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Distribution of the largest fragment in the lattice gas model
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(Received 10 February 2005; published 26 May 2005)

The distribution of the largest fragment is studied in different regions of the lattice gas model phase diagram.
We show that first- and second-order transitions can be clearly distinguished in the grancanonical ensemble,
while signals typical of a continuous transition are seen inside the coexistence region if a mass conservation
constraint is applied. Some possible implications of these findings for heavy-ion multifragmentation experiments
are discussed.
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I. INTRODUCTION

Since the first heavy-ion experiments were conducted, the
size of the largest cluster AM detected in multifragmentation
events has been tentatively associated with an order parameter
for the fragmentation phase transition [1]; if this is true, we
should expect for this observable a double-humped distribution
if the transition is first order [2], while its fluctuations should
obey the first scaling law if the transition is continuous [3]. Ex-
perimental multifragmentation data show in this respect some-
what contradictory evidences. An analysis of 80A MeV Au+Au
peripheral collisions from the Indra-Aladin collaboration [4]
reports a bimodal distribution of a variable closely correlated to
AM . On the other hand, the functional relationship between the
two first moments of AM in central Xe+Cu collisions [5] shows
a change of slope which has been interpreted as a transition
from the � = 1/2 to the � = 1 scaling law, as expected for
a generic continuous transition [3]. From the theoretical point
of view, it is well known [6–10] that in finite systems many
different pseudocritical behaviors can be observed inside the
coexistence region of a first-order phase transition. Particularly
concerning the order parameter fluctuations, simulations have
been performed in the framework of the Ising model with fixed
magnetization (IMFM) in Ref. [11]. That study showed the
distribution of AM to approximately obey the first scaling law
even at subcritical densities, i.e., in thermodynamic conditions
where no continuous transition takes place. Since the scaling
is violated for very large lattices, the observed behavior
was interpreted in that paper as a finite size effect that
prevents the recognition of the order of a transition in a small
system. An important difference subsists, though, between the
theoretical study of Ref. [11] and the experimental analysis in
Ref. [5]: in the first paper, the average AM size is varied by
increasing the total lattice size, meaning that the existence
of a scaling law is tested in well-defined thermodynamic
conditions [a single point in the (ρ, T ) state variables space].
In the experimental case, it is not possible to freely vary the
source size, therefore, different regions of 〈AM〉 are explored
by varying the total energy deposited in the fragmenting
system. It is not a priori clear how these two very different
procedures might be related and whether they could be
equivalent.

In this paper, we analyze the distribution of AM within the
lattice gas model [12]. This model is the simplest representa-
tion of the liquid-gas phase transition; when augmented with
the cluster definition through the Coniglio-Klein algorithm
[13], it can also be related to a bond and site percolation
problem, making this model a paradigm of the fragmentation
phase transition. This model is isomorphous to the Ising spin
model, and its thermodynamic properties are very precisely
known: the lattice gas phase diagram contains both first-
and second-order phase transitions, and basic effects, like
conservation laws, which are very relevant to the experimental
situation, can be easily implemented.

In the analysis of the AM distributions, we will show that the
most important finite size effect is the inequivalence between
statistical ensembles [14]: the observed ambiguities can be
coherently interpreted as an effect of conservation laws, the
distribution of an order parameter being drastically deformed if
a constraint is applied to an observable that is closely correlated
to the order parameter under study.

Specifically, we will demonstrate the following points:

� In small canonical systems, a first scaling law as a function
of the system size can be observed not only at the critical
point but also for subcritical densities inside the coexistence
region. This is in agreement with the findings reported in
Ref. [11]. The difficulty in recognizing the order of the
transition is due to not only the finite size effects but also
and more importantly the fact that the order parameter
distribution and its scaling properties are deformed by the
conservation law that in the canonical ensemble acts on
the total number of particles At , which strongly constrains
the order parameter AM .

� If the AM size is varied by changing the system tem-
perature at a fixed lattice size, no scaling of the largest
fragment distribution is observed even if we choose a trans-
formation that passes across the thermodynamic critical
point.

� In this case, the correlation between the average 〈AM〉
and the variance σ 2 of the largest fragment distribution
exhibits a rise and fall which is imposed by the conservation
law constraint; the double logarithmic derivative �′ =
d ln σ/d〈AM〉 appears to be a smooth decreasing function
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FIG. 1. (Color online) Right side: distributions of the size of the
largest cluster in the grancanonical lattice gas model at different
temperatures T/ε, with an 8 × 8 × 8 lattice and at µ = 3ε. Left side:
lattice gas phase diagram from the distributions on the right side.
Dashed line: locus of the maximal AM fluctuation in the canonical
ensemble.

of 〈AM〉; even if �′ is passing through �′ = 1 and �′ = 1/2
before becoming negative, no simple scalings σ ∝ 〈AM〉�
can actually be unambiguously isolated.

� However, we show that both the existence of a transition
and a conclusion about its order can be inferred from the
quantitative study of the AM fluctuation.

II. PHASE TRANSITION IN THE LATTICE GAS MODEL

In our implementation of the lattice gas model [12], the
N sites of a cubic lattice are characterized by an occupation
number ni , which is defined as ni = 0(1) for a vacancy (par-
ticle). Particles occupying nearest neighboring sites interact
with a constant coupling ε. This model can be transformed
into an Ising spin problem with a magnetic field through the
mapping si = ni − 1/2. The relative particle density ρ/ρ0 is
defined as the number of occupied sites divided by the total
number of sites and is linked to the magnetization of the Ising
model by ρ/ρ0 = m + 1/2. In addition to this interaction, a
kinetic energy is introduced. Occupied sites are characterized
by a momentum vector. Observables expectation values are
evaluated in the different ensembles (grancanonical, canonical,
and microcanonical) sampled through standard Metropolis
algorithms [8]. The chemical potential in the grancanonical
implementation plays the role of the magnetic field h =
µ − 3ε in Ising, while the canonical lattice gas corresponds to
the constant magnetization IMFM case with m = ρ/ρ0 − 1/2.

The phase diagram of the model can be easily evaluated
looking at the distribution of the total number of particles
At = ∑N

i=1 ni in the grancanonical ensemble with a chemical
potential µ = µc = 3ε, which corresponds to the Ising critical
field h = 0. The At distributions Pβµ(At ) are displayed at
different temperatures in the right side of Fig. 1. The presence
of two different ensembles of states (bimodality) is clearly
seen for all temperatures T < Tc ≈ 1.22ε. At the critical
chemical potential µc presented in the figure, the probabilities
of occurrence of the two solutions are exactly identical; if
µ < µc (µ > µc) the high (low) density peak dominates. For
a fixed temperature β−1, the most probable At as a function of
µ is discontinuous at the transition point µc.

FIG. 2. (Color online) AM distributions as a function of temper-
ature for an 8 × 8 × 8 lattice in the grancanonical (left), canonical
(middle), and microcanonical (right) ensemble. In all cases the density
is ρ/ρ0 = 1/2.

At the thermodynamic limit, the discontinuity in the most
probable At as a function of µ gives rise to a discontinuity
in the associated 〈At 〉(µ) equation of state; this implies that
the two peaks represent two coexisting phases [15,16] and
that the number of particles (or equivalently the density) is
the order parameter of a phase transition that is first order
up to the critical point T = Tc. The phase diagram can be
constructed by reporting the forbidden region for the most
probable density, i.e., the locus of the discontinuity in the most
probable. This corresponds to the two peaks in the bimodal
particle number distribution observed at µc. The phase diagram
is displayed in the left side of Fig. 1. These findings obtained in
an 8 × 8 × 8 lattice correspond to the phenomenology of the
liquid-gas phase transition that the model is known to display
at the thermodynamic limit. If we increase the lattice size, the
location of the coexistence border will be modified, even if
finite size corrections are especially small in this model [8].
However, it is clear from Fig. 1 that (except at the critical point
which is a second-order point, where the two peaks merge
to form a single distribution) the first-order character of the
transition is indisputable even for a linear dimension as small
as L = 8.

Figure 2 shows the size of the largest cluster AM as a func-
tion of the temperature for the grancanonical, canonical, and
microcanonical ensembles. The obvious correlation between
AM and At implies that for T < Tc the AM distribution is also
double humped in the grancanonical ensemble, as explicitly
shown in Ref. [17]. This means that AM can also be taken as an
order parameter of the liquid-gas phase transition; and looking
at its distribution, this transition can be recognized as first
order even for a system constituted of 〈At 〉 = 256 particles.

In Fig. 2 as well as in the following figures, clusters
are always recognized with the so-called Coniglio-Klein
algorithm [13]. It is important to note that if all cluster
recognition algorithms are approximately equivalent in the
low-density regime, the recognition of physical clusters in
the vicinity or above the critical point demands a recognition
algorithm explicitly depending on momentum space. Indeed,
Ising clusters (i.e., sets of occupied nearest-neighbor sites,
independent of the site momentum) do not show in three

054607-2



DISTRIBUTION OF THE LARGEST FRAGMENT IN THE . . . PHYSICAL REVIEW C 71, 054607 (2005)

dimensions a critical behavior at the thermodynamical critical
point [18].

III. CONSERVATION LAWS AND THERMODYNAMICS

If the constraint of mass conservation is implemented
(canonical lattice gas, or equivalent Ising model with fixed
magnetization), the distributions of AM drastically change
[17]. In the grancanonical ensemble at 〈ρ/ρ0〉 = 1/2, the ex-
plored microstates essentially populate the coexistence border,
while the coexistence region is accessed with a negligible
probability (see Fig. 1); these highly improbable grancanonical
distributions are conversely the only microstates allowed by the
canonical constraint at the value ρ/ρ0 = 1/2; below the transi-
tion temperature, the grand canonical and canonical partitions
differ drastically. Because of the mass conservation constraint,
the bimodality of the At distribution is obviously lost in
the canonical ensemble; as a consequence of the correlation
between At and AM , the AM distribution also shows a unique
peak (Fig. 2). If we additionally implement a total energy
conservation constraint (microcanonical ensemble, right part
of Fig. 2), the distributions get still narrower, but the qualitative
behavior is the same as in the canonical ensemble. The normal
behavior of the AM distribution at subcritical temperatures
may intuitively suggest a pure phase or a continuous transition
for the canonical model. This intuition is, however, false; the
characteristics and order of the transition do not depend on the
statistical ensemble, and the phase diagram of Fig. 1 is still
pertinent to the canonical ensemble [17]. Indeed, the relation
between the two ensembles can be written as

ln Pβµ(At ) = ln Zβ(At ) + βµAt − ln Zβµ, (1)

where Zβµ,Zβ(At ) are the partition sums in the two ensem-
bles. Equation (1) shows that in the whole region where the
grancanonical distribution Pβµ(At ) is convex, the canonical
equation of state

µcan = − 1

β

∂ ln Zβ

∂At

(2)

presents a back bending, which is an unambiguous signal
of a first-order phase transition [19]. At each temperature,
the maxima of Pβµ correspond to the two ending points of
the tangent construction for Eq. (2), i.e., to the borders of the
coexistence region in the canonical ensemble.

The qualitative behavior of AM (T ) in the canonical en-
semble does not change with the density of the system. In
particular, the AM fluctuation passes systematically through a
maximum. The locus of this maximum is displayed in the phase
diagram in Fig. 1. We can see that the maximum fluctuation
approximately corresponds to the transition temperature only
at the critical point. At subcritical densities, this maximum lies
inside the coexistence region of the first-order phase transition.

It is important to stress that this result may be somewhat
model dependent. All the cluster recognition algorithms
proposed in the literature show a percolation line in finite
lattices, but the location of this line in the phase diagram can
depend on the specific cluster definition [18]. In particular,

the physical meaning of clusters in supercritical media where
fragments are not separated by physical surfaces is still an
object of debate [18].

In any case, the results of Fig. 2 show that the double-hump
criterium for a first-order phase transition does not hold if a
constraint is put on a variable closely correlated to the order
parameter under study.

IV. CONSERVATION LAWS AND DELTA SCALING

We can ask the question whether a detailed study of the
scaling properties of the AM distribution may give extra
information on the transition and discriminate first and second
order. Following the arguments of Ref. [3], we consider the
distribution

�(z) = �

(
AM − A∗

M

〈AM〉�
)

= 〈AM〉�P (AM ), (3)

where A∗
M is the most probable value of AM and 0 < � � 1

is a real number. At a continuous phase transition point, the
distribution of the order parameter is expected to fulfill the first
scaling law; i.e., the distribution � should be scale invariant
with � = 1. The scale invariance of � for a given value of
� is generically referred to as � scaling; and the transition
observed experimentally [5] from a � ≈ 1/2 to a � ≈ 1
scaling by varying the centrality of the collision and therefore
the energy deposited in the system has been taken as a signal
of a continuous phase transition.

A practical difficulty in testing � scaling is that for a
given distribution the value of � that corresponds to scale
invariance, if any, cannot be known a priori. This difficulty can
be circumvented by using the fact that the scaling (3) imposed
〈AM〉� ∝ σ . Then it is immediate to verify that Eq. (3) can be
equivalently written as the ensemble of the two conditions

�

(
AM − ÃM

σAM

)
= σAM

P (AM ), (4)

σ 2
AM

= K〈AM〉2�, (5)

where � is a scale invariant distribution and K is a constant.
Since in presence of a scaling, the difference between the most
probable A∗

M and the average 〈AM〉 scales like σ, ÃM can be
either one or the other. In the latter case, the occurrence of a �

scaling study corresponds to the invariance of the centered and
reduced distribution. If this distribution does not show scale
invariance, we can exclude the existence of any � scaling
law. If the function � is scale invariant, this corresponds to
a � scaling if and only if the ln-ln correlation between the
average and the variance is linear; in this case, the slope of the
correlation gives the value of �. The practical advantage of
testing Eqs. (4) and (5) instead of Eq. (3) is that we can check
scale invariance with no a priori knowledge of �.

The standard way of testing scale invariance is to consider
a specific point of the phase diagram and consider the centered
and reduced AM distributions obtained by varying the size of
the lattice and, as a consequence, the total number of particles.
For the canonical case at the thermodynamical critical point,
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FIG. 3. (Color online) Delta scaling analysis for the canonical
lattice gas model at the critical point ρ = ρ0/2, T = Tc (left side) and
inside coexistence ρ = ρ0/4 at the point of maximal AM fluctuation
(right side). Upper part: centered and reduced AM distributions.
Lower part: correlation between the first two moments and linear
interpolation according to Eq. (5). The linear size of the lattice is
varied as L = 5, 6, 8, 12, 16.

this analysis is shown on the left side of Fig. 3. Both Eqs. (4)
and (5) are well verified, in agreement with the expectation
of a first scaling law at a continuous transition point [3].
A comparable quality scaling is, however, observed also at
subcritical densities at the temperature corresponding to the
maximum AM fluctuations (right side of Fig. 3). This finding
is in agreement with Ref. [11]. Together with the analysis
of the phase diagram, this means that such a scaling also
approximately applies in the coexistence region of a first-order

phase transition, if the order parameter is not free to fluctuate
but is constrained by a conservation law.

V. DELTA SCALING AS A FUNCTION OF THE SYSTEM
EXCITATION

In the experimental application to nuclear multifragmenta-
tion [5], the system size cannot be varied as freely as in the
lattice gas, since the maximum size for a nuclear system is of
the order of 400 particles. To explore different values of 〈AM〉,
the same system has been studied at different bombarding
energies [5] and/or different impact parameters [20]. In a
similar way, we kept the total number of particles constant
and varied the temperature. To fix the ideas, we chose the
simplest thermodynamical path from coexistence to the fluid
phase passing through the critical point ρ(T ) = cte = ρ0/2.
The resulting � functions are displayed in Fig. 4. No scaling
is observed: the function � continuously evolves from a
distribution with a tail extending toward the low mass side
compared to the average at low temperature, whereas the
opposite is true at high temperature.

If we look at the behavior of the variance as a function of the
first moment, the ln-ln correlation is nowhere linear, showing
that the large fragment fluctuation does not evolve like a power
of the average fragment size. The bell-shaped behavior of this
curve is due to the mass conservation constraint, which forces
the fluctuation to vanish at both low and high 〈AM〉 values.
The observed maximum is in fact the maximum fluctuation
point shown in Fig. 1; at the critical density, it occurs close
to the critical point and for subcritical densities, it is located
inside the coexistence region.

To qualitatively compare with experimental �-scaling
analysis, we have to remember that the studied experimental
distributions only cover the multifragmentation regime and do
not explore the decreasing part of the σAM

(〈AM〉) correlation
which would correspond in the nuclear case to evaporation
from a Compound. Focusing now on the fragmentation region,
we show in Fig. 4 the best power-law interpolations of the
average and variance correlation to be compared with the
published experimental analysis presenting a � = 1 to a

FIG. 4. (Color online) Delta scaling analysis
for the canonical lattice gas model at constant
density ρ = ρ0/2 varying the system tempera-
ture. Left side: centered and reduced AM distri-
butions for temperatures varying from T = 1.1ε

to T = 1.25ε. Right side: correlation between
the first two moments and linear interpolations
according to Eq. (5). Temperatures range from
T = 0.3ε to T = 2.3ε. The vertical lines indicate
the temperature of maximum AM fluctuations
and the critical temperature. The double loga-
rithmic derivative �′ is shown in the inserted
figure.
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FIG. 5. First moments of the AM/AT distribution as a function
of temperature for an 8 × 8 × 8 lattice in the canonical ensemble
at ρ/ρ0 = 1/4 (left), ρ/ρ0 = 1/2 (middle), and ρ/ρ0 = 3/4 (right).
Upper part: mean value (full line) and variance (dashed line). Lower
part: most probable value of the AM distribution normalized to
the mean. Vertical lines indicate the temperature of maximal AM

fluctuations and the transition temperature for each density.

� = 1/2 regime. In this interpretation, the crossing point
between the two power-law fits is interpreted as a “transition”
point. By construction it appears to be at a higher temperature
than the maximum fluctuation, which at this critical density
comes out to be close to the critical temperature.

To better study the possible occurrence of a power-law
scaling of the large fragment fluctuation, we can study the
double logarithmic derivative

�′ = dσAM

d〈AM〉 . (6)

In presence of a � scaling, this quantity should be constant.
Figure 4 shows that �′ is a smoothly decreasing function
passing through the values 1 and 1/2 before going through 0
at the maximum fluctuation point and then becoming negative
as a consequence of the mass conservation law. No plateaus of
�′ are observed, thus confirming the absence of scaling.

This violation of scaling occurs in spite of the fact that a
continuous phase transition point (the thermodynamic critical
point) is explored in the simulations. At this point, the
distributions indeed follow the first scaling law (left side of
Fig. 3), but this information is lost if the different distributions
are generated by varying the temperature. This is true not only
for the transition point, but also for the supercritical regime.
Indeed, this regime has been shown to exhibit the second
scaling law � = 1/2 in the Potts model [3] (or something close
to it, � ≈ 0.6 for the IMFM [11]), while in the representation
of Fig. 4, scaling can everywhere be excluded.

The conclusion is that scale invariance can only be tested
by varying the total system size. However, other information

on the phase transition can be accessed through the study of
the AM distribution with a fixed total number of particles, as
we will now show.

VI. SIGNALS OF PHASE TRANSITION AND OF
ITS ORDER

The first two moments of the distribution in the canonical
ensemble and the corresponding most probable value A∗

M

are displayed in Fig. 5 for three different densities. Let us
look at the ρ < ρc case first. If the first and second moment
show smooth behaviors dominated by the conservation law
constraint, the transition is still apparent in the behavior of A∗

M ,
which rapidly changes at a temperature close to the transition
point. This sudden decrease is due to a change of sign in
the asymmetry of the distribution. As such, the qualitative
behavior of A∗

M (T ) is independent of the density. A great
number of continuous transition signals have been observed
in different mass conserving models at densities that do not
correspond to a continuous phase transition [6–11]. The same
happens for the most probable value of AM . This variable
shows for all densities a sudden drop at a temperature Tt (ρ) that
corresponds to the maximum of the AM fluctuations. As we
already stressed, these temperatures approximately coincide
with the transition temperature only at the critical density
(see Fig. 1). The behavior at supercritical densities reflects
a geometric phase transition that has no thermodynamic
counterpart, while if fragmentation takes place at low density
the AM drop can be taken as a signal of phase coexistence.

To discriminate between the different density regimes and
recognize the order of the phase transition, we have to quantify
the AM fluctuation peak. In the grancanonical ensemble, the
At fluctuation is directly linked to the susceptibility via

χ = ∂〈At 〉
∂µ

= β
(
σ

µ

At

)2
. (7)

To work out a similar expression for the canonical ensemble,
let us assume that AM and the other fragments are statistically
independent, i.e., the total density of states is factorized

Wt (AM,Am,EM,Em) = WM (AM,EM ) · Wm(Am,Em), (8)

where we have defined the total number of particles not
belonging to the largest fragment as Am = At − AM , and
the corresponding energy Em = Et − EM . This hypothesis is
reasonably well verified in the lattice gas model, since the
correlation coefficient between AM and Am in the grancanon-
ical ensemble comes out to be close to zero except in the very
dense regime ρ/ρ0 ≈ 1. The factorization of the state densities
implies a convolution of the corresponding canonical partition
sums

Zβ(At ) =
∫

dEte
−βEt

∫ Et

0
dEm

∫ At

0
dAm

× Wm(Em,Am)WM (Et − Em,At − Am)

=
∫ At

0
dAmZM

β (AM )Zm
β (At − AM ), (9)

where Zi
β, i = m,M describe the contribution of the largest

fragment and of all the others, respectively. The distribution
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FIG. 6. Ratio between the grancanonical and canonical fluctu-
ation of the number of particles Am not belonging to the largest
cluster, as a function of the temperature for an 8 × 8 × 8 lattice at
ρ/ρ0 = 1/4 (left), ρ/ρ0 = 1/2 (middle), and ρ/ρ0 = 3/4 (right).
Dashed lines: average canonical AM values normalized to the total
number of particles. Vertical lines in the two left panels: limit of the
region of negative susceptibility from the canonical µ(A) equation of
state Eq. (2) [8].

of the largest fragment reads

PβAt
(AM ) = Z−1

β (At )Z
M
β (AM )Zm

β (At − AM ). (10)

A Gaussian approximation of this distribution leads to [21]

βσ 2
AM

=
[

1

χm(At − A∗
M )

− 1

χM (A∗
M )

]−1

, (11)

where σ 2
AM

is the fluctuation of the AM distribution, and the

partial susceptibilities are defined as χ−1
i = ∂µi

∂Ai
(A∗

i ).
The above derivation is valid for a system whose state

density depends on the two extensive variables, number of
particles A and energy E. In the case of the fragmentation
transition, a third extensive variable, the volume V, has also
to be considered. We show in the Appendix that in this more
general case, Eq. (11) can still be derived, but a dilute limit
Vt = Vm + VM ≈ Vm has to be considered.

According to the general definition of phase transitions in
finite systems [19,22], the generalized susceptibility associated
with an order parameter is negative in a first-order phase
transition in the statistical ensemble where the order parameter
is subject to a conservation law. We therefore expect a negative
χM at subcritical densities. Imposing χM < 0 in Eq. (11) leads
to

σ 2
AM

> β−1χm(At − A∗
M ). (12)

Comparing to Eq. (7), this finally gives

σ 2
AM

= σ 2
Am

>
(
σ

µ

Am

)2
. (13)

Equation (13) associates the first-order phase transition in
the canonical ensemble to “abnormal” AM fluctuations,
in the same way as abnormal partial energy fluctuations
sign a first-order phase transition in the microcanonical
ensemble [21].

The canonical and grancanonical fluctuations are compared
in Fig. 6 for three different densities. Independent of the system
density our approximation Eq. (13) turns out to be incorrect at
very low temperatures, when the average size of the largest
cluster (dashed lines) exceeds about 80% of the available
mass. In this case, the hypothesis of statistical independence
between Am and AM cannot be justified, and the canonical
mass conservation constraint trivially reduces the canonical
fluctuation. However, as soon as the average AM value drops,
we can see that the region of negative susceptibility can
be well reconstructed through Eq. (13), and in particular
its border (vertical lines) is very precisely determined by
the equality condition between the two fluctuations. At
supercritical densities, the dilute gas approximation we have
employed breaks down independently of the temperature,
and the susceptibility cannot quantitatively be estimated from
the fluctuation signal. However, in this regime, the relative
fluctuation observable does not present any peak, whereas only
inside the spinodal region of the first-order phase transition
does the canonical fluctuation exceed the grancanonical one.
Clearly this observable allows an unambiguous discrimination
between the supercritical regime and phase coexistence.

VII. CONCLUSIONS

In this discussion of the role of the largest fragment in
the framework of the lattice gas model, we have shown
that this variable can be taken as an order parameter of the
fragmentation phase transition if this latter belongs to the
liquid-gas universality class. It has been already observed
[11,23] that the phase transition can be tracked from the sudden
drop of AM close to the transition temperature. This drop is
well fitted by a power law with a β exponent close to the
expected value for the liquid-gas universality class [23], but
finite size effects blur the behavior considerably for system
sizes comparable to accessible nuclear sizes. However, when
no constraints are affecting the fluctuations of the order
parameter such as in the grand canonical ensemble, we have
shown that the transition is very well defined if instead of the
average we look at the most probable value of AM . Indeed,
when crossing a first-order phase transition point, this variable
is discontinuous independent of the system size. The important
result is that if we look at this variable, finite size effects do not
constitute a major problem to identifying a phase transition or
to recognizing its order.

On the other hand, important ambiguities arise from
the nonequivalence of statistical ensembles inside a phase
transition. Indeed, the distribution of the order parameter is
strongly deformed by the presence of conservation laws in the
system under study. If we look at AM as an order parameter,
the double-hump criterium for a first-order phase transition
does not apply any more in the canonical or microcanonical
ensemble because of the strong correlation between the
conserved total number of particles and the order parameter.
The mass conservation constraint induces a maximum in the
fluctuation of AM that is not necessarily correlated with
the properties of the phase diagram. We observe maxima
both at the critical density close to the critical point and at
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subcritical densities inside the coexistence zone. Moreover,
the presence of this maximum can simulate a transition
from a � = 1 to a � = 1/2 scaling law in a region above
the maximum fluctuation. It is clear that other observables
have to be employed if we want to make a conclusion about the
order and nature of the phase transition. One such observable
is the numerical value of the fluctuation of AM , which is
by construction identical to the fluctuation of the number of
particles that do not belong to the largest cluster Am: if and
only if the system crosses the phase coexistence region of a
first-order phase transition, then this fluctuation overcomes the
corresponding value in the grancanonical ensemble.

APPENDIX: DERIVATION OF EQ. (10)

The density of states is a function of all the relevant
extensive variables of the system. For the lattice gas model,
this means W = W (E,A, V ). If the largest fragment AM is
statistically independent from the other clusters, then

Wt (AM,EM, VM,Am,Em, Vm)

= WM (AM,EM, VM ) · Wm(Am,Em, Vm), (14)

where we have defined the total number of particles not
belonging to the largest fragment as Am = At − AM , and
the corresponding energy and volume Em = Et − EM,Vm =
Vt − VM . Let us first consider the case of an external tem-
perature T = β−1 and pressure p = βλ. Using the standard
definition of the canonical isobar partition sum,

Zβλ(A) =
∫

dEe−βE

∫
dV e−pV W (E,A, V ),

the total partition sum can be written as

Zβλ(At )

=
∫

dEte
−βEt

∫
dVte

−pVt

∫ Et

0
dEm

∫ Vt

0
dVm

∫ At

0
dAm

×Wm(Em,Am, Vm)WM (Et − Em,At − Am, Vt − Vm),

or equivalently

Zβ(At ) =
∫ At

0
dAm,ZM

β (AM )Zm
β (At − AM ), (15)

where Zi
β, i = m,M describe the contribution of the largest

fragment and of all the others, respectively. In the isochore
case Vm + VM = cte, the convolution of the partition sum is
less straightforward because of the presence of the volume

integral

Zβ(At, Vt ) =
∫ At

0
dAm

∫ Vt

0
dVmZM

β

× (AM,VM )Zm
β (At − AM,Vt − VM ). (16)

Let us introduce the partial pressures pi = β−1 ∂ ln Zi
β

∂Vi
(A∗

i , V
∗
i )

and chemical potentials µi = β−1 ∂ ln Zi
β

∂Ai
(A∗

i , V
∗
i ) at the most

probable volume and mass partition A∗
M, V ∗

M . Equilibrium
between the two components implies µm = µM,pm = pM .
A saddle-point approximation then gives

ZM
β Zm

β ≈ exp(−β[A∗
MfM + A∗

mfm])

× exp

{
−β

[
1

2
(Am − A∗

m)2
(
χ−1

M + χ−1
m

)
+ 1

2
(Vm − V ∗

m)2
(
κ−1

M + κ−1
m

)]}

× exp

{
−β

[
1

2
(Am − A∗

m)(Vm − V ∗
m)

×
(

∂pM

∂AM

+ ∂pm

∂Am

)]}
,

where fi = −T ln Zi
β(A∗

i )/A∗
i , i = m,M are the most proba-

ble free energies per particle, the partial susceptibilities and
compressibilities are defined as χ−1

i = ∂µi

∂Ai
(A∗

i , V
∗
i ), κ−1

i =
∂pi

∂Vi
(A∗

i , V
∗
i ), and the conservation constraints make the linear

terms vanish. In the dilute limit Vt = Vm + VM ≈ Vm the
density variation of the “gas” component m is due to its number
variation dρm = dAm/Vt and the volume variation can be
neglected with respect to the number variation Vm − V ∗

m �
Am − A∗

m giving

Zβ(At, Vt ) ≈
∫ At

0
dAmZM

β (AM,V ∗
m)Z(m)

β (At − AM,Vt − V ∗
m).

(17)

Both in the isobar (15) and in the isochore (17) case, the
distribution of the largest fragment reads

PβAt
(AM ) = Z−1

β ZM
β (AM )Zm

β (At − AM ). (18)

Implementing the saddle-point approximation, we can
identify

βσ 2
AM

=
[

1

χm(At − A∗
M )

− 1

χM (A∗
M )

]−1

, (19)

where σ 2
AM

is the fluctuation of the AM distribution.
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