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Critical behavior in light nuclear systems: Experimental aspects
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An extensive experimental survey of the features of the disassembly of a small quasiprojectile system with
A∼ 36, produced in the reactions of 47 MeV/nucleon 40Ar + 27Al, 48Ti, and 58Ni, has been carried out. Nuclei in
the excitation energy range of 1–9 MeV/nucleon have been investigated employing a new method to reconstruct
the quasiprojectile source. At an excitation energy ∼5.6 MeV/nucleon many observables indicate the presence of
maximal fluctuations in the deexcitation processes. These include the normalized second moments of the Campi
plot and normalized variances of the distributions of order parameters such as the atomic number of the heaviest
fragment Zmax and the total kinetic energy. The evolution of the correlation of the atomic number of the heaviest
fragment with that of the second heaviest fragment and a bimodality test are also consistent with a transition
in the same excitation energy region. The related phase separation parameter, Sp , shows a significant change of
slope at the same excitation energy. In the same region a �-scaling analysis for of the heaviest fragments exhibits
a transition to � = 1 scaling, which is predicted to characterize a disordered phase. The fragment topological
structure shows that the rank-sorted fragments obey Zipf’s law at the point of largest fluctuations, providing
another indication of a liquid gas phase transition. The Fisher droplet model critical exponent τ ∼ 2.3 obtained
from the charge distribution at the same excitation energy is close to the critical exponent of the liquid gas phase
transition universality class. The caloric curve for this system shows a monotonic increase of temperature with
excitation energy and no apparent plateau. The temperature at the point of maximal fluctuations is 8.3 ± 0.5 MeV.
Taking this temperature as the critical temperature and employing the caloric curve information we have extracted
the critical exponents β, γ , and σ from the data. Their values are also consistent with the values of the universality
class of the liquid gas phase transition. Taken together, this body of evidence strongly suggests a phase change
in an equilibrated mesoscopic system at, or extremely close to, the critical point.

DOI: 10.1103/PhysRevC.71.054606 PACS number(s): 25.70.Pq, 24.60.Ky, 05.70.Jk

I. INTRODUCTION

Probing the liquid gas phase transition of finite nuclei is
an important topic in nuclear physics because it should allow
investigation of the nuclear equation of state and clarify the
mechanism by which the nucleus disassembles when heated.
This phase transition is expected to occur as the nucleus is
heated to a moderate temperature so that it breaks up on
a short time scale into light particles and intermediate mass
fragments (IMF). Most efforts to determine the critical point
for the expected liquid gas phase transition in finite nucleonic
matter have focused on examinations of the temperature and
excitation energy region [1,2] where maximal fluctuations in
the disassembly of highly excited nuclei are observed [3]. A
variety of signatures have been employed in the identification
of this region [4–8] and several publications [9–11] have
reported the observation of apparent critical behavior. Fisher

droplet model analysis has been applied to extract critical
parameters [12]. The derived parameters are very close to
those observed for liquid-gas phase transitions in macroscopic
systems [13]. Data from the EOS [14] and ISiS [15,16]
collaborations have been employed to construct a coexistence
curve for nucleonic matter [12]. Interestingly, the excitation
energy at which the apparent critical behavior is seen is
closely correlated with the entry into the plateau region in
the associated caloric curve [1]. Although implicit in the
Fisher scaling analyses is the assumption that the point of
maximal fluctuations is the critical point of the system [12,17],
other theoretical and experimental information suggest that
the disassembly may occur well away from the critical point
[1,6,18–21]. In addition, recent lattice gas calculations indicate
that the Fisher scaling may be observed at many different
densities [22], raising doubts about previous critical point
determinations. Further, applications of �-scaling analysis
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indicate that the observation of power-law mass distributions
[23,24], although necessary, is not sufficient to identify the
true critical point of the system. We note also that although
the role of the long-range Coulomb interaction in determining
the transition point has received considerable theoretical and
experimental attention [20,25–29], a number of questions
remain as to the appropriate way to deal with the complications
it introduces.

In this article we report results of an extensive investi-
gation of nuclear disassembly in nuclei of A ∼ 36, excited
to excitation energies as high as 9 MeV/nucleon. To our
knowledge, this is the smallest system for which such an
extensive analysis has been attempted. An earlier brief report
on some aspects of this work appeared in Physical Review
[30]. Although investigating a smaller system takes us farther
from the thermodynamic limit, several theoretical studies
indicate that phase transition signals should still be observable
[31,32] in small systems. The choice of a lighter system
for investigation has the advantage of reducing the Coulomb
contributions. Earlier investigations in this mass region have
provided valuable insights into the binary reaction mechanism
[33–38], multifragment emission as a function of excitation
energy [39–45], the emission time scale and emission sequence
of light particles [46–48] and collective flow behavior [49], and
so on.

Applying a wide range of methods we find that the
maximum fluctuations in the disassembly of A ∼ 36 occur
at an excitation energy of 5.6 ± 0.5 MeV and a temperature
of 8.3 ± 0.5 MeV. At this same point, the critical exponents
describing the fragment distributions are found to be very
close to those of the universality class of the liquid gas phase
transition.

These observations do not guarantee critical behavior has
been reached; however, in contrast to experimental results for
heavier systems [1] we also find that the caloric curve for
A ∼ 36 does not exhibit a plateau at the point of maximum
fluctuations. Taken together, the observations strongly suggest
a phase change in an equilibrated mesoscopic system at, or
extremely close to, the critical point.

This article is organized as follows: in Sec. II we describe
the setup of our experiment; Sec. III presents a new method
for reconstruction of the quasiprojectile source, QP; Sec. IV
discusses some general features of the reconstructed QP; and
Sec. V explores the evidence for critical behavior in the
disassembly of the QP. In Sec. VI, we discuss the caloric
curve of the QP. In Sec. VII we use the scaling theory to derive
the critical exponents of the transition. All those values are
found to be consistent with the universality class of the liquid
gas phase transition. Conclusions are presented in Sec. VIII.

II. EXPERIMENTAL SETUP AND EVENT SELECTION

Using the TAMU NIMROD (Neutron Ion Multidetector
for Reaction Oriented Dynamics) [50] and beams from the
TAMU K500 super-conducting cyclotron, we have probed
the properties of excited projectilelike fragments produced in
the reactions of 47 MeV/nucleon 40Ar + 27Al, 48Ti, and 58Ni.
Earlier work on the reaction mechanisms of near symmetric

TABLE I. NIMROD charge particle array.

Ring Angle (deg) No. of segments Solid angle (src)

1 4.3 12 0.96
2 6.4 12 2.67
3 9.4 12 4.26
4 12.9 12 7.99
5 18.2 12 16.1
6 24.5 24 12.7
7 32.1 12 33.6
8 40.4 24 27.6
9 61.2 16 154

10 90.0 14 207.0
11 120.0 8 378.0
12 152.5 8 241.0

collisions of nuclei in the 20 < A < 64 mass region at energies
near the Fermi energy have demonstrated the essential binary
nature of such collisions, even at relatively small impact
parameters [33]. As a result, they prove to be very useful in
preparing highly excited light nuclei with kinematic properties
which greatly simplify the detection and identification of the
products of their subsequent deexcitation [51].

The charged particle detector array of NIMROD, which is
set inside a neutron ball, includes 166 individual CsI detectors
arranged in 12 rings in polar angles from ∼3◦ to ∼170◦. Eight
forward rings have the same geometrical design as the INDRA
detector but have less granularity [52]. The angles, number of
segments in each ring and solid angle of each CsI segment are
given in Table I.

In these experiments each forward ring included two su-
pertelescopes (composed of two Si-Si-CsI detectors) and three
Si-CsI telescopes to identify intermediate mass fragments. The
CsI detectors are Tl doped crystals read by photomultiplier
tubes. A pulse shape discrimination method using different
responses of fast and slow components of the light output of
the CsI crystals is employed to identify particles [53]. In the CsI
detectors hydrogen and helium isotopes were clearly identified
and Li fragments are also isolated from the heavier fragments.
In the supertelescopes, all isotopes with atomic number Z � 8
were clearly identified and in all telescopes particles were
identified in atomic number.

The NIMROD neutron ball, which surrounds the charged
particle array, was used to determine the neutron multiplic-
ities for selected events. The neutron ball consists of two
hemispherical end caps and a central cylindrical section. The
hemispheres are upstream and downstream of the charged
particle array. They are 150 cm in diameter with beam pipe
holes in the center. The central cylindrical sections are 1.25 m
long with an inner hole of 60 cm in diameter and a 150-cm outer
diameter. It is divided into four segments in the azimuthal angle
direction. Between the hemispheres and the central section,
there are 20 cm air gaps for cables and a duct for a pumping
station. The neutron ball is filled with a pseudocumene-based
liquid scintillator mixed with 0.3 weight percentage of Gd salt
(Gd 2-ethyl hexanoate). Scintillation from a thermal neutron
captured by Gd is detected by five 5-in. phototubes in each
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FIG. 1. (Color online) Two-dimension plot for Mcp vs Mn as a
selector of collision centrality in the 40Ar + 58Ni reaction.

hemisphere and three phototubes in each segment of the central
section.

The correlation of the charged particle multiplicity (Mcp)
and the neutron multiplicity (Mn) was used to sort event
violence. In Fig. 1, lines indicate the event windows that have
been explored. Roughly speaking, the more violent collisions
correspond to those with the highest combined neutron
multiplicity and charged particle multiplicity (Mcp)(Bin1).
This can be seen in the excitation energy distribution of the QP
in Fig. 2 (the determination of excitation energy is explained
in the following section). For Bin1 and Bin2, the average
excitation is ∼4 MeV/nucleon and the E∗/A distribution
extends to 9 MeV. Because the goal of the present work was
to explore the disassembly of highly excited QP, we have used
the data from Bin1 and Bin2 together in the present work. For
the more peripheral bins (i.e., Bin4 and Bin5), however, there is
apparent event mixing in the upper range of excitation energy.
In that case, events coming from a particular excitation energy
can be distributed over several experimentally reconstructed
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FIG. 2. (Color online) The distribution of excitation energy for
different centrality bins for the QP formed in 40Ar + 58Ni.
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FIG. 3. (Color online) Comparison of some physical quantities
as a function of excitation energy bin in different centrality bins
for the QP formed in 40Ar + 58Ni. (a) The total multiplicity of
charged particles; (b) the QP normalized charge number of the
heaviest fragment; (c) the effective Fisher’s power-law parameter, and
(d) Zipf’s law parameter. The deviations in higher excitation energy
of Bin5 and Bin4 from Bin1 and Bin2 can be attributed to the event
mixture in the peripheral collisions. For detailed explanation of the
physical quantities, see the following sections.

excitation energy bins. This judgment is supported by the
data plotted in Fig. 3, where we plot, for the QP formed
in 40Ar + 58Ni reactions, the total multiplicity of charged
particles [Fig. 3(a)], the QP normalized charge number of
heaviest fragment [Fig. 3(b)], the effective Fisher’s power-law
parameter τeff [Fig. 3(c)], and Zipf’s law parameter ξ [Fig. 3(d)]
as a function of the excitation energy in different centrality bins
(for detailed explanations of the physical quantities plotted,
see the following sections). As seen in the figure, Bin1 and
Bin2 display essentially identical behavior and the values do
not depend the selected centrality bin. However, data for the
peripheral bins (Bin5 and Bin4) deviate significantly from the
data for Bin1 and Bin2 in the upper range of the reconstructed
excitation energy. These deviations indicate event mixing in
peripheral collisions and raises questions about the validity
of the excitation energy determination in the upper excitation
energy range for peripheral collisions. For the intermediate
Bin3, results are close to those of Bin1 and Bin2. To minimize
the effects of possible event mixing and realize our goal of
exploring the disassembly of highly excited QP, we choose
only data for Bin1 and Bin2 and combine those results for
further analysis.

Given the limitation of IMF identification in NIMROD
detectors that do not have Si associated with them, the events
with complete, or near complete, QP detection have to be
isolated before the analysis of the QP features can proceed.
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In the following section we describe the techniques of QP
reconstruction and event selection we have employed.

III. A NEW METHOD OF QUASIPROJECTILE
RECONSTRUCTION

Intermediate energy heavy-ion collisions are complicated
processes in which the roles of the mean-field and nucleon-
nucleon interactions may both be important. Many reactions
manifest the mixed features of both the low-energy deep-
inelastic scattering mechanism and a high-energy participant-
spectator mechanism.

It is well known that the laboratory frame kinetic energy
spectra of most light ejectiles can be reproduced with the
assumption of emission from three different sources: (i) a
quasiprojectile (QP) source, (ii) an intermediate velocity or
nucleon-nucleon (NN) source, and (iii) a quasitarget (QT)
source. To better understand origins of the emitted particles
the ideal situation would be to have the ability to attribute each
particle to its source on an event-by-event basis. However
the spectral distributions from the different sources overlap
significantly, making such an attribution not possible. Previous
techniques to reconstruct QP have included identifying high-
velocity components of the QP [54,55] or treating only
particles emitted in the forward hemisphere in the projectile
frame and then assuming identical properties for particles
emitted in the backward hemisphere to recreate the QP source
[33,34]. Such a technique is limited in its application and not
suited to situations in which fluctuations are to be investigated.

For this work we have developed a new method for the
assignment of each light-charged particle (LCP) to an emission
source. This is done with a combination of three source fits
and Monte Carlo sampling techniques. We first obtain the lab-
oratory energy spectra for different LCP at different laboratory
angles and reproduce them using the three source fits. In the
laboratory frame, the energy spectra of LCP can be modeled
as the overlap of emission from three independent moving
equilibrated sources (i.e., the QP, NN, and QT sources). For
evaporation from the QT source, we take the following [56]:(

d2N

dElabd�lab

)QT

L

= Mi

4πT 2
s

E′′√Elab/E′ exp

(
−E′′

Ts

)
,

(1)

where Elab and Ts are respectively the laboratory energy and
apparent slope temperature. Mi are multiplicities. In the above
formula, the Coulomb barrier is considered to be in the QT
source frame, in this case, E′ and E′′ are defined as follows:

E′ = Elab − 2
√

Elab
1
2mLCPv

2
s cos(θ ) + 1

2mLCPv
2
s (2)

and

E′′ = E′ − VC, (3)

where vs is the magnitude of the source velocity and is taken
along the beam direction. θ is the angle between the source
direction and that of the detected LCP.

For the LCP from QP and NN, we take the Coulomb barrier
in the laboratory frame [57]. For QP, we assume the following

surface emission form:(
d2N

dElabd�lab

)QP

L

= Mi

4πT 2
s

√
E′E′′ exp

(
−E′′

Ts

)
, (4)

and for NN, we take the volume emission form,(
d2N

dElabd�lab

)NN

L

= Mi

2(πTs)
3
2

√
E′ exp

(
−E′′

Ts

)
(5)

where E′ and E′′ are defined as follows:

E′ = Elab − VC, (6)

and

E′′ = E′ − 2
√

E′ 1
2mLCPv

2
s cos(θ ) + 1

2mLCPv
2
s . (7)

The total energy distribution is the sum over the QP, QT,
and NN component.

Figure 4 shows examples of the three source fits for
deuterons and tritons in the second most violent bin (Bin2).
From these fits we know the relative contributions from the
of QP, NN and QT sources. Employing this information to
determine the energy- and angular-dependent probabilities
we analyze the experimental events once again and, on an
event-by-event basis, use a Monte Carlo sampling method to
assign each LCP to one of the sources QP, NN, or QT. For
example, the probability that a certain LCP i (i.e., p, d, and t,
etc.) will be assigned to the QP source is as follows:

ProbQP(Elab, θ, i) =
(

d2N
dElabd�lab

)QP
L(

d2N
dElabd�lab

)
L

. (8)

To illustrate the results of such a procedure, we show,
in Fig. 5, the velocity contour plots for protons to lithium
associated with the highest multiplicity windows in the
40Ar + 58Ni reaction.

The panels on the left represent the data before any selection
(i.e., the raw data with contributions from all emission
sources). Obviously the particles are of mixed origin and it
is difficult to make a meaningful physical analysis. Because
we are interested in the QP source, we show, in the middle
panels, the velocity contour plots for particles assigned to
the QP source using the above reconstruction method. As
expected from the technique employed, the results exhibit
clean, nearly spherical, velocity contours, corresponding to
isotropic emission in the rest frame of QP source.

The projected parallel velocity distributions are depicted
in the right panels of Fig. 5. The solid histograms represent
the total distribution and the histogram with the hatched area
represents the contribution from the QP source. The peak
velocity of this QP contribution is close to the initial projectile
velocity although some dissipation is evident.

Intermediate mass fragments, IMF, with Z � 4 were iden-
tified in the telescope modules of NIMROD. For such ejectiles
we have we have not used such fitting techniques. Rather we
have used a rapidity cut (>0.65 beam rapidity) to assign IMF
to the QP source. We also checked the sensitivity of the above
rapidity cut to the results (e.g., using. >0.55 or >0.75 beam
rapidity) there are only minor changes for, for example, source
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mass, excitation energy, and temperatures, within ∼10% error
bars. This has no influence on any conclusions we draw in
this article. Of course, this is expectable for such a binary-
dominated reaction mechanism. Once we have identified all
LCPs and IMFs that are assumed to come from the QP source,
we can reconstruct the whole QP source on an event-by-event
basis.

Figure 6 shows the two dimensional plot of total charged
particle multiplicity (MQP) and total atomic number (ZQP)
for the reconstructed QP source. Because of the limited
geometrical coverage of the telescopes, the efficiency of
detection for nearly complete QP events is low. Note that the
scale of z axis of the figure is logarithmic.

To select the nearly complete QP events, we choose
events with ZQP � 12 (i.e., as good events). The part of the
distribution above the line in Fig. 6 corresponds to the accepted
region of violent collisions for the 40Ar + 58Ni reaction. The
reconstructed good events in that region account for 4.3%
of the total events for the violence bins selected (Bin1 and

Bin2). For the reactions 40Ar + 48Ti and 40Ar + 27Al, a similar
portion of the good central events has been collected to make
the same analysis. Totally, 28000, 54000, and 56000 good QP
events have been accumulated to make the following analysis
for 40Ar + 58Ni, 48Ti and 27Al reactions, respectively. For this
analysis the velocity of the QP source was determined, event
by event, from the momenta of all QP particles.

IV. GENERAL PROPERTIES OF THE EXCITED QP

After the reconstruction of the QP particle source, the
excitation energy was deduced event-by-event using the energy
balance equation [58], where the kinetic energy of charged
particles (CP), the mass excesses and the (undetected) neutron
contributions were considered as follows:

E∗ =
Mtot∑
i=1

Ekin
i (CP) + 3

2
MnT + Q, (9)
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FIG. 5. (Color online) The velocity contour
plots for the light charged particles in violent
events (Bin2) of 40Ar + 58Ni reaction. From
top to bottom, protons, deutrons, tritons, 3He,
α, and lithium; the left column shows the
total velocity contour plot, the middle column
depicts the velocity contour plots of particles
from the QP source, and the right column
presents the corresponding distributions of the
parallel velocity from the total contribution
(solid histogram) and from the QP source
(hatched area). See details in text.

where Q, the mass excess of the QP system, is determined
from the mass difference between the final QP mass, AQP,
and the sum over the masses of the detected particles of the
reconstructed QP,

∑Mtot
i=1 Ai(CP ). Ai(QP) is determined from

the total reconstructed charge of the QP, assuming the QP has
the same N/Z as the initial projectile and Ai(CP ) is the mass
of each detected charged particle, which was calculated from
the measured Zi(CP ) through the numerical inversion of the
EPAX parametrization [59], except for Z = 1 and 2 for which
experimental mass identification was achieved. The neutron
multiplicity Mn was obtained as the difference between the
mass number (AQP) of the QP and the sum of nucleons bound in
the detected charged particle [i.e., Mn = AQP − ∑

Ai(CP )].
Ekin

i (CP ) is the kinetic energy of the charged particles in
the rest frame of QP. The contribution of the neutron kinetic
energy was taken as 3/2MnT with an assumed T that is
equal to that of the protons. As our detector is not 100%
efficient we corrected observed events (on the average) for
undetected mass and energy. For a particular excitation energy
bin the missing multiplicity for a given ejectile is the difference
between the multiplicity derived from the source fit and

the average detected ejectile multiplicity for events in the
acceptance window. Assuming that missed particles have the
same average kinematic properties as the detected particles
of the same species allows the appropriate corrections to be
made. Because almost complete projectilelike species were
selected initially the missing particles were usually protons.
Using these techniques we find that the average QP has a mass
of 36 and a charge of 16.

Assuming the mean mass of missing particles in a given
E∗/A window is equal to �A, the contribution of missing
excitation energy �E∗ can be approximated as �E∗ =
�A · E∗

meas.∑
ALCP

, where E∗
meas. is the excitation energy before the

correction and
∑

ALCP is the sum of the masses of LCP
(A � 7) and neutrons in the same E∗/A window. Thus the real
excitation energy should be E∗

meas. + �E∗. Filtering results of
AMD-GEMINI calculations [60] by applying experimental ac-
ceptances leads to very similar corrections to those employed.

Figure 7 depicts normalized excitation energy distributions
for the selected QP events in 40Ar + 27Al (open circles), 48Ti
(open triangles), and 58Ni (solid squares) for Bin1 + Bin2.
These distributions are very similar. For violent collisions, the
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highest excitation energy of the QP can reach 9 MeV/nucleon.
In the following analysis, we will generally separate the
excitation energy distributions into 9 windows, as shown by
the slices in Fig. 7. For simplicity, we sometimes identify these
E∗/A windows as Exc1 through Exc9.

Figure 8 shows the total multiplicity distribution of charged
particles in 9 excitation energy windows. For the quasipro-
jectiles formed in Ar induced reaction with different targets,
the distributions keep the nearly same, which is a reason-
able results thanks to a clean QP reconstruction technique.
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(solid squares). Dotted lines indicate the selected excitation energy
bins.
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FIG. 8. (Color online) The total multiplicity distribution of
charged particles from the QP systems formed in 40Ar + 27Al (open
circles), 40Ti (open triangles), and 58Ni (solid squares).

Figure 9 shows average multiplicity of LCP as a function
of excitation energy. For p, d, t , and 3He, the multiplicity
rises monotonically but for α and Li, the multiplicities peak at
E∗/A near 6 MeV/nucleon and then drop at a higher excitation
energy. This behavior is similar to the rise and fall behavior
of IMF yield observed in many previous multifragmentation
studies [61–63]. Because of the small size of our light system,
this appears to occur for much smaller fragments and even to
be reflected in the A = 4 yields.

The QP formed in Ar + Al, Ar + Ti, and Ar + Ni collisions
are almost identical, indicating that we have a clean technique
for identifying the QP.

V. EXPERIMENTAL EVIDENCE OF CRITICAL BEHAVIOR

We have used several techniques to look for evidence of
possible critical behavior in the A∼ 36 system. These include
a Fisher droplet model analysis of the charge distributions,
searches for the region of maximal fluctuations using many
different observables and tests of the fragment topological
structure.

A. Fisher droplet model analysis of charge distributions

The Fisher droplet model has been extensively applied to
the analysis of multifragmentation because the pioneering
experiments on high energy proton-nucleus collisions by
the Purdue group [64–66]. Relative yields of fragments
with 3 � Z � 14 could be well described by a power-law
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FIG. 9. (Color online) Average multiplicity of p (a), d (b), t (c),
3He (d), α (e), and Li (f) from the QP systems formed in 40Ar + 27Al
(open circles), 40Ti (open triangles), and 58Ni (solid squares) as a
function of E∗/A.

dependence A−τ suggesting the disassembly of a system
whose excitation energy was comparable to its total binding
energy [65]. The extracted value of the power-law exponent
was 2 � τ � 3, which is in a reasonable range for critical
behavior [13]. The success of this approach suggested that
the multifragmentation of nuclei might be analogous to a
continuous liquid-to-gas phase transition observed in more
common fluids.

In the Fisher droplet model the fragment mass yield
distribution, Y (A), may be represented as

Y (A) = Y0A
−τXA2/3

YA, (10)

where Y0, τ,X, and Y are parameters. However, at the critical
point, X = 1 and Y = 1 and the cluster distribution is given by
a pure power law as follows:

Y (A) = Y0A
−τ . (11)

The model predicts a critical exponent τ ∼ 2.21.
In Fig. 10 we present, for the QP from the reactions of

40Ar + 58Ni, yield distributions, dN/dZ, observed for our nine
intervals of excitation energy.

At low excitation energy a large Z residue always remains
(i.e., the nucleus is basically in the liquid phase accompanied
by some evaporated light particles). When E∗/A reaches
∼6.0 MeV/nucleon, this residue is much less prominent. As
E∗/A continues to increase, the charge distributions become
steeper, which indicates that the system tends to vaporize. To

quantitatively pin down the possible phase transition point, we
use a power-law fit to the QP charge distribution in the range
of z = 2−7 to extract the effective Fisher-law parameter τeff

by the following:

dN/dZ ∼ Z−τeff . (12)

The upper panel of Fig. 11 shows τeff vs excitation energy, a
minimum with τeff ∼ 2.3 is seen to occur in the E∗/A range of 5
to 6 MeV/nucleon. τeff ∼ 2.3 is close to the critical exponent of
the liquid gas phase transition universality class as predicted by
Fisher’s droplet model [13]. The observed minimum is rather
broad.

In a lattice gas model investigation of scaling and apparent
critical behavior, Gulminelli et al. have pointed out that, in
finite systems, the distribution of the maximum size cluster
(i.e., the liquid) might overlap with the gas cluster distribution
in such a manner as to mimic the critical power-law behavior
with τeff ∼ 2.2 [67]. They further note, however, that at that
point the scaling laws are satisfied, which suggests a potentially
more fundamental reason for the observation of the power-
law distribution [67]. Assuming that the heaviest cluster in
each event represents the liquid phase, we have attempted to
isolate the gas phase by event-by-event removal of the heaviest
cluster from the charge distributions. We find that the resultant
distributions are better described as exponential as seen in
Fig. 12.

The fitting parameter λeff of this exponential form
exp(−λeffZ

′) was derived and is plotted against excitation
energy in the lower panel of Fig. 11. A minimum is seen
in the same region where τeff shows a minimum.

B. Maximal fluctuations

1. Campi plots

One of the well-known characteristics of the systems
undergoing a continuous phase transition is the occurrence of
the largest fluctuations. These large fluctuations in cluster size
and density of the system arise because of the disappearance of
the latent heat at the critical point. In macroscopic systems such
behavior gives rise to the phenomenon of critical opalescence
[68].

Campi suggested the use of event-by-event scatter plots of
the natural log of the size of the largest cluster, lnAmax, versus
the natural log of the normalized second moment, lnS2, of the
cluster distribution with the heaviest fragment removed. For
our analysis we use Zmax as the measure of the size of the
largest cluster and

S2 =
∑

Zi �=Zmax
Zi

2 · ni(Zi)∑
Zi �=Zmax

Zi · ni(Zi)
, (13)

where Zi is the charge number of QP clusters and ni(Zi) is the
multiplicity of the cluster Zi . Campi plots have proved to be
very instructive in previous searches for critical behavior [3].

In Fig. 13 we present such plots for the nine selected
excitation energy bins. In the low-excitation energy bins of
E∗/A � 3.7 MeV/nucleon, the upper (liquid phase) branch
is strongly dominant, whereas at E∗/A � 7.5 MeV/nucleon,
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FIG. 10. (Color online) Charge distri-
bution of QP in different E∗/A window
for the reaction 40Ar + 58Ni. Lines represent
fits.

the lower Zmax (gas phase) branch is strongly dominant. In
the region of intermediate E∗/A of 4.6–6.5 MeV/nucleon, the
transition from the liquid dominated branch to the vapor branch
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FIG. 11. (Color online) τeff and λeff as a function of excitation
energy for the QP formed in 40Ar + 58Ni.

occurs, indicating that the region of maximal fluctuations is to
be found in that range.

Using the general definition of the kth moment as

Mk =
∑

Zi �=Zmax

Zi
k · ni(Zi), (14)

Campi also suggested that the quantity, γ2, defined as follows:

γ2 = M2M0

M2
1

, (15)

where M0,M1, and M2, the zeroth moment, first moment, and
second moment of the charge distribution, could be employed
to search for the critical region. In such an analysis, the position
of the maximum γ2 value is expected to define the critical point
(i.e., the critical excitation energy E∗

c ) at which the fluctuations
in fragment sizes are the largest.

The excitation energy dependence of the average values
of γ2 obtained in an event-by-event analysis of our data are
shown in Fig. 14. γ2 reaches its maximum in the 5–6 MeV
excitation energy range. In contrast to observations for heavier
systems [17], there is no well defined peak in γ2 for our very
light system and γ2 is relatively constant at higher excitation
energies. We note also that the peak γ2 value is lower than 2,
which is the expected smallest value for critical behavior in
large systems. However, 3D percolation studies indicate that
finite size effects can lead to a decrease of γ2 with system
size [69,70]. For a percolation system with 64 sites, peaks
in γ2 under 2 are observed. Therefore, the lone criterion
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γ2 > 2 is not sufficient to discriminate whether the critical
point is reached. To carry out further quantitative explorations
of maximal fluctuations we have investigated several other
proposed observables expected to be related to fluctuations
and to signal critical behavior. These are discussed below.
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FIG. 13. The Campi plot for different excitation energy windows
for the QP formed in 40Ar + 58Ni.

2. Fluctuations in the distribution of Zmax

It is supposed that the cluster size distributions should
manifest the maximum fluctuations around the critical point
where the correlation length diverges. As a result of con-
straints placed by mass conservation, the size of the largest
cluster should then also show large fluctuations [68]. Thus,
it has been suggested that a possible signal of critical
behavior is the fluctuation in the size of the maximum
fragment [3]. Figure 15 shows the charge distributions of the
largest fragment in different excitation energy bins. Recently,

10987654321
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FIG. 14. (Color online) γ2 of the QP systems formed in Ar + Al
(open circles), Ti (open triangles), and Ni (solid squares) as a function
of excitation energy.
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FIG. 15. (Color online) Zmax distributions of the QP systems
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squares) in different excitation energy windows.

Dorso et al. employed a molecular dynamics model to
investigate fluctuations in the atomic number of the heaviest
fragment (Zmax) by determining its normalized variance (NVZ)
[21] as follows:

NVZ = σ 2
Zmax

〈Zmax〉 . (16)

In that work, they performed calculations of the NVZ
on two simple systems, one of which should not exhibit
critical behavior and one that does. For the first they used a
random partition model in which the population of the different
mass numbers is obtained by randomly choosing values of A
following a previously prescribed mass distribution [71]. In
this case the fluctuations in the populations are of statistical
origin or are related to the fact that the total mass Atot is
fixed. No signal of criticality is to be expected. In the second
case they explored the disassembly of systems of the same
size employing a finite lattice bond percolation model. Such
a case is known to display true critical behavior [21]. They
found that that NVZ peaks close to the critical point in the
percolation model calculation but shows no such peak in
the random partition model calculation. This indicates that
the mass conservation criterion, by itself, cannot induce the
peak of NVZ. The details can be found in Ref. [21].

For our data we plot the normalized variance of Zmax/ZQP

as a function of excitation energy in Fig. 16. A clear maximum,
characterizing the largest fluctuation of this order parameter,
is located in the E∗/A ∼ 5–6 MeV/nucleon.
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FIG. 16. (Color online) NVZ of the QP systems formed in Ar + Al
(open circles), Ti (open traingles), and Ni (solid squares) as a function
of excitation energy. Vertical line is at 5.6 MeV/nucleon. See text.

3. Fluctuations in the distribution of total kinetic energy

The system we have studied is a hot system. If critical
behavior occurs, it should also be reflected in large thermal
fluctuations. Using a definition similar to that of the normalized
variance of Zmax, we can define the normalized variance of
total kinetic energy per nucleon as follows:

NVE =
σ 2

Etot
kin/A〈

Etot
kin

/
A

〉 , (17)

where Etot
kin/A is the total kinetic energy per nucleon and

σEtot
kin/A

is its width. Figure 17 shows the NVE as a function
of excitation energy. The observed behavior is very similar
to that of NVZ. Again, the maximal fluctuation was found at
E∗/A= 5–6 MeV/nucleon. The maximal thermal fluctuations
are found in the same region as the maximal fluctuations
in cluster sizes. The use of kinetic energy fluctuations as a
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FIG. 17. (Color online) NVE of the QP systems formed in Ar + Al
(open circles), Ti (open traingles), and Ni (solid squares) as a function
of excitation energy. Vertical line is at 5.6 MeV/nucleon. See text.
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tool to measure microcanonical heat capacities has also been
proposed [72–74].

Based on the relation of the heat capacity per nucleon and
kinetic energy fluctuations, that is,

cV

AQP
= c 	 cK + cI 	 c2

K

cK − AQPσ
2
k

/
T 2

m

, (18)

where cK and cI are the kinetic and interaction microcanonical
heat capacities per particle calculated for the most probable en-
ergy partition characterized by a microcanonical temperature
Tm [72]. Tm can be estimated by inverting the kinetic equation
of state [75] as follows:

〈
Etot

kin

〉 =
〈

M∑
i=1

ai

〉
T 2

m +
〈

3

2
(M − 1)

〉
Tm, (19)

where 〈 〉 indicates the average on the events with the same Etot
kin

and ai is the level energy density parameter for fragment i and
M is total multiplicity of QP particles. A negative heat capacity
is indicated if the kinetic energy fluctuations exceed the
canonical expectation AQPσ

2
k /T 2

m = cK . In 35 MeV/nucleon
Au + Au collisions, the deexcitation properties of an Au
QP formed at excitation energies from 1 to 8 MeV/nucleon
were investigated. Abnormal kinetic energy fluctuations were
observed near the excitation energy previously identified as
the critical energy [74] and derived negative heat capacities
have been taken as a possible signal of the liquid gas phase
transition.

In Fig. 18 we present the variable AQP
σ 2

kin
T 2

m
as a function of

excitation energy as observed for the present system. The broad
peak located at E∗/A= 4.0−6.5 MeV as Fig. 17 indicates the
region of the largest kinetic fluctuations. We note that the
value of this quantity never reaches 3/2, which is the canonical
expectation. It is possible that for such a very small system
the finite size effects will limit this parameter to values well
below the canonical expectation as it does for γ2. Hence the
quantitative value of heat capacity cV will be difficult to derive
using Eq. (18) without a priori knowledge of cK . It is clear

that any value of cK below 0.29 would lead to an apparent
negative heat capacity.

4. Universal scaling laws: �-scaling

The recently developed theory of universal scaling laws for
order-parameter fluctuations has been advanced as providing a
method to select order parameters and characterize critical and
noncritical behavior, with no assumption of equilibrium [76].
In this framework, universal �-scaling laws of the normalized
probability distribution P [m] of the order parameter m for
different “system size” 〈m〉 should be observed:

〈m〉�P [m] = �(Z(�)) ≡ �

[
m − m∗

〈m〉�
]
, (20)

with 0 < � � 1, where 〈m〉 and m∗ are the average and the most
probable values of m, respectively, and �(z(�)) is the (positive)
defined scaling function that depends only on a single scaled
variable Z(�). If the scaling framework holds, the scaling
relation is valid independent of any phenomenological reasons
for changing 〈m〉 [76]. The �-scaling analysis is very robust
and can be studied even in small systems if the probability
distributions P [m] are known with a sufficient precision.

Botet et al. applied this universal scaling method to INDRA
data for 136Xe + 124Sn collisions in the range of bombarding
energies between 25 and 50 MeV/nucleon. As the relevant
order parameter they chose the largest fragment charge, Zmax.
It was found that, at Elab � 39 MeV/nucleon, there is a
transition in the fluctuation regime of Zmax. This transition is
compatible with a transition from the ordered phase (�= 1/2)
to the disordered phase (�= 1) of excited nuclear matter
[23]. From this study, they attributed the fragment production
scenario to the family of aggregation scenarios that includes
both equilibrium models, such as the Fisher droplet model,
the Ising model, or the percolation model, and nonequilibrium
models, such as the Smoluchowski model of gels. For such
scenarios the average size of the largest cluster, 〈Zmax〉, is the
order parameter and the cluster size distribution at the critical
point obeys a power law with τ > 2.

The upper panel in Fig. 19 shows that �-scaling of P [Zmax]
distributions for all E∗/A windows above 2.0 MeV with an
assumed �= 1. For our light system, our results show that
the higher energy data are very well scaled with �= 1 [even
though not perfectly in the lower Z(�) tail] but the lower
energy data are not. Similar behaviors are also observed in
other quantities, such as the total kinetic energy per nucleon
Etot

kin/A [Fig. 19(b)] and the normalized second moment S2

[Fig. 19(c)] of QP. This indicates a transition to �= 1 scaling
in the region of E∗/A= 5.6 MeV. This corresponds to the
fluctuations of the Zmax growing with the mean value (i.e.,
σZmax/〈Zmax〉 ∼ constant (see Fig. 20). The saturation of the
reduced fluctuations of Zmax (i.e., σZmax/〈Zmax〉) observed
above corresponds to the transition to the regime of maximal
fluctuations [24]. However, the lower energy data are not well
scaled by �= 1/2.

The pattern of charged fragment multiplicity distributions
P [n] shows no significant evolution with the excitation
energy (Fig. 21), and the data are perfectly compressible
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FIG. 19. (Color online) �-scaling for different quantities: the
charge distribution of the largest fragment (a), the total kinetic energy
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kin/A, (b), and the normalized second
moment (S2) in different E∗/A windows. The � = 1 scaling is
generally satisfied above 5.6 MeV/nucleon even it is not perfect in
the lower Z(�) tail.

in the scaling variables of the �= 1/2 scaling (i.e., the
multiplicity fluctuations are small in the whole excitation
energy range). The scaling features of experimental Zmax

[Fig. 19 (a)] and multiplicity probability distributions (Fig. 21)
are complementary and allow one to affirm that the fragment
production in Fermi energy domain follows the aggregation
scenario, such as the Fisher droplet model, and two phases of
excited nuclear matter with distinctly different patterns of Zmax

fluctuation. It appears that Zmax is a very good order parameter
to explore the phase change [77].

From the studies of this section, we conclude that the
largest fluctuation phase (�= 1) is actually reached above
5.6 MeV/nucleon of excitation energy.

C. Fragment topological structure

In addition to the thermodynamic and fluctuation features of
the system, observables revealing some particular topological
structure may also reflect the critical behavior for a finite
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FIG. 20. (Color online) σZmax/〈Zmax〉 as a function 〈E∗/A〉 for
the QP formed in 40Ar + Al (open circles), Ni (filled squares), and Ti
(open triangles).

system. For example, if we make a plot for the average value of
Z2max vs Zmax in the different excitation energy windows, we
immediately see that a transition occurs near 5.6 MeV/nucleon
(Fig. 22). Below that point 〈Z2max〉 increases with decreasing
〈Zmax〉. In these energy zones, the fragmentation is basically
dominated by evaporation and sequential decay is important.
But above 5.6 MeV/nucleon excitation energy, 〈Z2max〉 de-
creases with decreasing 〈Zmax〉. In this region of excitation, the
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FIG. 21. (Color online) � = 1/2 scaling of charged fragment
multiplicity distributions in different E∗/A windows for the QP
formed in 40Ar + 58Ni.
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nucleus is essentially fully vaporized and each cluster shows a
similar behavior.

Below we present an exploration of two more detailed
observables characterizing the topological structure (i.e., Zipf
law relationships and bimodality).

1. Zipf plots and Zipf’s law

Recently, Ma proposed measurements of the fragment
hierarchy distribution as a means to search for the liquid
gas phase transition a finite system [78,79]. The fragment
hierarchy distribution can be defined by the so-called Zipf
plot, that is, a plot of the relationship between mean sizes of
fragments which are rank-ordered in size (i.e., largest, second
largest, etc.) [78,79]. Originally the Zipf plot was used to
analyze the hierarchy of usage of words in a language [80] (i.e.,
the relative population of words ranging from the word used
most frequently to the word used least frequently). The integer
rank was defined starting from 1 for the most probable word
and continuing to the least probable word. Surprisingly, a linear
relationship between the frequency and the order of words
was found. Later, many more applications of this relationship
were made in a broad variety of areas, such as population
distributions, sand-pile avalanches, the size distribution of
cities, the distribution in strengths of earthquakes, the genetic
sequence and the market distribution of sizes of firms, and so
on. It has been suggested that the existence of very similar
linear hierarchy distributions in these very different fields
indicates that Zipf’s law is a reflection of self-organized
criticality [81].

The significance of the 5–6 MeV region in our data is further
indicated by a Zipf’s law analysis such as that proposed in
[78,79]. In such an analysis, the cluster size is employed as the
variable to make a Zipf-type plot and the resultant distributions
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FIG. 23. (Color online) Zipf plots in nine different excitation
energy bins for the QP formed in 40Ar + 58Ni. The dots are data
and the lines are power-law fits (Eq. (21)). The statistical error is
smaller than the size of the circles.

are fitted with a power law,

〈Zrank〉 ∝ rank−ξ , (21)

where ξ is the Zipf’s law parameter. In Fig. 23 we present Zipf
plots for rank-ordered average Z in the nine different energy
bins. Lines in the figure are fits to the power-law expression of
Eq. (21). Figure 24 shows the fitted ξ parameter as a function
of excitation energy. As shown in Fig. 23, this rank ordering
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FIG. 24. (Color online) Zipf parameter as a function of excitation
energy for the QP formed in 40Ar + 58Ni. The position of cross
illustrates the Zipf law is reached around 5.6 MeV/nucleon excitation
energy.
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FIG. 25. (Color online) The phase separation parameter as a
function of excitation energy for the QP formed in 40Ar + 58Ni.

of the probability observation of fragments of a given atomic
number, from largest to the smallest, does indeed lead to a
Zipf’s power law parameter ξ = 1 in the 5–6 MeV/nucleon
range. When ξ ∼ 1, Zipf’s law is satisfied. In this case, the
mean size of the second largest fragment is 1/2 of that of the
the largest fragment, that of the third largest fragment is 1/3 of
the largest fragment, and so on.

We note that the nuclear Zipf-type plot that was proposed in
Ref. [78,79] has been applied in the analysis of CERN emul-
sion or Plastic data of Pb + Pb or Plastic at 158 GeV/nucleon
and it was found that the nuclear Zipf law is satisfied when the
liquid gas phase transition occurs [82].

In a related observation that is consistent with the formula-
tion of Zipf’s law, percolation model calculations [83] suggest
that the ratio Sp = 〈Z2max〉/〈Zmax〉 reaches 0.5 around the
phase separation point. Here Z2max is the atomic number of
the second heaviest fragment in each event. Figure 25 shows
Sp versus E∗/A. Sp = 0.5 at 5.2 MeV/nucleon. It exhibits
essentially linear behavior (with two different slopes) above
and below that point.

2. Bimodality

Another proposed test of phase separation is bimodality,
which was suggested in Ref. [84]. As has been noted [85] this
approach generalizes definitions based on curvature anomalies
of any thermodynamic potential as a function of an observable,
which can then be seen as an order parameter. It interprets
a bimodality of the event distribution as coexistence, each
component representing a different phase. It provides a
definition of an order parameter as the best variable to separate
the two maxima of the distribution. In this framework when
a nuclear system is in the coexistence region, the probability
distribution of the order parameter is bimodal.

In analysis of INDRA data [85], (
∑

Zi � 13 Zi−∑
3�Zi�12 Zi/

∑
Zi � 3 Zi) was chosen as a sorting parameter.

This parameter may be connected with the density difference
of the two phases (ρl − ρg), which is the order parameter for
the liquid gas phase transition.
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FIG. 26. (Color online) The average value of bimodal as a
function of excitation energy for the QP formed in 40Ar + 58Ni.

For our very light system, if we consider the clusters with
Z � 3 as a gas and the clusters with Z � 4 as a liquid, a
parameter characterizing the bimodal nature of the distribution
can be defined as follows:

P =
∑

Zi � 4 Zi − ∑
Zi � 3 Zi∑

Zi � 1 Zi

. (22)

Figure 26 shows the mean value of P as a function of E∗/A.
Here again, the slope shows a distinct change at E∗/A=
5–6 MeV where P = 0 (i.e., the point of equal distribution of
Z in the two phases).

VI. CALORIC CURVE

It is also interesting to ask how the caloric curve for this
light system behaves. Several different experimental methods
have been applied to the determination of caloric curves for
nuclear systems. The most common of these are the use of
slope parameters of the kinetic energy spectra or the use of
isotopic yield ratios [86]. Because sequential decays and side
feeding may be important in either case, corrections for such
effects must normally be applied to observed or “apparent”
temperatures in order to obtain the initial temperatures
corresponding to the initial excitation energies of the nuclei
under investigation [90,91]. For heavier systems, a number
of measurements of caloric curves have been reported [1]
and references therein. In those measurements a flattening or
plateauing is generally observed at higher excitation energies.
For light systems such as the A∼ 36 system studied here
there are relatively few measurements of caloric curves. For
construction of the caloric curve from the present data we have
used both the slope measurement and isotope ratio technique
to derive “initial temperatures” from the observed apparent
temperatures, limiting the use of each to its own range of
applicability as discussed below.

A. Low excitation—the liquid-dominated region

Determinations based on spectral slope parameters began
with fitting the kinetic energy spectra for different LCPs
associated with the nine different bins in excitation energy
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FIG. 27. (Color online) Kinetic energy spectra in the QP frame
of 40Ar + 58Ni in four selected E∗/A windows. Left panels are for
deuteron and right for tritons. The dots are experimental data and the
lines are fits with Eq. (23).

to obtain the apparent slope temperatures Ts in the QP source
frame. Ts can be obtained assuming a surface emission type
Maxwellian distribution, as follows:

d2N

dE
QP
kin · d Event

= c0
E

QP
kin − Vcoul

T 2
s

exp

(
−E

QP
kin − Vcoul

Ts

)
,

(23)

where E
QP
kin is the kinetic energy in the QP frame and Vcoul is the

barrier parameter. For an example, Fig. 27 shows the fits to the
kinetic spectra of deuterons and tritons in the QP frame in four
different E∗/A windows. The dashed lines represent the fits
and they show excellent agreement with the data. Using such
fitted results, the excitation function of Ts can be obtained for
each light charged particle as shown in Fig. 28. In this figure,
we also plot (dotted line) Ts = √

8E∗/A, which corresponds to
the temperature from a simple Fermi gas assumption. For these
different particles, the apparent temperatures are different from
each other because the effects of sequential decay are different
for different particles. We note that the temperatures, Ts , of
3He and Li are larger than those of other LCPs, indicating
that they might be the least affected by the sequential decay
effects, whereas Ts for protons shows dramatically smaller
values than the others indicating that the p spectra are strongly
influenced by later stage emissions. We then employed the
measured excitation energy dependence of the multiplicity for
the ejectile under consideration to derive initial temperatures
from the apparent slope temperatures [87,88].
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FIG. 28. (Color online) The apparent temperatures from the
slopes of different particles (open symbols) and from isotopic
ratio (solid squares) as a function of excitation energy for the QP
formed in 40Ar + 58Ni. The line is the Fermi gas model calculation:
Ts = √

8E∗/A.

For each LCP, the measured multiplicity is the sum over
the entire deexcitation cascade. Because the temperature of an
evaporation residue in an excitation energy bin characterized
by a small change of excitation from E∗

1 to E∗
2 is, to a good

approximation,

〈Tini〉 = 〈M2〉〈T2〉 − 〈M1〉〈T1〉
〈M2〉 − 〈M1〉 , (24)

where M2 and M1 are the multiplicities of a certain LCP at the
excitation energy E∗

2 and E∗
1 , where E∗

1 > E∗
2 . The details of

this method can be found in Ref. [87,88].
With this method, we can derive the initial temperatures for

each particle. For each particle except protons we obtained a
reasonable agreement of the respective initial temperatures and
therefore use their average values, as shown by solid squares
in Fig. 29, as a mean initial temperature for plotting the caloric
curve. For protons, the apparent temperature is very low from
fits as shown in Fig. 28 because a large portion of protons may
originate from the side feeding in addition to the sequential
decay chain. However, the former cannot be corrected with
Eq. (24). It must be emphasized that this technique is based
on the assumption of sequential evaporation of the ejectiles
from a cooling compound nucleus source [87,88]. Given that
the various observables discussed above suggest an important
transition at 5.6 MeV/nucleon excitation energy, this method
should not be appropriate above that energy. In fact, initial
temperatures deduced using this approach exhibit a very rapid
increase at excitation energies above 6 MeV/nucleon (not
shown). We take this as evidence that sequential evaporation
from a larger parent cannot explain the multiplicities in the
higher energy region. This is already suggested by the energy
dependence of various multiplicities in Fig. 8 as well as by
much of the discussion in the previous section. Thus we do
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FIG. 29. (Color online) The deduced caloric curves for the QP
formed in 40Ar + 58Ni. The symbols are displayed in insert. See details
in text.

not employ this method based on slope measurements above
5.6 MeV/nucleon.

B. High excitation (I)—the vapor-dominated region

The double isotope ratio temperature technique proposed
by Albergo et al. [86] has been extensively discussed and used
in many experiments and theoretical calculations. Application
of this technique assumes that thermal equilibration and
chemical equilibration have been attained. In an experimental
determination, one of the major problems is that secondary
decay effects can modify the initial temperature strongly
[89–91].

The experimental apparent double isotope temperature,
TH-He, can be deduced from the ratio of Md/Mt/M3He/Mα

as follows:

TH-He = 14.3

ln[1.59(Md · Mα)/(Mt · M3He)]
, (25)

where Md,Mt,M3He, and Mα are the isotopic yields of
d, t, 3He, and α from QP (see Fig. 9), respectively. As shown
in Fig. 28 (solid squares), the apparent isotopic temperatures
are well below those of the simple Fermi gas assumption
(dotted line in the figure) indicating a strong influence because
of secondary decay. To estimate the secondary decay effect
quantum statistical model (QSM) calculations were performed
to correct the observed double isotope H-He ratio temperatures
(TH-He) for these effects.

For this purpose we compared results of two different
calculations, the first published in Refs. [58,91] and the second
carried out for this work employing the QSM model described
in Refs. [89–91]. The results of the two QSM models are in
quite good agreement with each other. For nuclei with A ∼ 36
in the excitation energy range of interest, averaging results of
these models indicates that Tinit = (1.75 ± 0.06) × TH-He. The
corrected isotopic temperature is shown in Fig. 29 as the solid
circles.

As emphasized above, this method is based on a model
that assumes simultaneous fragmentation of a reduced density
equilibrated nucleus and subsequent secondary evaporation

from the primary fragments [89]. This method should be
inappropriate in the lower excitation energy where the vapor
assumption of the QSM is violated. In this case, we do not
apply the technique below 5 MeV/nucleon.

The two techniques differ somewhat in the excitation energy
range near the transition point, indicating some systematic
error because of using different techniques in the transition
point region. This supports the argument for restricting the
use of each technique to the “appropriate” excitation energy
region.

We note that the caloric curve, defined in this manner,
exhibits no obvious plateau. A polynomial fit to the data points
leads to a temperature at the transition point of 8.3 ± 0.5 MeV.

C. High excitation (II)—the ideal vapor assumption

If the vapor phase may be characterized as an ideal gas of
clusters [13], then, at and above T = 8.3 MeV, this should be
signaled by a kinetic temperature, Tkin = 2

3Eth
kin, where Eth

kin
is the Coulomb-corrected average kinetic energy of primary
fragments. Secondary decay effects make it difficult to test
this expectation. However, in an inspection of the average
kinetic energies or apparent slope parameters (Fig. 28 ) for the
different species observed, we find that, for each excitation
energy window, the average kinetic energy of 3He isotropically
emitted in the projectilelike frame, is higher than those of other
species. This together with simple model estimates indicates
that the 3He spectra are the least affected by secondary decay.
Kinetic temperatures for 3He, defined as 2

3 (Ēk − Bc), where
Ēk is the average kinetic energy and Bc is the Coulomb
energy (obtained from the fits), are plotted as open squares
in Fig. 29. Above T = 8.3 MeV the kinetic temperatures
show a similar trend to that of the chemical temperatures
but are approximately 1.5 MeV lower. Although not perfect
this approximate agreement provides additional evidence for
disassembly of an equilibrated system.

For heavier systems a plateau or flattening is often observed
in caloric curves [1] and the region of entry into the plateau
appears to be very close to the point that has been identified
as the point of maximal fluctuations. The reason for this
flattening is still under discussion. It may reflect expansion
and/or spinodal decomposition inside the coexistence region
[18,92–96]. In contrast, our light system does not show the
flattening. This suggests that the transition under investigation
may differ from that seen in the heavier systems.

Taken together with the observations indicating maximal
fluctuations and the particular features of the fragment topolog-
ical structure at 5.6 MeV/nucleon excitation, the comportment
of this caloric curve provides further evidence suggesting that
the observed transition is taking place at, or very close to, the
critical point.

VII. DETERMINATION OF CRITICAL EXPONENTS

Because the pioneering work on extraction of the critical
exponents for nuclear multifragmention from EOS data [97],
several additional experimental and theoretical efforts have
been attempted [11,98–100]. In the latter works, Elliott et al.
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FIG. 30. (Color online) The correlation between ln(S3) vs ln(S2)
and the linear fit.

show that the scaling behavior can remain even in small
systems and the critical exponents can be extracted.

In the Fisher droplet model, the critical exponent τ can be
deduced from the cluster distribution near the phase transition
point. In Sec. V A, we already determined, from the yield
distributions, τeff ∼ 2.31 ± 0.03, which is close to that for
the liquid gas phase transition universality class. In terms of
the scaling theory, τ can also be deduced from (Scorr), the
slope of the correlation between ln(S3) vs ln(S2) [98], where
S3 = M3/M1, shown in Fig. 30, is related to τ as follows:

τ = 3Scorr − 4

Scorr − 1
. (26)

Assuming the value of Tc = 8.3 MeV as determined from our
caloric curve measurements, we explored the correlation of of
S2 and S3 in two ranges of excitation energy C, see Fig. 31.
The moments were computed by exclusion of the species with
Zmax in the “liquid” phase but inclusion in the “vapor” phase.
The slopes were determined from linear fits to the “vapor” and
“liquid” regions respectively and then averaged. In this way,
we obtained a value of τ = 2.13 ± 0.1 (see Fig. 30).

Other critical exponents can also be related to other
moments of cluster distribution, Mk , which were defined in
Eq. (14). Because, for our system, we have already deduced
the initial temperatures and determined a critical temperature
Tc = 8.3 MeV at point of maximal fluctuations, we can use
temperature as a control parameter for such determinations. In
this context, the critical exponent β can be extracted from the
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FIG. 31. (Color online) Zmax as a function of T/Tc (a) and the
extraction of the critical exponent β (b).

following relation:

Zmax ∝
(

1 − T

Tc

)β

, (27)

and the critical exponent γ can be extracted from the second
moment via

M2 ∝
∣∣∣∣1 − T

Tc

∣∣∣∣
−γ

. (28)

In each, |1 − T
Tc

| is the parameter that measures the distance
from the critical point.

Figure 31 explores the dependence of Zmax on (T/Tc). We
note a dramatic change of Zmax around the critical temperature
Tc. LGM calculations also predict that the slope of Zmax vs T
will change at the liquid gas phase transition [101]. Physically,
the largest fragment is simply related to the order parameter
ρl − ρg (the difference of density in nuclear “liquid” and “gas”
phases). In infinite matter, the infinite cluster exists only on the
“liquid” side of the critical point. In finite matter, the largest
cluster is present on both sides of the phase transition point.
In this figure, the significant change of the slope of Zmax with
temperature should correspond to a sudden disappearance of
the infinite cluster (“bulk liquid”) near the phase-transition
temperature. For the finite system, it reflects the onset of
critical behavior there. Using the left side of this curve (i.e.,
liquid side), we can deduce the critical exponent β by the
transformation of the x axis variable to the distance from the
critical point. Figure 31(b) shows the extraction of β using
Eq. (27). An excellent fit was obtained in the region away
from the critical point, which indicates a critical exponent
β = 0.33 ± 0.01. Near the critical point, the finite size effects
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TABLE II. Comparison of the critical exponents.

Exponents 3D percolation Liquid-gas This work

2.22 ± 0.46 [Eq. (30)]
τ 2.18 2.21 2.31 ± 0.03 [Eq. (12)]

2.13 ± 0.10 [Eq. (26)]
β 0.41 0.33 0.33 ± 0.01
γ 1.8 1.23 1.15 ± 0.06
σ 0.45 0.64 0.68 ± 0.04

become stronger so that the scaling law is violated. The
extracted value of β is that expected for a liquid gas transition
(see Table. II) [68].

To extract the critical exponent γ , we take M2 on the liquid
side without Zmax but take M2 on the vapor side with Zmax

included. Figure 32 shows ln(M2) as a function of ln(|1 −
T/Tc|). The lower set of points is from the liquid phase and
the upper set of points is from the vapor phase. For the liquid
component, we center our fit to Eq. (28) about the center of the
range of (1 − T/Tc), which leads to the linear fit and extraction
of β as represented in Fig. 31. We obtain the critical exponent
γ = 1.15 ± 0.06. This value of γ is also close to the value
expected for the liquid gas universality class (see Table II). It is
seen that the selected region has a good power-law dependence.
However, a similar effort to extract the γ in the gas phase is not
successful: a small value less than 0.20 is deduced. This may
be because of the finite size effects for this very light system.
Because the largest cluster still exists in the vapor side, its
inclusion (or exclusion) in M2 might perturb the determination
of the moment, resulting in an imprecise value of γ extracted
from the vapor phase. For comparison, we just show, for the
vapor phase, a line representing the γ derived from the liquid
side. This line agrees only with the last few vapor points, that
is, the highest temperature points (the contamination of M2

should the least there).
Because we have the critical exponent β and γ , we can use

the following scaling relation:

σ = 1

β + γ
(29)
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FIG. 32. (Color online) The extraction of critical exponents γ .
See texts for details.

to derive the critical exponent σ . In such way, we get the
σ = 0.68 ± 0.04, which is also very close to the expected
critical exponent of a liquid–gas system.

Finally, it is possible to use the following scaling relation

τ = 2 + β

β + γ
(30)

to check the τ value that was determined from the charge
distributions using Fisher droplet model power law fits around
the critical point (see Fig. 10). Using Eq. (30) we obtain
τ = 2.22 ± 0.46, which, though less precise, is in agreement
with the values of 2.31 ± 0.03 obtained from the charge
distribution around the point of maximal fluctuations and
2.15 ± 0.1 extracted from the correlation of ln(S3) vs ln(S2).

To summarize this section, we report in Table. II a
comparison of our results with the values expected for the
3D percolation and liquid gas system universality classes and
with the results obtained by Elliott et al. for a heavier system.
Obviously, our values for this light system with A∼ 36 are
consistent with the values of the liquid gas phase transition
universality class rather the 3D percolation class.

VIII. CONCLUSIONS

In conclusion, an extensive survey of the features of the
disassembly of nuclei with A∼ 36 has been reported. To carry
out this analysis, the deexcitation products of the A∼ 36
quasi projectile source were first reconstructed using a new
technique based on the three source fits to the light particle
spectra and use of a rapidity cut for IMF. Monte Carlo sampling
techniques were applied to assign all particles to one of three
sources (QP, NN, and QT).

At an excitation energy ∼5.6 MeV/nucleon key observables
demonstrate the existence of maximal fluctuations in the
disassembly process. These fluctuation observables include
the Campi scattering plots and the normalized variances of
the distributions of order parameters, (Zmax) and total kinetic
energy. Recently proposed �-scaling analysis also show a
universal behavior at higher excitation energy where the satu-
ration of the reduced fluctuations of Zmax (i.e., σZmax/〈Zmax〉)
is observed. This corresponds to the transition to a regime of
large fluctuations from an ordered phase at lower excitation
energy.

At the same excitation energy ∼5.6 MeV/nucleon, the
Fisher droplet model prediction is satisfied, with a Fisher
power law parameter, τ = 2.3, close to the critical exponent of
the liquid gas phase transition universality class. In addition,
the fragment topological structure shows that the rank sorted
fragments obey Zipf’s law, proposed as a signature of liquid
gas phase transition [78], at the maximal fluctuation point. The
related phase separation parameter [83] shows a significant
change of slope with excitation energy. The correlation of the
heaviest fragment and the second heaviest fragment demon-
strates a transition around 5.6 MeV/nucleon of excitation
energy. A bimodality test [84] also gives an indication of a
phase change in the same excitation energy region.

The caloric curve shows a monotonic increase in temper-
ature and no plateau region is apparent, in contrast to caloric
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curves seen for heavier systems [1]. At the apparent critical
excitation energy the temperature is 8.3 ± 0.5 MeV. Taking
this to be the critical temperature for this system, we extracted
the critical exponents β, γ , and σ . The deduced values are
consistent with the values of the liquid gas phase transition
universality class [68].

Because some fluctuation observables, such as the structure
of the Campi plot, Zmax fluctuations and so on, could be
produced by mass conservation effects where no assumption
of the critical behavior is needed, these observables by
themselves do not guarantee that the critical point has been
reached. What differentiates the present work from previous
identifications of points of critical behavior in nuclei, in
addition to the fact that these are the lightest nuclei for
which a detailed experimental analysis has been made, is the
comportment of the caloric curve and the critical exponent
extraction. Taken together, this body of evidence suggests

a liquid gas phase change in an equilibrated system at, or
extremely close to, the critical point. Detailed theoretical
confrontations with models which include or exclude a liquid
gas phase transition are certainly interesting and welcome.
Some work along this line is in progress [102,103].
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S. Aiello, S. Cavallaro, A. Pagano, G. Politi, J. L. Charvet,
R. Dayras, E. Pollacco, C. Volant, C. Beck, D. Mahboub, and
R. Nouicer et al., submitted to Nucl. Phys. A, ArXiv:nucl-
ex/0412038.

[47] R. Ghetti, J. Helgesson, G. Lanzanó, E. De Filippo, and
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C. Morand, P. Stassi, and J. B. Viano et al., Nucl. Instrum.
Methods A 281, 137 (1989).

[54] R. Planeta, W. Gawlikowicz, A. Wieloch, J. Brzychczyk,

T. Ciszek, A. J. Cole, P. Desquelles, K. Grotowski, P. Hachaj,
S. Micek, P. Pawlowski, Z. Sosin, D. Benchekroun, E. Bisquer,
A. Chabane, M. Charvet, B. Cheynis, A. Demeyer, E. Gerlic,
A. Giorni, D. Guinet, D. Heuer, P. Lautesse, L. Lebreton,
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[89] D. Hahn and H. Stöcker, Nucl. Phys. A476, 718 (1988);
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Rev. Lett. 93, 132702 (2004).
[97] M. L. Gilkes, S. Albergo, F. Bieser, F. P. Brady, Z. Caccia,

D. A. Cebra, A. D. Chacon, J. L. Chance, Y. Choi, S. Costa,
J. B. Elliott, J. A. Hauger, A. S. Hirsch, E. L. Hjort, A. Insolia,
M. Justice, D. Keane, J. C. Kintner, V. Lindenstruth, M. A. Lisa,
U. Lynen, H. S. Matis, M. McMahan, C. McParland,
W. F. J. Müller, D. L. Olson, M. D. Partlan, N. T. Porile,
R. Potenza, G. Rai, J. Rasmussen, H. G. Ritter, J. Romanski,
J. L. Romero, G. V. Russo, H. Sann, R. Scharenberg, A. Scott,
Y. Shao, B. K. Srivastava, T. J. M. Symons, M. Tincknell,
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