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In developing theories of nuclear binding energy such as density-functional theory, the effort required to make
a fit can be daunting because of the large number of parameters that may be in the theory and the large number
of nuclei in the mass table. For theories based on the Skyrme interaction, the effort can be reduced considerably
by using the singular value decomposition to reduce the size of the parameter space. We find that the sensitive
parameters define a space of dimension four or so, and within this space a linear refit is adequate for a number
of Skyrme parameters sets from the literature. We find no marked differences in the quality of the fit among
the SLy4, the BSk4, and SkP parameter sets. The root-mean-square residual error in even-even nuclei is about
1.5 MeV, half the value of the liquid drop model. We also discuss an alternative norm for evaluating mass
fits, the Chebyshev norm. It focuses attention on the cases with the largest discrepancies between theory and
experiment. We show how it works with the liquid drop model and make some applications to models based on
Skyrme energy functionals. The Chebyshev norm seems to be more sensitive to new experimental data than the
root-mean-square norm. The method also has the advantage that candidate improvements to the theories can be
assessed with computations on smaller sets of nuclei.

DOI: 10.1103/PhysRevC.71.054311 PACS number(s): 21.10.Dr, 21.60.Jz

I. INTRODUCTION

In making theories of nuclear binding energies (“mass
formulas”), there are invariably parameters that are determined
by fitting the experimental data. If the fitting parameters are not
defined properly, they may be underconstrained by the data,
causing problems in making the fit. This is the situation for the
Skyrme parametrization of the self-consistent mean-field the-
ory (SCMF) of binding energies, also called density-functional
theory. Although methods for dealing with underconstrained
parameters are well known, to our knowledge there has not
been a critical analysis of the Skyrme parametrization. We
show here that the sensitive degrees of freedom in the Skyrme
energy functional are very similar to those of the liquid
drop model, except for the spin-orbit interaction. When the
parameter space is restricted to those degrees of freedom, linear
methods can be applied to make a considerable reduction in
the effort required for a search. We show how this works in
the next section, refitting various parametrizations from the
literature.

A second way to reduce the effort in evaluating theories is
to use a more economical norm for the fit. Usually one makes
a least-squares fit to the binding energies, that is, using as
a norm the root-mean-square (r.m.s.) average of the residual
difference rA between theory and experiment:

rA = Etheory(A) − Eexp(A).

This requires calculating all nuclei. An alternative is the
Chebyshev norm, used in making a minimax fit. It allows
one to screen theories and their improvements taking only
the information on a small set of nuclei, the “worst cases” of
the baseline theory. By calling attention to these cases, it could
also be helpful to experimentalists choosing which nuclei to
study and to theorists searching for missing ingredients in
the baseline theory. There is an extensive literature on the
minimax method [1], but it only rarely used in physics [2].

We describe the method in Sec. III below, applying it to the
liquid drop model as a simple exercise and then to SCMF. We
also mention that another norm somewhat between the least
squares and the C-norm has been proposed for fitting nuclear
binding energies [3].

In our discussion below, the Bethe-Weizsäcker semiempiri-
cal mass formula provides a convenient calibration point on the
theory. For reference, the formula is given by the following [4]:

B = avA − asA
2/3 − ac

Z2

A1/3
− aa

(N − Z)2

4A

+ δ
[(−1)N + (−1)Z]

2A1/2
, (1)

where B is the (positive) binding energy of the nucleus A.

II. SKYRME FUNCTIONALS

The Skyrme energy functional in its present form [5] has 10
linear parameters and one nonlinear parameter, the exponent
α of the density-dependent interaction. We fit only the
linear coefficients, holding α fixed. In practice, the spin-orbit
interaction is often assumed to have a specific isospin structure.
This reduces the number of linear parameters to 9. Pairing is
an indispensable ingredient in the theory but is outside the
scope of the Skyrme energy functional. We include pairing
following the treatment of Ref. [6], using a Lipkin-Nogami
treatment of BCS pairing with a surface-enhanced zero-range
pairing interaction. The fits are done only on even-even nuclei,
so the dependence of the fit on the binding energies would
be very much reduced anyway. We represent Skyrme energy
functional as in Ref. [5] with interaction energy density given
by the following:

V =
10∑
i=1

cifi,
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TABLE I. Skyrme energy functional in
the c parametrization. The label i is expanded
into an integer n and an isospin label t = 0, 1.
The isoscalar and isovector densities are
ρ0,1 = ρn ± ρp and other densities are the
same as defined in Ref. [5].

i = nt density

1t ρ2
t

2t ρ2
t (ρ0)α

3t |∇ρt |2
4t ρt τt

5t ∇ρt · Jt

where ci is a parameter and fi is a function of the one-body
densities. The specific forms of the fi needed for time-reversal
invariant densities are given in Table I. The interaction energy
for each nucleus A requires the integrals over the corresponding
densities fiA as follows:

IiA =
∫

d3rfiA.

Because binding energy is a nonlinear function of the
Skyrme parameters, all of the complications of nonlinear
searches are present in the problem of optimizing the func-
tional. However, there are many parameter sets in the literature
that we can take as starting points in a search using linear
methods. This will determine a local minimum of the chosen
norm in the vicinity of the starting parameter set. On a
technical level, one needs the derivatives of the binding
energies with respect to the parameters to make a linear fit.
The required derivatives are easily obtained with the help
of the Feynman-Hellman theorem [7], which expresses the
derivatives in terms of integrals over the original densities.
The theorem is valid for density functional theory because it
has a variational character. The linear-least squares fit requires
inverting the matrix M having the following elements:

Mij = (II †)ij ≡
∑
A

IiAIjA. (2)

The refit parameters are changed by an amount �c given by
the following:

�c = M−1I †r,

where �c and r are vectors with components ci and rA

respectively.
The main technical problem arises from the redundancy

among the parameters. In parameter space, there are flat
directions in which the parameter change can be large with
only a small effect on the linearized energy. However, if one
accepts these large changes, one discovers that they invalidate
the linear approximation and the final energies can turn out
to be worse than the starting values. This is a common
problem in fitting and is typically addressed by a singular value
decomposition of the parameter space. In essence, one reduces
the dimension of the space to eliminate the flat directions.
This is achieved by first diagonalizing the matrix M and
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FIG. 1. Eigenvalues of the least-squares fitting matrix, Eq. (2).

projecting onto the subspace spanned by the eigenvectors
having eigenvalues larger than some minimum value.

We now show how this works in practice with the SLy4
Skyrme energy functional [8]. The binding energy calculations
are performed with the Paris-Brussels code ev8 [9], which
requires that occupation probabilities of time-reversed orbitals
are equal. Accordingly, we only fit to the even-even nuclei in
the mass table. We also restrict the fit to nuclei with N,Z � 8,
as the lightest nuclei are not well described by SCMF. For the
SLy4 interaction, the authors of Ref. [6] provided us with data
on wave functions and equilibrium deformations that we took
as a starting point for our refits.

The experimental energies are taken from the 2003 mass
table [10], which has measured values for 579 even-even nu-
clei. The SLy4 parametrization was obtained by constraining
the parameters by properties other than binding energy. In
particular, the equilibrium nuclear matter density ρ0,eq was
constrained to a value that yielded a good description of nuclear
radii. The condition may be expressed as follows:

d

dρ0

T + V

ρ0
= 1

5m

k2
f

ρ0,eq
+ c10ρ0,eq

+ (1 + α)c20ρ
1+α
0,eq + c40k

2
f = 0,

where kf = (3π2ρ0,eq/2)1/3 is the Fermi momentum. We
enforce this condition in our fit, leaving eight independent
parameters. We expect that the resulting refit parametrization
will maintain a good description of nuclear radii. The eigen-
values for the eight-dimensional matrix M are displayed in
Fig. 1, ordered by size. Remarkably, they span a range of nearly
10 orders of magnitude. Also note that the first eigenvalue is
3 orders of magnitude larger than any of the others.

We now consider fits in subspaces of various dimensions
N, keeping the N most significant eigenvectors. The r.m.s.
residuals of the linear refits,

|r − (�cI )†|2 ≡
∑
A

(
rA −

∑
i

�ciIiA

)2

,
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FIG. 2. Least-squares refit as a function of the dimension of the
parameter space. The r.m.s. residuals of the linear refit are shown as
circles, connected by lines to guide the eye. The triangles show the
actual r.m.s., residuals for the parameters determined by the linear
refit. However, not all nuclei converged for the N = 6 and N = 8
parameter sets, and they were not included in the r.m.s. residual.

are shown in Fig. 2 as a function of N. The original SLy4
has a 3.3 MeV r.m.s. residual, and this improves to about
1.7 MeV for N � 3. Thus, it seems that spaces of dimension
larger than 3 or 4 are not needed to improve the quality of
the fit. However, because this is only a linear refit it must be
demonstrated that the quality of the fit is not degraded when
one uses the wave functions of the new parameter set. For the
cases N = 4, 6, and 8, we have recalculated the orbitals of
all the nuclei to avoid the linear approximation. The iterative
procedure to recalculate the orbitals converged as expected for
the N = 4 parameter space, and the new energies were very
close to the values obtained by the linear approximation. For
the N = 6 and N = 8 spaces, there are large changes in some
of the parameters and the iterative procedure for calculating
new orbitals did not always converge. The calculated norms
including only converged nuclei are shown as black triangles
in Fig. 2. One sees that the norm for the N = 8 is much larger
than predicted by the linear approximation, and even in the
N = 6 case there is significant error. We show in Fig. 3 plots
of the residuals as function of N for the SLy4 parameter set and
the N = 4 linear refit. One sees that the refit mainly affects
the heavy nuclei, correcting the trend to underbind them. This
is at the expense of the region near the doubly magic 208Pb,
which is now overbound.

Let us now try to interpret the eigenvectors of M. The vector
corresponding to the largest eigenvalue is easy to interpret as
the direction in parameter space that controls nuclear matter
binding energy. To see this, we start with the expression for
the nuclear matter binding energy in term of the c parameters,

av(c) = 3k2
f

10m
+ c10ρ0,eq + c20ρ

1+α
0,eq + 3

5
c40k

2
f ρ0,eq.

The direction vector with the maximum sensitivity to av(c) is
proportional to the gradient �∇cav(c). We find that the overlap
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FIG. 3. Residuals between theory and experiment as a function
of N, with nuclei of the same atomic number joined by lines. The top
plot shows the original SLy4 and the N = 4 linear refit is shown on
the bottom.

of this direction vector with the first eigenvector of M is
99%. Thus, the extremely sensitive direction revealed by the
eigenvalue plot Fig. 2 is nothing more than the nuclear matter
binding energy. Its new value in the refit is 16.06 MeV.

Another important property of nuclear matter is the sym-
metry energy, given by the following:

aa(c) = k2
f

6m
+ c11ρ0,eq + c21ρ

1+α
0,eq +

(
c41 + c40

3

)
k2
f ρ0,eq.

It does not correspond quite so well to a particular eigenvector:
the direction vector along �∇caa(c) has a 53% overlap with
the second and an 80% overlap with the third eigenvector.
However, within the space of the first three eigenvectors, a
vector with an overlap of 98% can be constructed. We can
therefore say that the N = 3 space includes parameters for both
the nuclear matter binding energy and the symmetry energy.
The three other adjustable parameters in the liquid drop model
are associated with the surface energy, the Coulomb energy,
and the pairing energy. It is likely, but we have not checked,
that the surface energy of semi-infinite nuclear matter provides
a third vector for spanning the N = 3 space of the first three
eigenvectors of M. The remaining liquid drop parameters are
not relevant to our fits, because the Coulomb interaction and the
pairing are not adjusted. The fourth eigenvector of M contains
physics that is entirely missing from the liquid drop model,
namely the spin-orbit interaction. In fact, there is a 90% overlap
between that vector and the relevant Skyrme parameter, c5t

in the notation of Table I. Beyond the spin-orbit interaction,
the Skyrme parameters do provide not additional sensitive
determinants of the binding energies.
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TABLE II. Refits of various Skyrme parametrizations. The
experimental data set is even-even nuclei of the 2003 mass table [10].
The last entry give the corresponding properties of the liquid
drop model, Eq. (1), for comparison purposes. All energies are in
mega-electron-volts.

Theory r.m.s. residual av(c) as(c)

SLy4 [8] 1.7 −16.06 32.0
SkP-based [11] 1.7 −16.11 31.1
BSk4-based [12] 1.7 −16.03 29.6
Skxce-based [13] 1.5 −16.10 31.0
LD 3.1 −15.6 23.3

There may be multiple local minima in the parameter space
of the Skyrme functional, and other parametrizations in the
literature may reside in other minima. It is therefore of interest
to see what the refitting procedure produces for them. We have
carried this out for the SkP parametrization of Ref. [11], the
BSky4 of Ref. [12], and the Skxce of Ref. [13]. However, there
is an important caveat in interpreting the results. The quoted
parametrizations were generated taking different approxima-
tions for various non-Skyrme energy terms, whereas our
calculations here only vary the Skyrme parameters themselves,
keeping the same treatment of the other terms the same as in the
SLy4 calculation. Thus, our extracted r.m.s. residuals will not
be directly comparable to the quoted residuals from the original
fits. In Sec. IV below, we will explicitly examine the effect of
some of these ancillary approximations on the fit. Another
caveat is that we start from the same deformations as with
SLy4. The deformation is allowed to change in the solution
of the mean-field equations, but there could be a lower energy
state in some other well of the deformation energy landscape.

Having obtained the wave functions for the different
parametrizations, we extract the density integrals and eigen-
vectors and then apply the N = 4 linear refit. The results are
shown in Table II. The main eigenvectors of the SkP and the
BSky4 were very similar to that of SLy4, and the linear refits
needed no substantial adjustment of the parameters. The SkP
has the same density dependence (α = 1/6) as the SLy4, and
in fact we see from the table that the quality of the fit is virtually
identical. The BSky4 has a density dependence α = 1/3, the
value that is found for the many-body theory of a dilute Fermi
gas. Finally, we have also considered a parametrization with
a density dependence α = 1/2, the Skxce of Ref. [13]. In
this case, the original parameter set gave no acceptable fit for
applying the linear refit. We therefore made some iterations on
the fit to get a good starting point.

Comparing the different parameter sets, we see that there
is very little difference between the qualities of the fits, all of
them being in the range of 1.5–1.7 MeV. It is interesting to
calibrate this number by comparing with the r.m.s. residual of
the liquid drop model. The result of fitting Eq. (1) to the 2003
nuclear mass table [10] gives an r.m.s. residual of 2.95 MeV; we
quote in the last line of Table II the fit to even-even nuclei only.
We see that the SCMF achieves a factor of two improvement
in the calculated binding energies. Of course the SCMF has
twice as many parameters, but as we just saw that many are
superfluous from the point of view of the binding energies.
Still, one might have hoped for a more dramatic improvement
given the computational cost of the SCMF as compared to the
liquid drop formula.

III. MINIMAX FITS

We now consider a completely different fitting criterion,
the Chebyshev norm. The Chebyshev norm ε is defined as the
maximum absolute value of the residuals rA = Edata − Etheory,

ε = max
A

|rA|.

We call this value the “C-norm” for short. The object of the
fit is of course to minimize ε, hence the designation “minimax
fit.” In general, if the theory has N adjustable parameters, there
will be N + 1 members of the set that have a residual equal
to ε. We call these the critical cases. In searching for a better
theory, one can screen candidates by just testing them on this
set. If the new theory does not produce a smaller ε on the
critical set, it can be immediately rejected.

We perform the minimax fit using the Chebyshev norm
as follows. For an N-parameter theory, one first selects a
set of N + 1 nuclei and makes the fit with them. This can
be done by the least-squares method, which yields equal
residuals for N + 1 nuclei. Then the set is updated by replacing
members with other nuclei until a set is found that satisfies the
minimax condition. It is easy to choose a nucleus to add to
the set—simply take the nucleus with the largest residual. It
is not obvious which nucleus should be replaced. The ascent
algorithm described in ref. [1] gives a procedure that we found
to be quite robust, usually coming to the critical set after less
than 10 iterations.

We first apply the minimax fit to the five-parameter liquid
drop model, Eq. (1). Results are given in Table III. For the first
row, the formula was fitted to the 2149 nuclei in the 2003 mass
table having N,Z � 8. Fitting to optimize the C-norm gives

TABLE III. Liquid drop model, comparing least squares fits with minimax fits of the 2003 and 1995
mass tables [10]. The fit does not include light nuclei (N or Z < 8).

Data set r.m.s. (MeV) C-norm (MeV) Overbound critical nuclei Underbound critical nuclei

2003 2.9 9.2 40Ar, 76Se, 77Br, 229Fr 100Sn, 132Sn
1995 3.0 8.0 73Ge, 101Nb, 230Ra 23O, 132Sn, 207Pb
2003 2.8 8.4 40Ar, 73As, 76Se, 229Fr 102Sn, 132Sn
σ < 0.2 MeV
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FIG. 4. Chart of nuclei showing the critical nuclei of the liquid
drop model and of the linearized refit of the SCMF based on the
SLy4 interaction. Critical nuclei are indicated by triangles, with
the orientation of the triangle distinguishing overbound (�) and
underbound (∇) nuclei. The cross area shows the nuclei whose masses
have been measured.

ε = 9.2 MeV, whereas fitting by least-squares gives an r.m.s.
residual of 2.9 MeV [14].

The six critical nuclei of the minimax fit are given in the
fourth column of the table and their positions on the chart of
nuclides is shown in Fig. 4. We see that the critical nuclei
are spread out over the entire mass range. Two of the nuclei,
229Fr and 132Sn, are at the neutron-rich border of the mass
table, and two are doubly magic: 100Sn and 132Sn. One might
expect that the N = Z line is problematic and indeed 100Sn is
on the line and 40Ar is near it. The remaining nuclei are 76Se
and 77Br, which do not have particular properties that we are
aware of.

It is interesting to compare with the fit to the 1995 mass
table. This is shown on the second line in the table. The r.m.s.

residual is actually lowered by the added nuclei in the 2003
table, but the C-norm is increased by more than one MeV.
This suggests that the C-norm provides a better discrimination
power to exhibit the increased demands imposed by additional
data. Most of the added nuclei were evidently easy ones for the
formula, decreasing the least-squares norm. It is instructive to
see which nuclei caused the changes to the minimax fit. Several
of the critical nuclei are different in the two fits, but only one
of these nuclei is new to the 2003 mass table, namely 100Sn.
In fact this nucleus is not well determined experimentally; the
error in its quoted experimental mass is 0.7 MeV, larger than
the intended accuracy of the theory. Restricting the 2003 mass
table to nuclei having errors less than 200 keV, the C-norm
decreases by 0.8 MeV. This is shown on the third line of the
table. One sees that the nucleus 100Sn is replaced by 102Sn and
the C-norm now is not so much greater than in 1995 mass
table. Thus, the minimax fitting process identifies 100Sn as
an important nucleus to measure more accurately, and it also
provides justification for the concentration of theoretical effort
on the Sn isotope chain.

We next discuss minimax fits of the Skyrme energy
functional. Table IV shows the results of the N = 4 refits
to the Skyrme energy functionals discussed earlier. For SLy4,
shown on the top line, the five critical nuclei include two
on the N = Z line (60Zn and 64Ge), one on the very proton-
rich side (20Mg), and two heavy nuclei on the neutron-rich
side. One of them (208Pb) is doubly magic and another
is close to the heaviest known (254Cf). Overall, the nuclei
are well spread as a function of mass number A. The SkP
functional is similar to SLy4 in its density dependence and
isospin dependence of the spin-orbit interaction. As may be
seen in the table, the C-norm of our SkP-based functional
is nearly identical to that of SLy4, but the set of critical
nuclei is quite different. The set includes a nucleus on the
N = Z line, but the mass number is four units lower than
the critical nucleus 60Zn of SLy4. The set lacks a doubly
magic nucleus, and the only magic number appearing is the
Z = 82 of the critical nucleus 214Pb. The other underbound
nuclei are 190W and 192Os, both of which are deformed and
on the border between prolate and oblate shapes. These results
shown that the specific nuclei on the critical list can change
easily from one functional to another. However, the value of
the C-norm is quite robust under small changes in the starting
parameters.

TABLE IV. Minimax refits of Skyrme parametrizations, starting from parameter sets from the
literature, and experimental data from the 2003 mass table, including only energies with errors less
than 200 keV. The critical nuclei are identified by proton number Z and neutron number N as (Z, N ). The
corresponding fit with the liquid drop model is shown on the last line.

Theory C-norm (MeV) Critical nuclei

Overbound Underbound

SLy4 [8] 4.8 (12,8),(82,126) (30,30),(32,32),(96,154)
SkP-based [11] 4.8 (42,58),(82,132) (28,28),(74,116),(76,116)
BSk4-based [12] 4.7 (12,8),(50,52),(82,128) (38,38),(38,62)
Skxce-based [13] 4.4 (12,8),(92,126) (34,34),(38,38),(38,64)
LD 8.1 (50,52),(50,132),(82,126) (34,42),(88,142)
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TABLE V. Testing possible improvements of theory, starting from
the SCMF with the SLy4 interaction. The putative improvement is
calculated on the SLy4 critical nuclei shown in Table IV.

Theory C-norm (MeV)

Baseline SLy4 4.84
c.m. correlation 4.69
no Coulomb exchange 4.89
J = 0 projection 4.36
N, Z projection 4.40

We next consider a Skyrme parametrization based on the
BSk4 functional of Goriely et al. [12]. Here the density
dependence is α = 1/3 rather than 1/6. As mentioned, our
results will not be directly comparable to theirs because
of different treatments of the pairing interaction and also
additional terms that they have added for their published fits.
Also, we have taken the deformations from the SLy4 results,
which could introduce some error. The results displayed on the
third line in Table V show a slight improvement of both norms
with respect to the SLy4 interaction. The critical nuclei are
different except for 20Mg and 208Pb. There is also an N = Z

nuclei in this critical set, 76Sr. In fact, the authors of Ref. [12]
introuce a phenomenological term in the binding energies just
to improve the fit near N = Z.

The last functional we consider is based on the Skxce
parametrization having a density dependence α = 1/2 and
a different isospin dependence of the spin-orbit interaction.
As seen in Table V, it yields a somewhat better C-norm
than the α = 1/6 parametrizations, which is in line with its
better performance on the least-squares norm. Most of the
critical nuclei are different from the previous cases, with only
20Mg having appeared earlier. Like the SLy4, there are two
midmass nuclei on the N = Z line, but their identities are
different. The only appearance of a spin-orbit shell closure
in this set is the N = 126 neutron shell of the nucleus 218U.
Also, quite different from the other fits, the most neutron-rich
representative is a midmass nucleus.

IV. TESTING THEORY EXTENSIONS

There are two ways one can try to improve the theory.
One is to introduce new theoretical ingredients or different
approximations keeping the same set of parameters to be fitted,
and the other is to add terms with additional parameters. In
this section we consider some examples of the first approach,
examining the effects on the C-norm.

For our first example, we ask how the treatment of the
correlation energy associated with center-of-mass motion
affects the fit. In principle SCMF is lacking that energy
because the state it describes is localized in space. However,
all the calculations done with the code ev8 include a one-
body contribution to the center-of-mass energy calculated by
replacing the nucleon mass by its reduced mass. A better
approximation requires calculating the two-body contributions
to the center-of-mass energy; an approximation formula for the

total is given in Ref. [13] as follows:

Ecm = −3

4

(
45

A1/3
− 25

A2/3

)
. (3)

In Table V we apply that correction to the five nuclei of the
SLy4 critical set, first taking out the one-body contribution
and then adding Ecm from Eq. (3) to the energies. One sees
only a tiny change in the resulting C-norm. This shows that
it is not worthwhile to put a lot of effort into making a better
treatment of that term, when the goal is a global improvement
of the calculated binding energies. Of course, this example was
so simple that the correction could have been easy applied to
the mass table as a whole, but it illustrates the point that one
may be able to assess the effect of the correction with a much
smaller set.

The next example we consider has to do with the treatment
the Coulomb energy. In the SCMF calculations reported above,
the direct part of Coulomb energy was calculated by solving the
Laplace equation for the Coulomb potential using the SCMF
charge density. The Coulomb exchange energy was calculated
in the local density approximation, as in Eq. (3) of Ref. [13].
This underestimates the actual displacement energies of
isospin partners, as is well known as the Nolen-Schiffer
anomaly. We in fact see evidence of that in the BSk4 critical
set, which has a member 40Ti, an isospin partner of the stable
nucleus 40Ar. In fact the latter nucleus is critical for the liquid
drop model. The experimental energy difference between these
two nuclei is 29.3 MeV. The theoretical difference in the
SLy4 theory is 27.5 MeV including the exchange but 29.2
without exchange. This suggests eliminating the exchange
term in doing the refit. Again, we try it on the critical nuclei
first. The results are shown on the third line of Table V.
Here the fit is actually worse. In this case we can identify
the reason. The baseline theory has a serious problem in the
overbinding of the doubly magic nucleus 208Pb. In the fit,
the heavier nonmagic nucleus 254Cf becomes critical with the
opposite sign on the residual. The parameter variation in the
fits hardly affects this difference, so any change in the theory
that increases it will be difficult to compensate for. This is the
case for the Coulomb exchange, which is larger for 254Cf than
for 208Pb.

The last example is inspired by the study of Bender et al.
[6] on the correlation energy. A global table of correlation
energies was calculated in that work, with the intention of
adding them to the Skyrme energies. Of course, the Skyrme
parameters must be refitted when the correlation energies are
added. We can take their numbers for the critical nuclei to
assess the quality of the improvement (if any). We consider as a
candidate improvement the simplest version of the correlation
energy, the effect of projection on angular momentum zero.
These projected energies are calculated with the promesse
code [15]. The difference in energies from the two codes is
taken as an additive correction, and a refit is performed on
the critical nuclei. The results of this exercise is shown on the
fourth line of Table IV. In this case the C-norm is decreased
by 10%. This gives one some encouragement to carry out the
program of Ref. [6], applying the projections to the mass table
as a whole. Of course, it might still turn out that other nuclei
might become worse in the fit with no gain in the C-norm,
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but the correction at least passes a preliminary screen. The
code promesse also projects states of fixed particle numbers
N,Z from the BCS wave function. The effect of the particle
number projection can be isolated by turning it off in the
promesse code, and using the difference as a correction factor.
The result, shown on the last line, is another 10% improvement
in the C-norm. We have also checked that the improvements
are additive taking the J = 0 projection and the N,Z particle
number projections together.

V. FINAL REMARKS

Fitting nuclear binding energies with theories based on
quantum many-body theory is a challenging task, partly
because of the large data set that needs to be computed. We
believe that work in developing such theories can be reduced by
using the Chebyshev norm as we have illustrated. To encourage
this effort, our computer program that carries out the minimax
fits is available on the Web [16].

An issue still remains of which set of critical nuclei is best
for testing new theoretical ideas. Unfortunately, each Skyrme
parametrization points to a different set. We believe that there
are clusters of nuclei that come out close to the C-norm limit
and that it should not be so significant which set is used, as
long as all the nuclei of some critical set are included. For
definiteness, we propose using the SLy4 set of five nuclei,

because it has a variety of types with a clear example of a
doubly magic nucleus.

For either the r.m.s. or the C-norm, the results of our
refitting answers a basic question about the accuracy of SCMF
as applied to nuclear binding energies, namely how does
the quality of SCMF fits including single-particle quantum
mechanics compare with the liquid drop model which has no
quantum mechanics at all? Comparing on the even-even nuclei
in the 2003 mass table, we found that the SCMF can double
the accuracy for the r.m.s. norm and do somewhat better for
the C-norm. The nominal number of Skyrme parameters is
more than twice the number of liquid drop parameters, but
in fact all but about four could have been chosen from other
considerations. It is of course reassuring that the SCMF is a
more predictive theory, and now the challenge is find good
ways to extend it.
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