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16C inelastic scattering studied with the microscopic coupled-channels method
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In order to test the 16C internal wave function, we perform microscopic coupled-channels (MCC) calculations
of the 16C(0+

1 → 2+
1 ) inelastic scattering by a 208Pb target at E/A = 52.7 MeV using the antisymmetrized

molecular dynamics (AMD) wave functions of 16C, and compare the calculated differential cross sections with
the measured ones. The MCC calculations with AMD wave functions reproduce the experimental data fairly well,
although they slightly underestimate the magnitude of the cross sections. The absolute magnitude of calculated
differential cross sections is found to be sensitive to the neutron excitation strength. We prove that the MCC
method is a useful tool for connecting the inelastic scattering data with the internal wave functions.
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I. INTRODUCTION

Recently, opposite deformations between proton and neu-
tron densities in C isotopes were theoretically suggested
[1,2] by the method of antisymmetrized molecular dynamics
(AMD): The proton density has an oblate deformation, while
the neutron density has a prolate deformation, and the sym-
metry axis of the proton is perpendicular to that of the neutron
in 10C and 16C. Based on this picture, the author also gave a
qualitative explanation [3] for an unusually small electric tran-
sition strength B(E2; 2+

1 → 0+
1 ) = 0.63 ± 0.19 e2 fm4 in 16C,

which is derived from a lifetime measurement [4]. According
to Ref. [3], the 2+

1 state is a rotational excited state, and the
rotational axis is perpendicular to the neutron symmetry axis.
In this excitation mechanism, the proton transition strength
is reduced due to the difference of deformation between
the proton and neutron distributions mentioned above, and
therefore, the 0+

1 → 2+
1 transition is dominated by the neutron

excitation.
In order to search for the possible difference between

proton and neutron contributions to excitation of the 2+
1

state in 16C, an inelastic scattering experiment of 16C on a
208Pb target was performed [5] applying the Coulomb-nuclear
interference method. The analysis was carried out by using the
deformed potential model, and the proton and neutron transi-
tion matrix elements Mp and Mn were extracted. In Ref. [5],
it is mentioned that the experimental transition probability
is inconsistent with theoretical ones (the AMD, extended
AMD, and shell-model calculations are cited). However, the
phenomenological analysis done in Ref. [5] contains some
assumptions, and hence, it seems inappropriate to compare the
Mp and Mn values evaluated in Ref. [5] with those calculated
theoretically.

To test the 16C internal wave function, we should di-
rectly link the cross section with the wave function, by
calculating the differential cross sections of the inelastic
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scattering of 16C on the 208Pb target with the microscopic
coupled-channels (MCC) method, and compare the calcu-
lated result with the experimental reaction data measured in
Ref. [5].

The MCC method has been applied for studying reactions
of stable nuclei, such as 6,7Li and 9Be elastic and inelastic
scattering [6,7], the resonance reactions of the 12C+12C system
leading to inelastic [8,9] and 8Be+16O α-transferred channels
[10], the rainbow scattering of the 16O+16O system [11], etc.,
adopting the microscopic cluster model wave functions of
6,7Li [6], 9Be [12], 12C [13], and 16O [14]. Because the
microscopic cluster model wave functions well reproduce the
measured charge form factors of not only the elastic electron-
scattering but also the inelastic one, the wave functions are
reliable and suitable for studying nuclear reaction mechanisms.
The MCC calculations successfully reproduce the experimen-
tal reaction data. The reliability of the method has already
been established. Hence, we think it is possible to examine
inversely the validity of calculated internal wave functions
by comparing the result of MCC with experimental reaction
data.

In this paper, we adopt the AMD internal wave function of
16C. The reasons we think it is worthy to test the validity of
the AMD wave function in the present study are as follows.
(1) Because no inert cores and no clusters are assumed, the
AMD wave function is flexible. Therefore, AMD is suited for
structural study of general unstable nuclei. The applicability
has been proved in many works [2]. (2) Deformations of
proton and neutron densities are obtained dynamically. In other
words, electromagnetic transition probability can be calculated
without introducing effective charge. (3) In AMD, it is easy
to carry out the spin-parity projection, which is necessary for
microscopic calculation of transition density.

It should be noted that any nuclear structure models are
applicable to MCC, if the diagonal density and transition
densities to excited states can be calculated from a model wave
function that gives no spurious center-of-mass component. In
the next section, we briefly describe the MCC method. A more
detailed description is given in Refs. [9,11].
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II. FORMALISM

A. Coupled-channels formalism

The coupled-channels equation describing the collision of
two nuclei for a total angular momentum of the system J is
written as [

TR + U
(J )
αL,αL(R) − Eα

]
χ

(J )
αL (R)

= −
∑

(α′L′)�=(αL)

U
(J )
αL,α′L′(R)χ (J )

α′L′(R), (1)

where TR denotes the kinetic-energy operator, and α and L
denote a channel and the orbital angular momentum associated
to the relative coordinate R, respectively. In the present study,
we take into account the elastic and 16C excitation channels,
while only the ground state (0+) is considered for the target
208Pb nucleus. Thus, the channel α is designated by the spin I
and the excitation energy εα of 16C. Eα represents the center-
of-mass energy for the projectile-target relative motion in
channel α (Eα = Ec.m. − εα). χ

(J )
α′L′(R) is the relative wave

function and is obtained by solving Eq. (1) numerically.
In Eq. (1), U

(J )
αL,α′L′(R) represents the diagonal (α,L) =

(α′, L′) or the coupling (α,L) �= (α′, L′) potential, which is
composed of the nuclear part V N(J )

αL,α′L′(R) and the Coulomb part

V
C(J )
αL,α′L′(R). The nuclear part is given by the double-folding

model and defined as

V
N(J )
αL,α′L′(R) = 1

4π

∑
λ

L̂L̂′ iL−L′
(−1)J−IW (ILI ′L′; Jλ)

× (L0L′0|λ0)
Î

λ̂

∫
d R̂d r1 d r2

{
v00(x)

[
ρ

n(λ)
II ′ (r1)

+ ρ
p(λ)
II ′ (r1)

][
ρ

n(0)
00 (r2) + ρ

p(0)
00 (r2)

] + v01(x)

×[
ρ

n(λ)
II ′ (r1) − ρ

p(λ)
II ′ (r1)

][
ρ

n(0)
00 (r2) − ρ

p(0)
00 (r2)

]}
× [Yλ(r̂1) ⊗ Yλ(R̂)]00

(x = r1 + R − r2), (2)

where W (ILI ′L′; Jλ) represents the ordinary Racah coeffi-
cient, and Î is

√
2I + 1. ρ

p(λ)
II ′ (r1) and ρ

n(λ)
II ′ (r1) [ρp(0)

00 (r2) and
ρ

n(0)
00 (r2)] are the radial components of the proton and neutron

transition densities of 16C (208Pb), respectively, which are
mentioned in the next subsection in detail. v00(x) represents
the spin- and isospin-scalar (S = T = 0) component of an
effective nucleon-nucleon interaction, while v01(x) represents
the spin-scalar, isospin-vector (S = 0, T = 1) component. For
this effective interaction, we adopt the DDM3Y (density-
dependent Michigan three-range Yukawa) [15,16], which is
defined by

v00(01)(E, ρ; r) = g00(01)(E, r)f (E, ρ), (3)

where r is the internucleon separation, and f (E, ρ) is a
density-dependent factor

f (E, ρ) = C(E)[1 + α(E) e−β(E)ρ]. (4)

Here, E denotes an incident energy per nucleon in the
laboratory system. The coefficients C(E), α(E), and β(E)
in the density-dependent factor f (E, ρ) were determined at
each energy by fitting a volume integral of the v00(E, ρ; r) to

the real part of the optical potential felt by a nucleon in the
nuclear matter [17]. g00(01)(E, r) in Eq. (3) is the original M3Y
interaction [18,19]

g00(E, r) = 7999
e−4r

4r
− 2134

e−2.5r

2.5r
+ Ĵ00(E)δ(r) MeV,

(5)
with

Ĵ00(E) = −276(1 − 0.005E) MeV fm3, (6)

and

g01(E, r) = −4886
e−4r

4r
+ 1176

e−2.5r

2.5r
+ Ĵ01(E)δ(r) MeV,

(7)
with

Ĵ01(E) = 228.4(1 − 0.005E) MeV fm3. (8)

The units for E and r are MeV/nucleon and fm, respectively.
The Coulomb part V

C(J )
αL,α′L′(R) is also given by the double-

folding model. The double-folded Coulomb potential is written
in the same form as Eq. (2), by replacing the neutron densities
and the nucleon-nucleon interaction as

ρ
n(λ)
II ′ (r1), ρn(0)

00 (r2) → 0, v00(x) → e2

x
, v01(x) → 0.

Since DDM3Y has no imaginary part, we add the imaginary
potential W

N(J )
αL,α′L′(R) to the nuclear part, which is assumed

as W
N(J )
αL,α′L′(R) = NIV

N(J )
αL,α′L′(R), where NI is the only phe-

nomenological parameter of the present MCC formalism. The
simple assumption for the imaginary part should be valid in
the present case, since we only discuss the cross sections at
very forward scattering angles, which are not sensitive to the
detail of the shape of the potential in the whole radial range.
Hence, the interaction potential has the form

U
N(J )
αL,α′L′(R) = (1 + iNI )V N(J )

αL,α′L′(R) + V
C(J )
αL,α′L′(R). (9)

B. Transition density

The diagonal or transition density of a proton at a position
r with respect to the center of mass of the nucleus can be
expanded into multipole components

ρ
p

Iν,I ′ν ′(r) = 〈
ψ

p

Iν(ξ )
∣∣ Z∑

i=1

δ(r − r i)
∣∣ψp

I ′ν ′ (ξ )
〉

=
∑
λ,µ

(I ′ν ′λµ|Iν)ρp(λ)
II ′ (r)Y ∗

λµ(r̂), (10)

where ψ
p

Iν(ξ ) represents the proton wave function in the
nucleus. ρ

p(λ)
II ′ (r) represents the radial component of the

transition density, which is used in Eq. (2). The radial
component of the neutron transition density ρ

n(λ)
II ′ (r) is obtained

in the same manner as the proton case in terms of the neutron
wave function ψn

Iν(ξ ). The proton or neutron matrix element
of rank λ is defined as

M (λ)
τ (I ′ → I ) = Î

∫
ρ

τ (λ)
II ′ (r) rλ+2dr, (11)
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TABLE I. B(E2), M (2)
p , and M (2)

n values of 16C calculated by
AMD, in which the strength of the spin-orbit force is set to
(i) uls = 900 MeV, (ii) uls = 1500 MeV, and (iii) uls = 2000 MeV.
The experimental data of B(E2) is taken from Ref. [4].

(i) (ii) (iii) exp.

B(E2; 2+
1 → 0+

1 )(e2 fm4) 1.9 1.4 0.9 0.63 ± 0.19
M (2)

p (2+
1 → 0+

1 )(fm2) 3.1 2.6 2.2 –

M (2)
n (2+

1 → 0+
1 )(fm2) 13.0 12.2 8.9 –

where τ represents p or n. The proton matrix element is related
with the electric transition strength B(Eλ) as

B(Eλ; I ′ → I ) =
∣∣M (λ)

p (I ′ → I )
∣∣2

Î ′2 e2. (12)

Here, we use the AMD wave function for ψ
p

Iν(ξ ) and ψn
Iν(ξ )

to calculate the transition densities defined in Eq. (10). We
consider the ground state (0+

1 ) and the first excited 2+
1 state. In

Ref. [3], two versions of the 16C internal wave function are
obtained in the variation before projection (VBP) formalism,
changing the strength of the spin-orbit force: (i) uls =
900 MeV and (ii) uls = 1500 MeV. The B(E2) values as well
as the M (2)

p and M (2)
n ones obtained with AMD wave functions

(i) and (ii) are summarized in Table I with the experimental
data of B(E2). With spin-orbit forces (i) and (ii), the AMD cal-
culation reproduces well the systematic behavior of the B(E2)
value and the root-mean-square radius of the C isotopes as
shown in Ref. [3]. In particular, the systematic feature that the
B(E2) value of 16C is abnormally small compared with other C
isotopes (10C, 12C, and 14C) is well reproduced by AMD with
spin-orbit forces (i) and (ii), although the B(E2) value of 16C
is slightly overestimated. In addition to the above two, we also
use the AMD wave function for which the strength of the
spin-orbit force is set to (iii) uls = 2000 MeV so as to reduce
the B(E2) value and to be close to the experimental value. The
B(E2) value, as well as the M (2)

p and M (2)
n ones of case (iii),

is also shown in Table I. One might think that case (iii) gives
the best wave function. However, increasing the strength of the
spin-orbit force to reduce the B(E2) value of only 16C, as done
in case (iii), may lead to an unrealistic situation, because the
systematic behavior of the other C isotopes is not reproduced
with such strong spin-orbit force. Hereafter, we refer to the
three versions of AMD wave function as AMD(i), AMD(ii),
and AMD(iii).

Figure 1 shows the radial components of the diagonal
and transition densities obtained with AMD(i). In the upper
panel (A), the λ = 0 components of the diagonal density are
shown. The solid curves represent the proton and neutron
densities of the ground state (0+

1 ), and the dashed curves
represent those of the 2+

1 state. It is found that the shape of
the 2+

1 diagonal densities is almost the same as the shape
of those of 0+

1 , except for the region around the origin. The
proton density of the 2+

1 state is almost identical to that
of the 0+

1 state, and the difference cannot be seen Fig. 1.
In the lower panel (B), the λ = 2 components of the
diagonal and transition density are shown. The dotted and solid
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FIG. 1. The radial components of the diagonal and transition
densities obtained with AMD(i) for 16C. (A) λ = 0 component. The
solid curves represent the proton and neutron diagonal densities
of the ground state (0+

1 ), while the dashed curves represent those
of the 2+

1 state. The proton density of the 2+
1 state is almost

identical to that of the 0+
1 state, and the difference cannot be seen

in the figure. (B) λ = 2 component. The dotted and solid curves
represent the proton and neutron transition densities, respectively,
from 2 to 0+

1 . The double-dot-dashed and dashed curves represent
the λ = 2 components of the proton and neutron diagonal densities,
respectively, for the 2+

1 state. These two curves are displayed with
opposite sign.

curves represent the proton and neutron transition densities,
respectively, for the 2+

1 → 0+
1 transition. The transition is

found to be dominated by the neutron component, especially
in the surface region. The double-dot-dashed and dashed
curves are the λ = 2 components of the 2+

1 diagonal density
for the proton and neutron, respectively. These two curves
are displayed with opposite sign in Fig. 1. The shapes of
the double-dot-dashed and dashed curves are similar to the
dotted and solid curves, respectively. It should be noted that
the proton part of the λ = 2 component of the diagonal
density is proportional to the electric quadrupole moment
of the 2+

1 state. We neglect the λ = 4 component of the
2+

1 diagonal density, because this component is very small
and is expected to have a small contribution to the inelastic
scattering.

In Fig. 2(A), the proton transition density of AMD(i) (solid
curve) is compared with those of AMD(ii) and AMD(iii),

054602-3



M. TAKASHINA, Y. KANADA-EN’YO, AND Y. SAKURAGI PHYSICAL REVIEW C 71, 054602 (2005)

0

0.02

0.04

0 2 4 6

−0.04

0

0.04

r (fm)

ρ 
(r

) 
(f

m
− 3

)
proton (A)

ρ 
(r

) 
(f

m
− 3

)

(B)

(i)
(ii)

neutron

(i)

(ii)

21
+        01

+

(iii)

21
+        01

+

(iii)

FIG. 2. Comparison of the proton (A) and neutron (B) transition
densities for 2+

1 → 0+
1 . The solid, dotted, and dashed curves represent

the transition densities of AMD(i), AMD(ii), and AMD(iii), respec-
tively. The solid curves in (A) and (B) are the same as the dotted and
solid curves in Fig. 1(B), respectively.

which are represented by the dotted and dashed curves,
respectively. The transition densities of AMD(ii) and AMD(iii)
are smaller than that of AMD(i), and the transition density
of AMD(iii) is slightly shifted to the small r side. The
difference of the proton transition density causes the difference
of the electric transition strength, as shown in Table I. In
Fig. 2(B), the neutron transition densities of AMD(i), (ii),
and (iii) are shown by the solid, dotted, and dashed curves,
respectively. Although the overall shapes of the transition
densities of (i) and (ii) are almost the same, the magnitudes
are found to be slightly different. The magnitude of the
transition density of AMD(iii) is suppressed when it is
compared with those of (i) and (ii), especially in the inner
region.

The proton density distribution of the 208Pb nucleus is
obtained by unfolding the charge density [20], which was
obtained by a model-independent analysis of an electron
scattering experiment, with the realistic proton charge form
factor [21]. The neutron density distribution is obtained by
assuming that the shape of the neutron density is the same
as that of proton one, namely ρn(r) = (N/Z)ρp(r). This
assumption is known to be valid for stable nuclei.

In the next section, we show the results of the MCC
calculation using the AMD transition densities described
above.
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total
proton
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diagonal  (01
+)

01
+        21

+

FIG. 3. The diagonal (A) and coupling (B) potentials of the 16C+
208Pb system calculated with AMD(i) are represented by the solid
curves. The dotted and dashed curves are the contributions of the
proton and neutron components of 16C, respectively, where both the
proton and neutron components of 208Pb(0+

1 ) are included.

III. RESULTS

In Fig. 3, we show the double-folding model potential using
the densities obtained by AMD(i) described in Sec. II B. The
solid curve represents the nuclear potential Eq. (2). The dotted
and dashed curves are the contributions of proton and neutron
components of 16C, respectively, where both the proton and
neutron components of 208Pb(0+

1 ) are included. In Fig. 3(A),
the diagonal potential of the 16C(0+

1 )+208Pb elastic channel
is shown. Since the diagonal density of the 2+

1 state in 16C
resembles closely that of the 0+

1 state as shown in Fig. 1(A),
the diagonal potential of 16C(2+

1 )+208Pb is almost the same as
that of 16C(0+

1 )+208Pb, and therefore, it is not shown here. In
Fig. 3(B), the coupling potential of 16C(0+

1 → 2+
1 )+208Pb is

shown. It is found that the neutron component has a dominant
contribution to the total potential, especially in the vicinity of
the strong absorption radius rSA ∼ 11 fm.

In order to see the effect of the isovector component, we
also decompose the diagonal and coupling potentials into the
isoscalar and isovector components. The result is shown in
Fig. 4. The solid curves are the same as the solid ones in
Fig. 3, and the dotted and dashed curves are the isoscalar
(IS) and isovector (IV) components, respectively. Compared
with the isoscalar component, the magnitude of the isovector
component is about 5%, and the sign is opposite. The 5%
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FIG. 4. The isoscalar (dotted) and isovector (dashed) components
of the diagonal (A) and coupling (B) potentials. The solid curves are
the same as those in Fig. 3.

reduction of the coupling potential leads to about a 10%
reduction of the inelastic scattering cross sections and is
not negligible in the present case. Therefore, we include the
isovector component throughout the present calculations.

We perform a coupled-channels calculation using the
diagonal and coupling potentials shown in Fig. 3. Because
of the high incident energy, the coupled-channels equations
are solved numerically with the relativistic kinematics, which
has a non-negligible effect at forward-angle cross sections.
The parameter for the imaginary potential NI is set to 1.2.
Following the procedure of Ref. [5], the calculated cross
sections are smoothed by Gaussian functions according to
the experimental angular uncertainty of 0.28◦. The result is
shown in Fig. 5. The differential cross sections are shown
as a function of scattering angle θ in the laboratory system.
The crosses are the experimental data [5], and the solid
curve represents the result of the coupled-channels calcu-
lation. It is found that the MCC calculation with AMD(i)
reproduces the experimental data fairly well, although it
slightly underestimates the magnitude of the cross sections
at large angles. While the oscillatory shape of the angular
distribution is formed by interference between the nuclear and
Coulomb components, which are represented by the dotted
and dashed curves, respectively, in Fig. 5, the average strength
of the calculated cross section is determined by the nuclear
excitation. Particularly, the neutron component dominates the
nuclear excitation as understood from Fig. 3(B). Therefore, the

2 3 4
0

1

2

dσ
/d

Ω
 (

b/
sr

)

θlab (deg)

exp. data

MCC with AMD(i)
nuclear
Coulomb

FIG. 5. Angular distribution of 16C(0+
1 → 2+

1 ) inelastic scattering
on a 208Pb target at E/A = 52.7 MeV. The crosses are the experi-
mental data, and the solid curve is the result of our calculation. The
dotted and dashed curves are the nuclear and Coulomb components,
respectively.

present result indicates that AMD(i) slightly underestimates
the neutron excitation strength by about 10%, while it
overestimates the proton excitation strength as shown in
Table I.

The parameter NI cannot be determined theoretically in the
present MCC framework. In order to see the NI dependence
of the calculated result, we perform the same calculation
with different NI values. The results are shown in Fig. 6.
The dotted, dashed, solid, dot-dashed, and double-dot-dashed
curves are the results of the MCC calculations with NI =
1.0, 1.1, 1.2, 1.3, and 1.4, respectively. It is seen that NI

dependence is very weak, although the cross sections at
very forward angles change slightly with NI . The angular
distribution around θlab = 3–4 deg is seen to be independent
of the NI value. Because the calculation with NI = 1.2

2 3 4
0

1

2

d
σ/

dΩ
 (

b/
sr

)

θlab (deg)

exp. data

NI = 1.0
NI = 1.1
NI = 1.2
NI = 1.3
NI = 1.4

FIG. 6. NI dependence of the calculated differential cross
sections. The dotted, dashed, solid, dot-dashed and double-dot-
dashed curves are the results of the MCC calculations with NI =
1.0, 1.1, 1.2, 1.3, and 1.4, respectively.
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FIG. 7. (A) The coupling potentials cal-
culated with AMD(i), (ii), and (iii) are shown
by the solid, dotted, and dashed curves,
respectively. (B) The results of the MCC
calculations with AMD(i), (ii), and (iii) are
shown by the solid, dotted, and dashed curves,
respectively. The crosses are the experimental
data.

reproduces the shape of the data a little better than others,
we choose NI = 1.2 in the present calculation.

Next, we perform the MCC calculations using AMD(ii)
and (iii). In Fig. 7(A), the coupling potential with AMD(i)
represented by the solid curve is compared with those with
(ii) and (iii), which are represented by the dotted and dashed
curves, respectively. One can see that the strength of the
coupling potential is almost proportional to the M (2)

p + M (2)
n

value: 16.1 fm2 for (i), 14.8 fm2 for (ii), and 11.1 fm2 for (iii).
The results of the MCC calculations with AMD(ii) and (iii) are
shown in Fig. 7(B) by the dotted and dashed curves, compared
with the result of AMD(i) shown by the solid curve, which
is the same as that in Fig. 5, and the experimental data.
As expected from the strength of the coupling potential, the
differential cross sections with AMD(ii) are slightly smaller
than those calculated with AMD(i), and those with AMD(iii)
severely underestimate the magnitude of the measured cross
sections. The magnitude of the differential cross section of
inelastic scattering directly reflects the electric and hadronic
transition strength of the 16C nucleus. For AMD(iii), the proton
transition seems good because it gives a B(E2) value that is
close to the measured one. However, the nuclear excitation
strength of (iii) is too small, as shown in Fig. 7(B). Since the
nuclear excitation is dominated by the neutron component,
this result indicates that AMD(iii) fails to describe the neutron
excitation correctly. This fact cannot be determined from the

experimental data of the electromagnetic probe. Therefore, we
think it is very important that the internal wave function of a
nucleus obtained theoretically be tested by the experimental
data of a hadronic probe to investigate the behavior of the
neutron component.

For further investigation, it is very interesting to analyze the
experimental data of the 16C inelastic scattering on a proton
target measured at RIKEN [22], which is more sensitive to the
neutron excitation.

Finally, we see how the angular distribution changes if the
symmetry axis of the proton is aligned to that of the neutron.
In the original AMD wave function, the symmetry axis of the
proton is perpendicular to that of the neutron. We artificially
make the aligned proton density from the AMD wave function
(ii) by rotating the proton wave function to set its symmetry
axis to be parallel to the neutron one. The aligned proton
density is shown in Fig. 8(A) by the dotted curve. The solid
curve is the neutron transition density, which is the same as
the dotted curve in Fig. 2(B). The proton transition density
has the sign opposite to the neutron one in the surface region.
The result of the MCC calculation using this aligned proton
transition density is shown in Fig. 8(B). It is found that the
calculated angular distribution is out of phase compared with
the experimental data. This result indicates that the proton
transition density should have the same sign as the neutron
transition density in the surface region.
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FIG. 8. (A) The proton transition density
when the symmetry axis is artificially rotated
to be parallel to the neutron one is shown
by the dotted curve. The neutron transition
density shown by the solid curve is the same as
the dotted curve in Fig. 2(B). (B) The result of
the MCC calculation when the aligned proton
density shown in (A) is used.
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IV. SUMMARY AND CONCLUSION

In order to test the 16C internal wave function, we studied the
16C(0+

1 → 2+
1 ) inelastic scattering on a 208Pb target at E/A =

52.7 MeV [5] by the microscopic coupled-channels (MCC)
method using the internal wave function of the 16C nucleus
obtained by antisymmetrized molecular dynamics (AMD) [3].
In Ref. [3], two versions of wave function are obtained
with the strength of spin-orbit force: (i) u�s = 900 MeV and
(ii) u�s = 1500 MeV. It was shown in Ref. [3] that these
AMD calculations reproduced the systematic behavior of the
B(E2) value and the root-mean-square (RMS) radius of C
isotopes. The MCC calculations using these wave functions of
16C reproduce well the measured differential cross sections,
although they slightly underestimate the magnitude of the
cross sections at large angles. In particular, the shape is rather
well reproduced around θlab = 3–4 deg, where the angular
distribution is independent of the strength parameter NI of
the imaginary potential. While the shape of the differential
cross section due to the interference between the nuclear and
Coulomb excitation components is sensitive to the strength
of the proton excitation, the magnitude of the cross section
is sensitive to the strength of neutron excitation, because the
nuclear excitation is dominated by the neutron excitation in
the present case. Therefore, we can conclude that the AMD
wave function of (i) predicts the neutron excitation strength
of 16C reasonably well, although the strength may be slightly
underestimated by about 10%.

We also performed a coupled-channels calculation using the
AMD wave function, for which the strength of the spin-orbit
force is set to (iii) u�s = 2000 MeV. Although this wave
function gives a B(E2) value of 16C close to the measured one,
the systematic behavior of B(E2) and the RMS radius of the
other C isotopes failed to be reproduced due to the unrealistic
strength of the spin-orbit force. The MCC calculation
using AMD(iii) severely underestimates the differential cross

sections, which indicates that the neutron excitation is not
properly described when the spin-orbit force (iii) is used. It
can be said that testing the validity of the calculated wave
function with only the electromagnetic experimental data,
such as the B(E2) value, may be insufficient. Especially for
neutron-rich nuclei, it is expected that the proton density is
significantly different from the neutron one. Therefore, we
think it is very important that the internal wave functions of
a nucleus obtained by any nuclear structure theory be tested
by not only the experimental data of an electromagnetic probe
but also those of a hadronic probe, particularly to investigate
the behavior of the neutron component, as done in the present
paper.

We showed that the MCC calculation is a useful tool to link
the inelastic scattering data with the internal wave functions
obtained theoretically. Note that since the diagonal density is
also reflected by the behavior of the calculated differential
cross section through the diagonal potential as the distorting
effect, the overall feature of diagonal and transition densities
of a nucleus can be tested consistently with this procedure.
Nuclear reaction data themselves are available for nuclear
structure study as are the RMS radius, the electromagnetic
transition strength, the charge form factor, etc., by applying
the MCC method.
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