M+

2 M−∗
3 + M−

2 M+∗
3 − M+

1 M−∗
4 −M−

1 M+∗
4 ) 2
(b+

1 b−∗
3 + b−

1 b+∗
3 − b+

2 b−∗
4 − b−

2 b+∗
4 ) {L( π

2 , 0); x; y ′}
I0Oc

xz′ 2�(−M+
1 M−∗

3 − M−
1 M+∗

3 + M+
2 M−∗

4

+ M−
2 M+∗

4 )
−2
(b+

2 b−∗
3 + b−

2 b+∗
3 + b+

1 b−∗
4 + b−

1 b+∗
4 ) {L( π

2 , 0); x; z′}

I0Oc
yx′ −2
(M+

2 M−∗
3 + M−

2 M+∗
3 + M+

1 M−∗
4

+ M−
1 M+∗

4 )
−2
(b+

1 b−∗
2 + b−

1 b+∗
2 − b+

3 b−∗
4 − b−

3 b+∗
4 ) {L( π

2 , 0); x; x ′}

I0Oc
yy′ 2�(M+

2 M−∗
3 + M−

2 M+∗
3 − M+

1 M−∗
4

− M−
1 M+∗

4 )
2�[−(b+

1 b−∗
1 ) + b+

2 b−∗
2 + b+

3 b−∗
3 − b+

4 b−∗
4 ] {L( π

2 , 0); x; y ′}

I0Oc
yz′ 2
(M+

1 M−∗
3 + M−

1 M+∗
3 − M+

2 M−∗
4 −M−

2 M+∗
4 ) 2�(b+

1 b−∗
2 + b−

1 b+∗
2 − b+

3 b−∗
4 − b−

3 b+∗
4 ) {L( π

2 , 0); x; z′}
I0Oc

zx′ 2�(−M+
1 M−∗

2 − M−
1 M+∗

2 + M+
3 M−∗

4

+ M−
3 M+∗

4 )
2
(−b+

2 b−∗
3 − b−

2 b+∗
3 + b+

1 b−∗
4 + b−

1 b+∗
4 ) {L( π

2 , 0); z; x ′}

I0Oc
zy′ 2
(M+

1 M−∗
2 + M−

1 M+∗
2 − M+

3 M−∗
4 −M−

3 M+∗
4 ) 2�(b+

1 b−∗
3 + b−

1 b+∗
3 − b+

2 b−∗
4 − b−

2 b+∗
4 ) {L( π

2 , 0); z; y ′}
I0Oc

zz′ 2�(M+
1 M−∗

1 − M+
2 M−∗

2 − M+
3 M−∗

3

+ M+
4 M−∗

4 )
2�(−b+

2 b−∗
3 − b−

2 b+∗
3 − b+

1 b−∗
4 − b−

1 b+∗
4 ) {L( π

2 , 0); z; z′}

C. Construction of transition amplitudes

1. γ N → π N

In this case, there are two independent vectors �k, the
momentum of the photon, and �q, the momentum of the pion.
A must be an axial vector, whereas Bij must be a tensor. For
real photons, �ε · �k = 0, so there can be no kj terms in Bij . The
forms that can be written are

�A = αk̂ × q̂,
(64)

Bij = β1δij + β2k̂i q̂j + β3q̂i q̂j .

Comparing this with the form written by Chew, Goldberger,
Low, and Nambu [13]

iM = χ †(F1 �σ · �ε + iF2 �σ · q̂ �σ · k̂

× �ε + F3 �σ · k̂q̂ · �ε + F4 �σ · q̂q̂ · �ε)φ (65)

means that we can identify

α = iF2, β1 = F1 − k̂ · q̂F2,
(66)

β2 = F2 + F3, β3 = F4.

From the explicit forms for k̂, q̂, and �ε(λ), we can use
Eq. (56) to obtain M∓

1 = M±
4 ,M∓

3 = −M±
2 (or, equiva-

lently, b∓
4 = b1±, b∓

3 = −b±
2 ), leaving 4 independent helicity

amplitudes, as expected. These helicity amplitudes are related
to those of Storrow [3], for example, by N = M+

2 , S1 =
M+

4 , S2 = M+
1 , and D = M+

3 . Of the 64 observables, 32
vanish identically. Furthermore, all 13 remaining triple-
polarization observables are related to double- or single-
polarization observables, or the differential cross section, and
three of the remaining 15 double-polarization observables are
related to single-polarization observables, leaving a total of 16
observables. The remaining observables are given in terms of
the helicity and transversity amplitudes in Table VI.

The relationships among these observables, obtained from
consideration of the transversity amplitudes, are

(
P �

x ′ ∓ P s
z′
)2 + (

P �
z′ ± P s

x ′
)2 = (1 ± Py)2 − (Py ′ ± Oyy ′ )2,(

P �
x ± P s

z

)2 + (
P �

z ∓ P s
x

)2 = (1 ± Py ′ )2 − (Py ± Oyy ′ )2,

(Oxz′ ∓ Ozx ′ )2 + (Oxx ′ ± Ozz′ )2=(1 ± Oyy ′ )2 − (Py±Py ′ )2.

(67)
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TABLE VI. Polarization observables of single-pion photoproduction expressed as bilinear forms of the helicity amplitudes.

Observable Usual Helicity Transversity form Measurements
name form

I0 (−Oc
yy′ ) I0 |M+

1 |2 + |M+
2 |2 + |M+

3 |2 + |M+
4 |2 |b+

1 |2 + |b+
2 |2 + |b+

3 |2 + |b+
4 |2 {−; −; −}, {L( π

2 , 0); x; y ′}
Py (−P c

y′ ) T −2
(M+
1 M+∗

3 + M+
2 M+∗

4 ) |b+
1 |2 + |b+

2 |2 − |b+
3 |2 − |b+

4 |2 {−; y; −}, {L( π

2 , 0); −; y ′}
Py′ (−P c

y ) P 2
(M+
1 M+∗

2 + M+
3 M+∗

4 ) |b+
1 |2 − |b+

2 |2 + |b+
3 |2 − |b+

4 |2 {−; −; y ′}, {L( π

2 , 0); y; −}
Oxx′ (−Oc

zz′ ) Tx 2�(−M+
2 M+∗

3 − M+
1 M+∗

4 ) 2�(−b+
2 b+∗

3 + b+
1 b+∗

4 ) {−; x; x ′}, {L( π

2 , 0); z; z′}
Oxz′ (Oc

zx′ ) Tz 2�(M+
1 M+∗

3 − M+
2 M+∗

4 ) −2
(−b+
2 b+∗

3 − b+
1 b+∗

4 ) {−; x; z′}, {L( π

2 , 0); z; x ′}
Oyy′ (−I c) � 2�(−M+

2 M+∗
3 + M+

1 M+∗
4 ) |b+

1 |2 − |b+
2 |2 − |b+

3 |2 + |b+
4 |2 {−; y; y ′}, {L( π

2 , 0); −; −}
Ozx′ (Oc

xz′ ) Lx 2�(M+
1 M+∗

2 − M+
3 M+∗

4 ) −2
(−b+
2 b+∗

3 + b+
1 b+∗

4 ) {−; z; x ′}, {L( π

2 , 0); x; z′}
Ozz′ (−Oc

xx′ ) Lz −|M+
1 |2 + |M+

2 |2 + |M+
3 |2 − |M+

4 |2 2�(b+
2 b+∗

3 + b+
1 b+∗

4 ) {−; z; z′}, {L( π

2 , 0); x; x ′}
P �

x (Os
zy′ ) F 2�(M+

1 M+∗
3 + M+

2 M+∗
4 ) −2
(b+

1 b+∗
3 + b+

2 b+∗
4 ) {c; x; −}, {L(± π

4 ); z; y ′}
P �

z (−Os
xy′ ) E −|M+

1 |2 − |M+
2 |2 + |M+

3 |2 + |M+
4 |2 2�(−b+

1 b+∗
3 − b+

2 b+∗
4 ) {c; z; −}, {L(± π

4 ); x; y ′}
P �

x′ (−Os
yz′ ) Cx −2�(M+

1 M+∗
2 + M+

3 M+∗
4 ) −2
(−b+

1 b+∗
2 − b+

3 b+∗
4 ) {c; −; x ′}, {L(± π

4 ); y; z′}
P �

z′ (Os
yx′ ) Cz |M+

1 |2 − |M+
2 |2 + |M+

3 |2 − |M+
4 |2 2�(−b+

1 b+∗
2 − b+

3 b+∗
4 ) {c; −; z′}, {L(± π

4 ); y; x ′}
P s

x (−O�
zy′ ) H 2
(M+

1 M+∗
2 − M+

3 M+∗
4 ) 2�(b+

1 b+∗
3 − b+

2 b+∗
4 ) {L(± π

4 ); x; −}, {c; z; y ′}
P s

z (O�
xy′ ) G 2
(−M+

2 M+∗
3 + M+

1 M+∗
4 ) −2
(b+

1 b+∗
3 − b+

2 b+∗
4 ) {L(± π

4 ); z; −}, {c; x; y ′}
P s

x′ (O�
yz′ ) Ox −2
(M+

1 M+∗
3 − M+

2 M+∗
4 ) 2�(−b+

1 b+∗
2 + b+

3 b+∗
4 ) {L(± π

4 ); −; x ′}, {c; y; z′}
P s

z′ (−O�
yx′ ) Oz −2
(M+

2 M+∗
3 + M+

1 M+∗
4 ) −2
(b+

1 b+∗
2 − b+

3 b+∗
4 ) {L(± π

4 ); −; z′}, {c; y; x ′}

These lead to the inequalities

|1 ± Py | �
{∣∣P �

x ′ ∓ P s
z′
∣∣, ∣∣P �

z′ ± P s
x ′
∣∣, |Py ′ ± Oyy ′ |},

|1 ± Py ′ | � {∣∣P �
x ± P s

z

∣∣, ∣∣P �
z ∓ P s

x

∣∣, |Py ± Oyy ′ |},
|1 ± Oyy ′ | � {|Oxz′ ∓ Ozx ′ |, |Oxx ′ ± Ozz′ |, |Py ± Py ′ |},

(68)

and

1 + P 2
y �

{(
P �

x ′
)2 + (

P s
z′
)2

,
(
P �

z′
)2 + (

P s
x ′
)2

, P 2
y ′ + O2

yy ′
}
,

1 + P 2
y ′ �

{(
P �

x

)2 + (
P s

z

)2
,

(
P �

z

)2 + (
P s

x

)2
, P 2

y + O2
yy ′

}
,

1 + O2
yy ′ �

{
O2

xz′ + O2
zx ′ , O2

xx ′ + O2
zz′ , P 2

y + P 2
y ′
}
.

(69)

2. γ N → ππ N

For this process, we have three independent vectors,
k̂, p̂2, and q̂1 with which to construct a vector for �A and
a pseudotensor for Bij . However, using these leads to the
difficulty that there are too many structures left inBij . To avoid
this problem, we define an axial vector n̂ as n̂ = k̂ × p̂2/N ,
with N = |k̂ × p̂2| = sin θ . n̂ defines the y axis, whereas the
x axis is defined by n̂ × k̂ = (p̂2 − k̂k̂ · p̂2)/N . We can now
write

q̂1 = q̂1 · k̂k̂ + q̂1 · n̂n̂ + (q̂1 · p̂2 − q̂1 · k̂k̂ · p̂2)

× (p̂2 − k̂k̂ · p̂2)/N2 (70)

and use the axial vector n̂ and the pseudoscalar P = q̂1 · k̂ ×
p̂2 = Nq̂1 · n̂ instead of q̂1 to build the structures that make up
Ai and Bij . n̂ and P can appear only once in these structures
because, by expanding the product of Levi-Civita tensors, it is
easy to show that P2 is a scalar that depends only on quantities

already defined

P2 = 1 − (k̂ · p̂2)2 − (k̂ · q̂1)2 − (p̂2 · q̂1)2

− 2k̂ · p̂2k̂ · q̂1p̂2 · q̂1, (71)

whereas n̂i n̂j can be expressed as

n̂i n̂j = δij − p̂i
2p̂

j

2 + k̂i k̂j + k̂ · p̂2
(
k̂i p̂

j

2 + p̂i
2k̂

j
)

N2
.

(72)
The vectors that can make up Ai are ki, qi

1 and P n̂i . Because
ε · k̂ = 0, only two structures remain. Similarly Bij can
be expressed as a sum of n̂i p̂

j

2 , n̂
i k̂j , p̂i

2n̂
j ,Pp̂i

2p̂
j

2 ,Pp̂i
2k̂

j ,

Pδij , εijkk̂k, εijkp̂k
2, and Pεijkn̂k .

Expressing εi as

εi = ε · k̂k̂i + ε · n̂n̂i + (ε · p̂2 − ε · k̂k̂ · p̂2)

×(
p̂i

2 − k̂i k̂ · p̂2
)/

N2 (73)

= ε · n̂n̂i + ε · p̂2
(
p̂i

2 − k̂i k̂ · p̂2
)/

N2, (74)

it is easy to show that the last three structures can be expressed
as

εijkk̂kεi = n̂i p̂
j

2 − n̂i k̂j p̂2 · k̂ − p̂i
2n̂

j

N
εi (75)

εijkp̂k
2ε

i = n̂i p̂
j

2 k̂ · p̂2 − n̂i k̂j + p̂i
2n̂

j k̂ · p̂2

N
εi (76)

Pεijkn̂kεi = P p̂i
2k̂

j

N
εi. (77)

These three structures can therefore be omitted from the
construction of the amplitude. Finally, we write
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�A = α1q̂1 + α2P n̂,

Bij = β1n̂
i p̂

j

2 + β2n̂
i k̂j + β3p̂

i
2n̂

j

+β4Pp̂i
2p̂

j

2 + β5Pp̂i
2k̂

j + β6Pδij . (78)

As discussed previously, parity conservation can be used
to tell which observables are even and which are odd under
the transformation φ1 ↔ 2π − φ1. In the previous subsection,
we listed the nonvanishing observables for γN → Nπ . The
corresponding observables in γN → Nππ are all even under
the transformation in φ1. The variables that vanish in γN →
πN are nonzero for γN → ππN but are odd under the φ1

transformation.

V. CONCLUSION AND OUTLOOK

We have developed a set of polarization observables that
are applicable to final states that contain two pseudoscalar
mesons and a spin-1/2 baryon, such as Nππ , and have
examined the observables that arise using both photon and
pion (or other pseudoscalar meson) beams. We have written
these observables in terms of both helicity and transversity
amplitudes, obtained relationships among them, and used these
to list inequalities that these observables satisfy. We have
also indicated the measurements that are needed for each
observable. The framework that we have used is a very simple
one: undoubtedly, the expressions for the observables and the
relationships among them can be derived in a more elegant
manner.

Although we have discussed helicity and one set of transver-
sity amplitudes, there remains the possibility of defining yet
another set of amplitudes and writing the observables in terms
of these. In the c.m. frame, the momenta of the final particles
satisfy �p2 + �q1 + �q2 = �0, which means that they define a
plane. The normal to this plane can be defined by �p2 × �q1,
and this offers another natural axis for quantization of the
spin of the final nucleon. One possible advantage of using this
axis is that it automatically incorporates information about
the entire final state, not just the final nucleon. Whether this
leads to any particular advantage, simplification, or insight into
the observables, the relationships among them, or even in the
amplitudes themselves awaits exploration.

As we stated at the start of this manuscript, polarization
observables are crucial for extracting resonance information
from scattering data. Differential cross sections, presented in
whatever form will provide information only on the magni-
tudes of helicity or transversity amplitudes. Phase information

is crucial, and this is available only from measurement of
a number of different observables. This is well known for
processes such as γN → πN . The same is true, or perhaps
even more true, for processes such as γN → ππN . Models
with quite different input can and will succeed in describing
the total and differential cross section, but the polarization
observables will serve to distinguish among such models.

A number of these observables can be measured in the near
future at existing facilities, for a number of processes. Indeed,
the photon polarization asymmetry I� has already been
measured at Jefferson Laboratory [14] for γp → pπ+π−, and
the analysis is continuing at present. Clearly, this variable can
be measured in other channels, and there are plans to do so for
γp → pπ0π0, at Bonn [15]. The existence of polarized targets
means that Px, Py , and Pz are accessible, and coupling such
targets with circularly polarized beams allows measurement
of P �

x , P �
y , and P �

z . The use of linearly polarized photons
opens the door to measurements of P s,c

x , P s,c
y , P s,c

z , and I s,c.
For processes with a hyperon in the final state, such as
γN → πK�, the self-analyzing decay of the hyperon allows
its polarization to be determined, in principle allowing many
more observables to be measured, including a number of triple-
polarization ones. For processes such as πN → ππN , three
of the observables are readily available with polarized targets.
All others require the measurement of recoil polarization.
Unfortunately, there are at present no existing hadronic beams
facilities that will allow us to capitalize on these observables.

We have not attempted to explore the properties of the
observables that we described herein, apart from a brief discus-
sion of the oddness or evenness under the φ1 transformation.
In particular, we have said nothing on their values at special
values of θ , for instance, such as θ = 0 or π . This is left for
a possible future manuscript. In the near future, we plan to
explore a number of these observables in the framework of an
existing model for the photoproduction of two pseudoscalar
mesons off a nucleon target. In particular, the sensitivity of the
observables to the details of the underlying dynamics, as well
as the rich structure of these observables, are discussed.
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