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We systematically investigate the elastic electron scattering on both stable and unstable nuclei with the
relativistic eikonal approximation, where the charge density distributions of nuclei are from the self-consistent
relativistic mean field model. Calculations show that the relativistic eikonal approximation can reproduce the
experimental data of electron scattering on nuclei ranging from the light region, such as 12C, to the heavy region,
such as 208Pb. This is the systematic test of the relativistic eikonal approximation for elastic electron scattering
for both light and heavy nuclei. With this method, further studies are made of the variation of charge form factors
along isotopic chains and the sensitivity of charge form factors to the changes of charge distribution. For isotopic
chains with Z = 20 and 28, we find that the charge form factors vary significantly with neutron number. The
charge form factors shift outward and downward when the target nucleus moves from the neutron-rich region to
the proton-rich region along the isotopic chain. The significant shift shows that the charge form factor is very
sensitive to a change of neutron number. If the isotopic shifts of the charge form factor are measured on the
next-generation electron-nucleus collider (at RIKEN and GSI), the charge size and charge distribution can be
determined for unstable nuclei. The calculations will provide a reference for future experiments.
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I. INTRODUCTION

In the last 10 years, the development of radioactive-isotope
(RI) beam techniques [1–3] has extended our knowledge of
nuclear physics from the stable nuclei to the unstable ones near
the drip lines. Both experiments with the RI beam [4–16] and
calculations by various nuclear models [17–25] have shown
that the structure of unstable nuclei is quite different from that
of stable ones [26–29].

Nuclear charge density distributions are very important to
understanding the internal structure of nuclei. For many years,
electron-nucleus scattering has proven to be an excellent tool
for the study of nuclear charge size and charge distribution.
It has provided a large amount of valuable information con-
cerning the charge size and charge distribution of stable nuclei
[30–35]. However, for unstable nuclei, no such experimental
work has been done so far. Theoretical calculations on this
aspect for unstable nuclei are also very rare. Thanks to the
advent and development of the RI beam technique [1–3], many
studies not accessible in the past have been made possible.

Based on the new techniques for producing high-quality
radioactive beams, a next-generation electron-RI beam collider
is now under construction at RIKEN in Japan [36,37]. A similar
collider at GSI in Germany has also been approved by the
German government and will be built immediately [38,39].
In addition, a new scheme, SCRIT (self-confining RI target),
will also be introduced [37]. The SCRIT scheme will provide
a sufficiently high luminosity for elastic electron scattering
experiments to measure the charge form factor. These new
facilities and scheme will offer a unique opportunity to study
the internal structure of unstable nuclei by electron scattering.

∗Electronic address: zaijunwang99@hotmail.com

One of the major subjects of these new colliders is the
measurement of charge form factor for unstable nuclei. It is
expected that information on the charge density distributions
of unstable nuclei, such as size and diffuseness, will soon
be available. Therefore, it is interesting to make a systematic
theoretical study on elastic electron scattering for both stable
and unstable nuclei.

To perform an accurate calculation of charge form factor,
the plane-wave Born approximation (PWBA), which assumes
that both the initial and final electrons are plane waves, is not
adequate. The most accurate method is the exact phase-shift
analysis. However, as the incident energy increases, more and
more phase shifts are required and the computation turns
out to be too tedious. At high energies, Glauber developed
his nonrelativistic eikonal approximation for the Schrödinger
equation [40]. Following Glauber’s approach, a relativistic
eikonal approximation for the Dirac equation was proposed
by Baker [41]. This method was described for predicting the
elastic scattering of the Dirac particles off a scalar potential
[41]. However, we have found little calculation with this
method for realistic electron scattering. Therefore, in the
present work, we have systematically tested this method for
various nuclei for which experimental data are available. We
find that this method can be sufficiently accurate in prediction
of charge form factor for both light and heavy nuclei even at
large scattering angles (see Sec. III A), and it is very stable and
time saving. After this, a further study is made of the variation
of charge form factors along isotopic chains and the sensitivity
of the charge form factor to the changes of charge distribution.
We note that some research on the sensitivity of charge form
factor to a change of charge distribution has been done in
terms of the two-parameter Fermi model by Suda [37] to
find out if the charge distribution for unstable nuclei can
be measured by electron-RI beam scattering. He found that
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the minima and maxima of the charge form factor were very
sensitive to a change in the size and diffuseness parameters.
Other important studies on this topic have also been made
by Moya de Guerra et al. [42] with charge densities obtained
in nonrelativistic Hartree-Fock with Skyrme forces and by
Antonov et al. [43] with phenomenological charge densities.
In the present paper, we try to study the sensitivity of charge
form factor to the change of charge distribution in another
way. We explore the sensitivity of the charge form factor by
investigating the variation of the charge form factors along
isotopic chains with charge densities from the self-consistent
relativistic mean field (RMF) model.

Calculations of charge form factor require charge dis-
tributions. To calculate the charge form factors for un-
stable nuclei, we need a reliable model to produce the
charge density distributions for unstable nuclei. Very recently,
the self-consistent relativistic mean field model has received
wide attention because of its successful application to both
stable and unstable nuclei [44–48]. Therefore, it is interesting
to combine this successful nuclear structure model with the
relativistic eikonal approximation for a reliable prediction of
form factors for the nuclei on isotopic chains. Ca and Ni
isotopic chains are two typical isotopic chains with magic
proton number. They will be the appropriate candidate nuclei
for the future electron-nucleus scattering experiment. Hence,
we perform our calculations on these two isotopic chains
by combining the relativistic eikonal approximation with the
RMF model. This will make our result more realistic and
reliable, and it will serve as a good reference for the coming
experiments.

This paper is organized in the following way. Section II
is the formalism of the relativistic eikonal approximation for
electron scattering and a brief review of the RMF model. The
numerical results and discussions are presented in Sec. III A
summary is given in Sec. IV.

II. FORMALISM

A. The relativistic eikonal approximation

Detailed descriptions of the nonrelativistic eikonal approx-
imation for the Schrödinger equation can be found in the
classical work by Glauber [40] and many other works [49–51].
Expressions of the relativistic eikonal approximation for
ultrarelativistic electron scattering from a charge distribution
can be found in Ref. [41].

The starting point of the relativistic eikonal approximation
is the Dirac equation for a particle moving in a scalar potential
V (r) [41],

(α · p + βm − E)ψ(r) = −V (r)ψ(r), (1)

where E and m are energy and mass of the incident particle,
respectively, and α and β are the Dirac matrices. Using Green’s
function method, the scattering amplitude can be expressed in
the following form [41]:

f (θ ) = − 1

4π
(α · kf + βm + E)

∫
e−ikf ·rV (r)ψ(r)dr, (2)

where θ is the scattering angle, and kf is the outgoing
momentum.

Following Glauber’s approach, ψ(r) can be assumed as the
following form at high energies [41],

ψ(r) = ϕ(r)u0(k0)eik0·r, (3)

where u0(k0) is the incident plane-wave spinor, k0 is the
incident momentum, and ϕ(r) is a slowly varying modulating
function.

Under high-energy approximation, the elastic differential
cross section σ and form factor F (q) can be expressed as [41]

σ = cos2 (
1
2θ

) |I1(q) + I2(q)|2, (4)

and

|F (q)|2 = σ

σM

, (5)

where q is the momentum transfer, σM is the Mott cross section.
I1(q) and I2(q) are given by the integrals

I1(q) = −ik

∫ R

0
J0(qb)[e2iχ(b) − 1]b db, (6)

I2(q) = −ik

∫ ∞

R

J0(qb)[e2iχ(b) − 1]b db, (7)

where b is the impact parameter, R is the cutoff cylindrical
radius, k = |k0|, and J0 is the Bessel function. For high-energy
electrons (E � k), χ (b) can be written as [40,41]

χ (b) = −1

2

∫ ∞

−∞
V (r) dz, (8)

r =
√

b2 + z2. (9)

For the region b > R, since the charge density vanishes
beyond R,V (r) can be replaced by the Coulomb potential in
this region and χ (b) can be expressed as a function of the
cutoff radius R [40,41]

χ (b) = −αZ ln

(
b

R

)
. (10)

Upon substituting Eq. (10) into Eq. (7) and carrying out the
integral (details can be found in the Appendix of Ref. [41]),
Eq. (7) becomes

I2(q) = i
k

q2
[−i2αZ(qR)i2αZ+1J0(qR)S−i2αZ,−1(qR)

+ (qR)i2αZ+1J1(qR)S1−i2αZ,0(qR) − (qR)J1(qR)],

(11)

where Sµν(Z) are Lommel,s functions, and J0 and J1 are Bessel
functions. For large R (R � 8 fm), the following asymptotic
expansion of Lommel,s functions can be used:

Sµν(Z) � Zµ−1

[
1 − (µ − 1)2 − ν2

Z2

+ [(µ− 1)2 − ν2][(µ− 3)2 − ν2]

Z4
− · · ·

]
. (12)
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For the region b < R, χ (b) is given by [41]

χ (b) = −Zα log

(
b

R

)
− 4πα

∫ R

b

r2ρ(r)y

(
b

r

)
dr, (13)

where

y(x) = log

[
1 + (1 − x2)

1
2

x

]
− (1 − x2)

1
2 , (14)

and ρ(r) is the charge density distribution, which satisfies the
following normalization relation:∫

ρ(r)dr = Z. (15)

Since we are concentrating on high-energy electron scatter-
ing off medium-heavy nuclei, the Coulomb attraction felt by
the electrons must be taken into account. We do this with the
standard method in electron scattering. That is, we replace the
momentum transfer q with the effective momentum transfer

qeff = q[1 + 1.5 αZh̄ c/(E R0)], (16)

in our calculation, where R0 = 1.07A1/3 and A is the mass
number of the nucleus. Another correction to our calculation
is the recoil effect of the target nucleus. We take into account
the recoil effect by dividing the cross section by the factor [32]

frec =
(

1 + 2E sin2 θ
2

Mc2

)
. (17)

The earlier Eqs. (1)–(15) along with the corrections (16) and
(17) enable us to predict the form factors for a given charge
density distribution.

B. The relativistic mean field model

Since the RMF model is a standard theory and the details
can be found in many works [44–47], we only give the main
elements here. The starting point of this model is an effective
Lagrange density L for the interacting nucleons, the σ, ω, ρ

mesons, and the photons,

L = �̄(iγ µ∂µ − m)� − gσ �̄σ� − gω�̄γ µωµ�

− gρ�̄γ µρa
µτ a� + 1

2∂µσ∂µσ − 1
2m2

σ σ 2 − 1
3g2σ

3

− 1
4g3σ

4 − 1
4�µν�µν + 1

2m2
ωωµωµ + 1

4c3(ωµωµ)2

− 1
4Raµν · Ra

µν + 1
2m2

ρρ
aµ · ρa

µ − 1
4FµνFµν

− e�̄γ µAµ
1
2 (1 − τ 3)�, (18)

with

�µν = ∂µων − ∂νωµ, (19)

Raµν = ∂µρaν − ∂νρaµ, (20)

Fµν = ∂µAν − ∂νAµ, (21)

where the meson fields are denoted by σ, ωµ, and ρa
µ and their

masses are denoted by mσ ,mω, and mρ , respectively. The
nucleon field and rest mass are denoted by � and m. Aµ is the
photon field responsible for the electromagnetic interaction,
α = 1/137. The effective strengths of the coupling between
the mesons and nucleons are, respectively, gσ , gω, and gρ . g2

FIG. 1. Comparison of charge form factors for 12C, 16O, and 32S.
The solid and dashed lines are calculated, respectively, from the
experimental charge densities [56,57] and the RMF charge densities
with the relativistic eikonal approximation. The filled circles are
experimental data taken from Refs. [56] and [57].

and g3 are the nonlinear coupling strengths of the σ meson.
c3 is the self-coupling term of the ω field. The isospin Pauli
matrices are written as τ a, τ 3 being the third component of τ a .

Under the no-sea approximations and mean field approxi-
mations, a set of coupled equations for mesons and nucleons
can be easily obtained by the variational principle [52–55].
This set of equations can be solved consistently by iterations.
After a final solution is obtained, we can calculate the
binding energies, root-mean-square radii of proton and neutron
density distributions, and single-particle levels. The details of
numerical calculations are described in Refs. [52] and [53].

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Reliability of the relativistic eikonal approximation for
elastic electron-nucleus scattering

Before we proceed with calculations for isotopic chains, we
need to investigate the stability and validity of the relativistic
eikonal approximation. To accomplish this, we tested the
relativistic eikonal approximation for various stable nuclei
ranging from the light region, such as 12C, to the heavy region,
such as 208Pb, where their experimental data are available. We
give part of our testing results in Figs. 1–3.

In Fig. 1, we show comparisons of the charge form factors
calculated from the experimental charge densities (the solid
lines) with the experimental ones for 12C, 16O, and 32S.
The experimental charge densities are extracted by fitting the
high-energy elastic electron-nucleus scattering cross sections
with the exact phase-shift method [56,57]. The phase-shift
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FIG. 2. Comparison of charge densities for 12C, 16O, and 32S. The
solid lines are experimental charge densities [56,57], and the dashed
lines are those calculated using the RMF model.

method is based on solving the Dirac equation for the
electron in the Coulomb field of the nucleus, and therefore
the distortion of the electron wave and the change of the
wavelength in the Coulomb field are naturally included. So
it is commonly accepted that the phase-shift analysis method
is the most accurate for predicting the elastic electron-nucleus
scattering cross sections or form factors. When a new method
is developed, it is often tested by comparing it with the method
of phase-shift analysis. While the phase-shift method has its
own shortcomings, the computations will become too tedious
for high-energy scattering when a large number of phase
shifts are calculated and the corresponding partial amplitudes
with opposite signs are summed over. As described in
Sec. II A, the relativistic eikonal approach is an approxima-
tion method based on the Dirac equation for high-energy
elastic electron scattering. In this method, the main part of
effects of the Coulomb field of the nucleus are taken into
account by the introduction of the eikonal wave function [see
Eq. (3)], which is obtained by a modification of the phase
of the incident plane wave. For practical calculations, the
other two corrections related to the change of the wavelength
of the incident electrons and the recoil effect of the target
nucleus should also be included [see Eqs. (16) and (17)]. From
Fig. 1, we see that the experimental data [56,57] are very
well reproduced by this method. The calculated magnitudes
and positions of the maxima and minima agree very well
with the experimental ones. This shows that the relativistic
eikonal approximation can give predictions of charge form
factor for nuclei with almost the same accuracy as the
phase-shift analysis method. Therefore, the relativistic eikonal
approximation is very accurate and reliable.

In Fig. 1, we also compared the charge form factors calcu-
lated from the RMF charge densities (the dashed lines) with

the experimental ones for 12C, 16O, and 32S. In the calculations,
the NL-SH force parameters [58] are used for the RMF
model. The pairing gaps for open shell nuclei are included by
the Bardeen-Cooper-Schrieffer (BCS) treatment. The standard
input for pairing gaps are �n = �p = 11.2/

√
A MeV. The

charge densities here and later are obtained by folding the point
proton densities with the proton charge density distribution
[59]

ρp(r) = Q3

8π
e−Qr, (22)

where Q2 = 18.29 fm−2 = 0.71 GeV2 (h̄c = 0.197 GeV fm =
1). The corresponding rms charge radius is rp = 0.81 fm.
The contribution of neutron charge distribution to the nuclear
charge form factor is neglected here, at least it is negligible
at moderate momentum transfers [42,60]. It can be noted
from this figure that for 16O and 32S, the theoretical charge
form factors are in good agreement with the experimental
ones except for a deviation beyond the second minimum for
16O and the third minimum for 32S. Whereas for 12C, things
are different; the theoretical results differ very much from
the experimental data. These discrepancies can be explained
in terms of the differences in charge density distributions.
Figure 2 is an illustration of comparisons of the charge density
distributions between the RMF model and the experiment.
For 32S and 16O, the RMF charge distribution is very close
to the experimental one except for a slight deviation around
the center of the nucleus. This explains the deviations that
occurred in the charge form factors of 32S and 16O (see Fig. 1),
since the charge form factors at high-momentum transfers are
mainly sensitive to the inner part of the charge distribution [56].
But for 12C, the shapes of the RMF charge distribution and
the experimental one are quite different. A slight depression
appears in the experimental charge density distribution near
the center, whereas in the RMF charge density distribution, the
depression is replaced by a peak. Besides, another noticeable
difference occurs near r = 2 fm in the charge distributions of
12C. These differences in charge distribution between theory
and experiment lead to the large discrepancy in the charge
form factors of 12C. But why are there such large differences
in charge distribution between the RMF model and experiment
for 12C? We think the reason is that the RMF model is a
many-body theory, and so it is not quite suitable for light
nuclei such as 12C. This also explains why the RMF model
can give good results for the heavier nuclei like 16O, 32S, 40Ca,
58Ni, and 208Pb (see Fig. 3).

Figure 3 displays the comparison of cross sections cal-
culated from the RMF charge densities with the experimental
ones for 40Ca, 58Ni, and 208Pb. The experimental cross sections
are taken from Ref. [61]. It is evident that the calculated cross
sections are in good agreement with the experimental ones.
Both the numbers and positions of the minima and maxima
of the cross sections are accurately reproduced. The predicted
magnitudes also agree with the experimental ones. For large
scattering angles up to θ = 160◦ (it corresponds to q = 4 fm−1

at E = 400 MeV), the calculated cross sections are still very
close to the experimental ones. These, on the one hand, show
that the relativistic eikonal approximation is not only reliable
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FIG. 3. Comparison of differential cross sections for scattering
of 502 MeV electrons by 208Pb, 449.8 Mev electrons by 58Ni, and
of 400 MeV electrons by 40Ca. The solid lines are theoretical results
from the combination of the relativistic eikonal approximation with
the RMF model. The filled circles are experimental data [61].

for light nuclei but also valid for heavy nuclei, and, on the other
hand, suggest that the RMF model is reliable in the prediction
of charge density distributions for medium and heavy nuclei.
Moreover, the good agreement between the theoretical results
and the experimental ones also reveals that the neutron charge
distribution does not have much influence on the charge form
factors within the range of momentum transfer considered.

To sum up, we have systematically tested the relativistic
eikonal approximation for elastic electron-nucleus scattering
with the realistic nuclei from the light region to the heavy
region. We found that this method can be accurate enough to
describe the elastic electron scattering off nuclei even for heavy
nuclei and at large angles. This method is also very effective
and practical. Furthermore, the reliability of the RMF model
in generating the charge density distributions for medium and
heavy nuclei is also confirmed. In the following, we use this
method to further investigate the variation of the form factors
with neutron number along Ca and Ni isotopic chains and
study the sensitivity of the charge form factor to the changes
of charge distribution.

B. Variation of charge form factors for Ca isotopic chain

We first produce the charge densities for even Ca isotopes
34−60Ca with the RMF model. In the calculation, the NL-SH
force parameters [58] are used. The pairing gaps for open
shell nuclei are included by the BCS treatment. The standard
input for pairing gaps are �n = 11.2/

√
A MeV. For the very

neutron-rich nuclei, we assume that the last neutrons just

FIG. 4. Rms charge radii from the RMF model for the even Ca
isotopes.

occupy the bound levels according to Tanihata [62,63]. The
main results of the RMF model are presented in Figs. 4 and 5.

Figure 4 shows the calculated rms charge radii of 34−60Ca.
The RMF results for 40Ca and 48Ca are, respectively, 3.454
and 3.468 fm. The experimental rms charge radius is 3.450
for 40Ca and 3.451 fm for 48Ca [35]. The deviation between
the theoretical rms charge radii and the experimental ones
is less than 0.02 fm. The smallest charge radii fall to the
stable isotopes on or near the stability line. The charge radius
becomes larger as the isotope falls far from the stability line.
This indicates that the number of neutrons has significant
influences on the charge size and charge distribution. In order
to show the influences clearly, we plot the charge densities
in Fig. 5. One can find from this figure that the charge
distributions vary considerably from isotope to isotope. The
variation of the charge densities on the isotopic chain has
the following features. First, the densities around the center
of the nuclei (r < 3 fm) decrease as the neutron number
increases. 60Ca has the lowest densities around the center and
34Ca has the highest ones. Second, the spatial extension of
charge distribution of the neutron-deficient isotopes is larger
than that of the neutron-rich ones, although the latter has a
larger rms charge radius. This can be seen clearly from the

FIG. 5. Charge density variation with neutron number from the
RMF model for the even Ca isotopes. The inset is in logarithmic
scale. Arrows point to the directions in which the neutron number
increases.
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FIG. 6. The charge form factor variation with neutron number
from the relativistic eikonal approximation for six Ca isotopes. The
isotope effect in the charge form factors of these isotopes is clearly
demonstrated.

inset (in logarithmic scale) in Fig. 5. And third, it has been
known that there exists a shell effect in the charge distributions
of 40,48Ca, since their proton numbers are magic numbers and
they have closed proton shells. However, the two peaks that
embody the shell effect in the charge density distribution tend
to disappear as the number of neutrons decreases. This suggests
that the shell effect of the charge distribution disappears for the
very neutron-deficient isotopes. These features show that the
isotope effect in the nuclear charge distributions of Ca isotopes
is pronounced. The extreme deficiency and extreme richness in
neutrons can have considerable influence on the ground-state
structure of nuclei. They may lead to very different charge
distributions and level structures for unstable nuclei near the
drip lines.

Different charge density distributions will certainly lead
to different charge form factors, since the latter is directly
related to the former. So, it must be beneficial to calculate
the charge form factors for the charge distributions given
in Fig. 5 and study the variation of charge form factors
along the isotopic chain and the sensitivity of the charge
form factor to the changes of charge distribution. Fig. 6
shows the charge form factors for 34Ca, 36Ca, 40Ca, 48Ca,
54Ca, and 60Ca isotopes calculated by the relativistic eikonal
approximation. It is seen from this figure that there are two
important aspects to which we shall pay attention. One is
that the charge form factors vary appreciably from isotope
to isotope. This suggests that the charge form factor is very
sensitive to the changes of neutron number. Compared with
the charge form factors of the stable isotopes, the charge form
factors of the neutron-rich ones have a considerably large
inward and upward shift, and those of the neutron-deficient
isotopes have a significantly large outward and downward
shift. The richer or more deficient the neutrons are in an
isotope, the larger is the shift of the charge form factor. The
shifts of minima and maxima of the charge form factors suggest
that the surface of the charge density distribution tends to
become sharper when more and more neutrons are added. This
implies that the diffuseness of the charge distribution is smaller
for the neutron-rich isotopes than for the neutron-deficient
ones. In the range of low-momentum transfer (q < 1 fm−1),
the charge form factors tend to decrease in magnitude as the

FIG. 7. Rms charge radii from the RMF model for the even Ni
isotopes.

neutron number increases. This can be accounted for by the
following relation between the charge form factors and the rms
charge radii at low-momentum transfers:

F (q) = 1 − 1
6q2〈r2〉 + · · · . (23)

Therefore, in the range of low-momentum transfer, the
decrease of the form factors in magnitude with the increase
of the neutron number means that the rms charge radius tends
to become larger as more neutrons are added. This agrees
with the RMF results of the rms charge radii and charge
densities shown in Figs. 4 and 5. The isotopic shifts of the rms
charge radii can be determined if the charge form factors at
low-momentum transfers are precisely measured. Charge form
factors in the range of moderate- and high-momentum transfer
are dominated by the details of the charge density distribution.
The shape of the charge distribution can be determined only by
measuring the form factors in this range of momentum transfer.
One can find from Fig. 6 that the minima and maxima are very
sensitive to the variation of neutron number. Hence, the charge
form factors or the isotopic shifts of the charge form factor
can be measured by electron-nucleus scattering experiments.
With these data, the charge density can be extracted using the
model-dependent method or the model-independent analysis
(Fourier-Bessel series expansion). Another important aspect
of variation of the charge form factors is the regular pattern
of the isotopic shifts. It may also be useful in determining
the charge form factors for an isotopic chain by experiment.
Also, the regular pattern may suggest certain laws that rule
the influence of neutrons on the distribution of protons. This
problem deserves to be further studied.

C. Variation of charge form factors for Ni isotopic chain

With the same method and procedure used in calculations
for the Ca isotopic chain, we calculated the rms charge radii,
charge distributions, and the charge form factors for the Ni
isotopic chain. The results are presented in Figs. 7–9.

Figure 7 represents the RMF results of the rms charge radii
for the even isotopes of Ni. The figure shows that the stable
isotopes have the smallest rms charge radii. The neutron-rich
and neutron-deficient isotopes have a larger charge radius. The
charge radius becomes even larger when more neutrons are
added to or subtracted from a stable isotope. The experimental
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FIG. 8. Charge density variation with neutron number from the
RMF model for the even Ni isotopes. The inset is in logarithmic scale.
Arrows point to the directions in which the neutron number increases.

charge radius for the stable isotopes 58Ni, 60Ni, 62Ni, and
64Ni are, respectively, 3.742, 3.764, 3.802, and 3.821 fm [35].
The calculated results corresponding to the four isotopes are
3.747, 3.773, 3.799, and 3.822 fm, respectively. The deviation
between the theoretical rms charge radii and the experimental
ones is less than 0.02 fm. In Fig. 8, we plot the charge densities
for the even isotopes of Ni. The variation of charge density
distributions with neutron number is similar to that of Ca
isotopes apart from two exceptions. One is that the shell effect
is more pronounced for Ni isotopes than for Ca isotopes.
Another is that the shell effect tends to disappear for very
neutron-deficient isotopes of Ca (see Fig. 5), but still exists for
very neutron-deficient Ni isotopes. These two differences may
be because Z = 28 is a better proton shell closure than Z = 20,
although both Z = 28 and Z = 20 are shell closures. The Z = 20
proton shell closure is more easily influenced by a change of
neutron number than the Z = 28 proton shell closure. Currently,
some experimental research has been done on this aspect and
has shown that certain neutron magic numbers may disappear
and some may exist in the very neutron-rich region [26–29].
Perhaps this phenomenon also exists for protons for the very
proton-rich nuclei near the proton drip line.

Figure 9 shows the calculated charge form factors for 48Ni,
56Ni, 58Ni, 64Ni, 68Ni, 74Ni, and 78Ni isotopes. This figure
gives a full description of the variation of charge form factors
with neutron number for the even isotopes of Ni. It is seen
that the variation of the charge form factors of Ni isotopes
is very similar to that of Ca isotopes. When the neutron
number changes, the charge form factors vary significantly
with a regular pattern. This suggests that the charge form
factor is very sensitive to the changes of neutron number.
It is expected that this isotope effect can be observed on
the next-generation electron-RI beam collider. By accurately
measuring the isotopic shifts of the charge form factor on an
isotopic chain, the charge density distributions for the unstable
nuclei can be determined.

We have, thus far, presented the theoretical calculations of
charge densities and charge form factors for Ca and Ni isotopic
chains based on the relativistic eikonal approximation and the
RMF model. As mentioned in the Introduction, some important

FIG. 9. Charge form factor variation with neutron number from
the relativistic eikonal approximation for seven Ni isotopes. The
isotope effect in the charge form factors of Ni isotopes is clearly
demonstrated.

research on this topic has previously been done. Therefore,
it would be interesting to compare the present results with
the previous ones obtained for different isotopic chains with
different methods. Moya de Guerra et al. [42] calculated
the squared charge form factors as a function of momentum
transfer for several Kr isotopes from the extreme proton-rich
case (A = 72) to the highly neutron-rich region (A = 92)
through a stable isotope (A = 82) with the charge densities from
the deformed self-consistent mean field calculations. Their
calculations showed a shift to the left (right) of the maxima and
minima in the charge form factors with increasing (decreasing)
neutron number, and thus the sensitivity of the form factor
to the changes of the charge density with neutron number.
Another study was made by Suda [37]. Using tin isotopes
as an example, he discussed the sensitivities of the charge
form factor to the changes of charge distribution with the two-
parameter Fermi model and found that the minima and maxima
have different sensitivities to a change in size and diffuseness.
Very recently, the effects of a different number of neutrons on
the charge density distribution of the light neutron-rich exotic
nuclei were studied by Antonov et al. [43]. They calculated
and compared the charge form factors for light exotic nuclei
using various phenomenological models of charge density
and pointed out that the effects of the neutron excess on the
charge distribution could be tested by measuring the charge
form factors with electron-nucleus scattering using a colliding
electron-exotic nucleus storage ring. Thus, one can see that the
present results on form factors of Ca and Ni isotopic chains
obtained by combining the relativistic eikonal approximation
with the RMF model supports the previous ones. Also, this
discussion shows that the results on charge form factors of
isotopic chains are not relevant to the models used.

IV. CONCLUSION

In summary, we performed a systematic study of the elastic
electron scattering for both stable and unstable nuclei by the
relativistic eikonal approximation with the charge densities
from the RMF model. For stable nuclei from the light to the
heavy region, the results agree very well with the available
experimental data. This, on the one hand, shows that the

054323-7



ZAIJUN WANG AND ZHONGZHOU REN PHYSICAL REVIEW C 71, 054323 (2005)

relativistic eikonal approximation is sufficiently accurate and
reliable in description of elastic electron scattering off nuclei
and, on the other hand, suggests that the charge distributions
produced with the RMF model for stable nuclei are reliable.
Calculations for Ca and Ni isotopic chains show that the charge
form factors vary significantly and regularly with neutron
number. Both maxima and minima of the charge form factor
exhibit a pronounced shift when the neutron number changes,
indicating that the charge form factor is very sensitive to
a change in neutron number. If the isotopic shifts of the
charge form factor are precisely measured by the future
electron-nucleus scattering experiment, the charge size and
charge distribution for unstable nuclei can be determined.
Thus, it will be very interesting to measure the charge
form factors on an isotopic chain by the electron-nucleus

scattering experiment (at RIKEN [36,37] and GSI [38,39]).
Our calculations will serve as a good reference for the coming
experiments.
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