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Vector meson photoproduction studied in its radiative decay channel
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We provide an analysis of vector meson photoproduction in the channel of the vector meson decaying into a
pseudoscalar meson plus a photon (i.e., V → Pγ ). It is shown that nontrivial kinematic correlations arise from
the measurement of the Pγ angular distributions in the overall c.m. system in comparison with those in the vector
meson rest frame. The implication of such kinematic correlations in the measurement of polarization observables
is discussed in terms of the vector meson density matrix elements. For ω meson production, because of its
relatively large branching ratios for ω → π 0γ , additional events from this channel may enrich the information
about the reaction mechanism and improve the statistics of the recent measurement of polarized beam asymmetries
by the GRAAL Collaboration. For φ → ηγ, ρ → πγ , and K∗ → Kγ , we expect that additional information
about the spin structure of the vector meson production vertex can be derived.
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I. INTRODUCTION

In recent years direct experimental evidence has been
sought for baryon resonance couplings into vector mesons
in vector meson photoproduction reactions [1–4]. One of the
motivations behind this effort is to find “missing resonances,”
which are predicted by the nonrelativistic constituent quark
model (NRCQM) but are not found in πN scattering [5,6].
The study of vector meson photoproduction at large angles near
threshold is particularly useful owing of the relatively small
contributions from background processes, such as t-channel
natural and unnatural parity exchanges.

Various experimental projects have been and are being
carried out at ELSA, JLab, ESRF, and Spring-8. In addition
to the cross sections, polarization observables, which are
more sensitive to resonance excitations, will also be measured
using newly developed experimental techniques [7,8]. This
is of great importance for the purpose of disentangling the
s-channel resonance excitations in the reaction. Because a large
number of degrees of freedom will be involved and dynamic
information in such a nonperturbative region is lacking, one,
in principle, needs a complete set of measurements of all in-
dependent spin polarization observables to obtain sufficient
information about resonance excitations and their couplings
to the meson and nucleon [9].

The polarization observables and density matrix elements
are essentially equivalent languages that connect the theo-
retical phenomenologies with the experimental observables.
The density matrix elements, as the interference between the
independent transition amplitudes, can be measured in the final
state vector meson decay distributions. They can be directly
compared with theoretical calculations, and hence they give
access to dynamical information about the transition mech-
anism. For the vector meson photoproduction reaction, a
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number of analyses have been carried out in the literature.
Density matrix elements for polarized photon beams were
discussed by Schilling, Seyboth, and Wolf [10]. More recently,
Pichowsky, Şavklı, and Tabakin [9] studied various relations
between polarization observables and helicity amplitudes. In
Refs. [11,12], Kloet et al. investigated inequality constraints
on the density matrix elements defined for the produced vector
meson with unpolarized or linearly polarized photon beams.
They also explored relations between vector meson decay
distributions in the vector meson rest frame and the overall
γN frame, which can be extended to the analysis of other
decay channels.

Another aspect relevant to the derivation of the density
matrix elements is the dynamics for the produced vector meson
coupling to the detected particles. For instance, the ω meson is
usually detected in ω → π+π−π0 and the ρ0 in ρ0 → π+π−.
The angular distributions for vector meson decays into spinless
particles were studied in Ref. [10]. However, their decays into
a photon and a pseudoscalar meson, V → Pγ , have not been
discussed. In this work, we will develop the formalism for
vector meson decay into a photon and a pseudoscalar meson
(e.g., ω → π0γ, φ → ηγ, ρ → πγ , and K∗ → Kγ ). We will
show that additional information about the vector meson
production mechanism can be obtained from measurements of
those final states. This analysis has an advantage in ω meson
photoproduction, for which the branching ratio of ω → π0γ

is about 8.5% [13]. Because the ω meson is an isoscalar
meson, only nucleon resonances can contribute in its s- and
u-channel production. This significantly reduces the number of
excited states in the corresponding reaction channels. In this
sense, the additional information from ω → π0γ should be
useful for constraining the nucleon resonances in γN → ωN .
Nevertheless, since the ω decays are dominantly via ω →
π+π−π0, and π+π− could form a configuration of JP = 1−
as a photon, it is interesting to compare these two distributions
and gain some insight into the sensitivities of the vector
meson production mechanism to these two decay channels in a
polarization measurement. This possibility is enhanced in the
comparison between V → PP and V → Pγ . For φ → ηγ ,
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the branching ratio is still sizeable. In comparison with the
dominant decay channel of φ → KK̄ , the decay distribution
of φ → ηγ contains different spin structure information;
hence it should be more sensitive to the production mechanism.
A similar feature, applies to the ρ → πγ and K∗ → Kγ in ρ

and K∗ meson photoproduction, respectively.
In this paper, the analysis of the decay channel V → Pγ

will be presented in Sec. II. In Sec. III, we discuss the kinematic
correlations arising from this decay channel and analyze their
influence on the measurements of spin observables in the the
overall γN c.m. system. Comparison with the results derived in
the vector meson rest frame will then be made. A summary will
be given in Sec. IV. To make it convenient for readers, analyses
of the spin observables in terms of the density matrix elements
of the polarized particles are included in the Appendix.

II. DENSITY MATRIX ELEMENTS FOR V → Pγ

In the overall c.m. system, the invariant amplitude is defined
as

Tλvλf ,λγ λi
≡ 〈q, λv; Pf , λf |T |k, λγ ; Pi , λi〉

→ 〈λvλf |T |λγ λi〉, (1)

where k and q are momenta of the initial photon and final state
vector meson, respectively; momenta Pi = −k and Pf = −q
are for the initial and final state nucleons, respectively; and
λγ (= ±1), λv (= 0,±1), λi (= ±1/2), and λf (= ±1/2) are
helicities of the photon, vector meson, and initial and final
state nucleons, respectively.

The amplitudes for the two photon polarizations λγ = ±1
are not independent of each other. They are connected by the
Jacob-Wick parity relation:

〈λvλf |T |λγ λi〉 = (−1)(λv−λf )−(λγ −λi )

×〈−λv − λf |T | − λγ − λi〉. (2)

We first consider the vector meson decay in the overall
γN c.m. system. The decay of vector meson (JPC = 1−) into
a pseudoscalar meson (JP = 0−) and photon (JPC = 1−−)
(i.e., V → Pγ ) is described by the effective Lagrangian

LV Pγ = egV

MV

εαβγ δ∂
αAβ∂γ V δP, (3)

where gV is the coupling constant and εαβγ δ is the Levi-Civita
tensor; V δ and P here denote the vector and pseudoscalar
meson fields, and Aβ is the photon field. This effective
Lagrangian is the only Lorentz-covariant one for the V Pγ

coupling at leading order.
We assume that the fields couple as elementary ones.

Therefore, the momentum dependence of gV can be neglected
[i.e., gV = gV (0)]. This assumption depends on the average
radius 〈r2

q 〉1/2
of the vector meson, for which we phenomeno-

logically refer to the average distance between the quark and
antiquark within the meson. As a simple estimate for the
ground-state mesons of which the spatial wave functions are
spherical, the particle size effects appear as the quadratic term
in the form factor 1 − k2

q〈r2
q 〉/6, where kq � 380 MeV are

the typical constituent quark momenta. For a typical meson
size of 〈r2

q 〉1/2 ∼ 0.5 fm, a correction of about 15% seems to

γ, k

Ni, Pi

Nf, Pf

θc.m.

V, q

ziyi

xi

yf

xf

zf

FIG. 1. Kinematics for γNi → V Nf in the overall c.m. system.

be needed. However, this will not affect the general feature
of the subsequent analyses for two reasons: (i) As shown
by Becchi and Morpurgo [14], in the limit of kq = 0 [i.e.,
gV (k2

q) = gV (0)], the calculations for both limits of MV =
MP (exp) and MP = MV (exp) give the same results, which
are consistent with the experimental data. This suggests that
the momentum dependence of gV is not significant. (ii) Even
though gV (k2

q) �= gV (0), this only leads to some percentage of
descrepancies in the event counting between the calculation
of Eq. (3) and experimental statistics, whereas the decay
distributions will not change. In this sense, we can neglect the
momentum dependence of gV at this moment, and focus on the
study of kinematic correlations arising from the measurement
of the Pγ angular distributions.

It is worth noting that the vector meson size effects
may become non-negligible at the production vertices for
γN → V N , and careful considerations of the vector meson
coupling form factors are crucial. However, this is independent
of our motivation here. As mentioned in the Introduction,
we are interested in possible experimental measurements
of the angular distributions of final state particles, through
which dynamical information about the production mechanism
(contained in the density matrix elements) can be extracted.

As illustrated in Fig. 1, we define the zf axis along the
three moment of the vector meson, the yf axis is normal
to the production plane defined by k × q, and hence the xf

direction is determined by yf × zf . Since the vector meson
three momentum |q| is determined by the c.m. energy W,
the three momentum of the final state photon in the overall
c.m. system can be expressed as p = q/2 + r, where r is
the three momentum of the photon in the vector meson rest
frame. The zf axis also defines the z direction of the decay
coordinates; the polar angle θ and azimuthal angle φ are
defined by the momentum difference between the final-state
photon and pseudoscalar meson, p − ps = 2r. However, for
the description of vector meson decay, it is convenient to select
the decay angles, θc and φc, which are the polar and azimuthal
angles of the flight direction of the photon in the overall c.m.
system with respect to zf . As shown in Fig. 2, we have

p0 sin θc = |r| sin θ,

p0 cos θc = |r| cos θ + |q|/2, (4)

φc = φ,

where p0 = |p| is the energy of the final-state photon.
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FIG. 2. Kinematics for V → Pγ in the overall c.m. system where
the vector meson has momentum q. The angle θc denotes the decay
direction of the photon; θ is the angle between q and the momentum
difference between the photon and pseudoscalar meson.

The decay amplitude of the vector meson with transverse
polarization can thus be expressed as

〈�γ ; θc, φc|M|λv = ±1〉 = C

√
3

8π

p0(q0�γ + |q|λv)

MV

εγ · εv

= C

√
3

8π

p0(q0�γ + |q|λv)

MV

(−1)λv

×D1∗
−λv�γ

(φc, θc,−φc), (5)

and the amplitude with longitudinal polarization is

〈�γ ; θc, φc|M|λv = 0〉 = C

√
3

8π
|p|�γ εγ · q̂

= C

√
3

8π
|p|�γ D1∗

0�γ
(φc, θc,−φc),

(6)

where �γ = ±1 and λv = 0,±1 are the helicities of the
photon and vector meson in V → Pγ , respectively. The
coefficient C = egV is the coupling constant.

The Wigner rotation functions follow the convention of
Rose [15]:

DI
MN(α, β, γ ) = e−i(Mα+Nγ )dI

MN(β), (7)

where α, β, and γ are Euler angles for the rotations of a vector.
Similar to the case of a vector meson decaying into spinless

particles [10], we can express the angular distribution of V →
Pγ in terms of the vector meson density matrix elements ρλvλ′

v
:

dN

d cos θdφ
= W (cos θc, φc, ρ)

= WTT(cos θc, φc, ρ) + WLL(cos θc, φc, ρ)

+ WTL(cos θc, φc, ρ), (8)

where θc and φc are functions of θ and φ; and the
latter angles (θ , φ) are the variables of the differential
distributions on the left-hand side; the subscripts TT, LL,
and TL denote the interfering distribution functions be-
tween the transverse-transverse, longitudinal-longitudinal, and
transverse-longitudinal vector meson polarizations, respec-
tively.

These have the following expressions in the overall c.m.
system:

WTT(cos θc, φc, ρ) = 1

σ0

∑
λv,λ′

v=±1;�γ ,�′
γ

〈�γ ; θ, φ|M|λv〉

× ρλvλ′
v
δ�γ �′

γ
〈λ′

v|M†|�′
γ ; θ, φ〉

= C2

σ0

3

8π

∑
λv,λ′

v=±1;�γ

p0(q0�γ + |q|λv)

MV

× (−1)λvD1∗
−λv�γ

(φc, θc,−φc)ρλvλ′
v
(V )

× (−1)λ
′
vD1

−λ′
v�

′
γ
(φc, θc,−φc)

× p0(q0�
′
γ + |q|λ′

v)

MV

= C2

σ0

3

8π

p2
0

2

{[
F2

1 (θc) + F2
2 (θc)

]

× (ρ11 + ρ−1−1) + sin2 θc

× [e−2iφcρ1−1 + e2iφcρ−11]
}
, (9)

WLL(cos θc, φc, ρ) = C2

σ0

3

8π

∑
λv=λ′

v=0;�γ ,�′
γ

|p|2�γ �′
γ D1∗

0�γ

× (φc, θc,−φc)δ�γ �′
γ
ρ00(V )D1

0�′
γ

× (φc, θc,−φc)

= C2

σ0

3

8π
|p|2 sin2 θcρ00, (10)

and

WTL(cos θc, φc, ρ) = C2

σ0

3

8π

∑
λv,λ′

v �=0;�γ

p0|p|�γ

MV

× [
(q0�γ + |q|λv)(−1)λvD1∗

−λv�γ

× (φc, θc,−φc)ρλv0D
1
0�γ

(φc, θc,−φc)

+ (q0�γ + |q|λ′
v)(−1)λ

′
vD1∗

0�γ

× (φc, θc,−φc)ρ0λ′
v
D1

−λ′
v�γ

× (φc, θc,−φc)
]

= −C2

σ0

3

8π

p2
0 sin θc

2
√

2
[F1(θc) − F2(θc)]

× [e−iφc (ρ10 − ρ0−1) + eiφc

× (ρ01 − ρ−10)], (11)

where

F1(θc) ≡ 1

MV

(q0 + |q|)(1 − cos θc),
(12)

F2(θc) ≡ 1

MV

(q0 − |q|)(1 + cos θc)

are functions of θc and hence introduce kinematic correlations
to the coordinate transformation. The δ function δ�γ �′

γ
implies

the sum over the final-state unpolarized photons. The factor
σ0 = C2|r|2 is the normalization factor for V → Pγ and is
proportional to the decay width for V → Pγ in the vector
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meson rest frame. Note that W (cos θc, φc, ρ) is coordinate
dependent owing to the Lorentz transformation from the vector
meson rest frame to the overall c.m. system.

The density matrix elements of the vector meson are inde-
pendent of the coordinate frame selection for the vector meson
decays. They are related to the initial photon polarizations in
the overall c.m. system via

ρλvλ′
v
(V ) = 1

N

∑
λf λγ λiλ′

γ

Tλvλf ,λγ λi
ρλγ λ′

γ
(γ )T ∗

λ′
vλf ,λ′

γ λi
, (13)

where N ≡ 1
2

∑
λvλf λγ λi

|Tλvλf ,λγ λi
|2 is the normalization fac-

tor and is double the unpolarized cross section if one ignores
the phase space factor.

The polarized-photon density matrix element ρ(γ ) is
defined as [10]

ρ(γ ) = 1
2 (Iγ + σ · Pγ ), (14)

where σ is the Pauli matrix for the photon’s two inde-
pendent polarizations; Pγ determines both the degree of
polarization (via its magnitude Pγ ) and the polarization
direction. For linearly polarized photons, with � denoting
the angle between the polarization vector of the photon
(cos �, sin �, 0) and the production plane (xi − zi plane), one
has Pγ = Pγ (−cos 2�,−sin 2�, 0). For circularly polarized
photons, the polarization vector is along the zi axis and hence
Pγ = Pγ (0, 0, λγ ) with λγ = ±1.

Substituting Eq. (14) into (13), we obtain the familiar form
of the vector meson density matrix elements [10]:

ρ0
λvλ′

v
= 1

2N

∑
λγ λf λi

Tλvλf ,λγ λi
T ∗

λ′
vλf ,λγ λi

,

ρ1
λvλ′

v
= 1

2N

∑
λγ λf λi

Tλvλf ,−λγ λi
T ∗

λ′
vλf ,λγ λi

,

(15)

ρ2
λvλ′

v
= i

2N

∑
λγ λf λi

λγ Tλvλf ,−λγ λi
T ∗

λ′
vλf ,λγ λi

,

ρ3
λvλ′

v
= i

2N

∑
λγ λf λi

λγ Tλvλf ,λγ λi
T ∗

λ′
vλf ,λγ λi

.

The decomposition of the vector meson decay distribution
in terms of the initial photon polarizations thus allows us to
express Eq. (8) as

W (cos θc, φc, ρ) = W 0(cos θc, φc, ρ
0)

+
3∑

α=1

P α
γ Wα(cos θc, φc, ρ

α), (16)

where W 0 denotes the distribution with unpolarized photons,
W 1,2 denote those with linearly polarized photons, and W 3

denotes that with circularly polarized photons.
With the Jacob-Wick parity relation [Eq. (2)] and the re-

quirement that the density matrix elements must be Hermitian,

ρα
λvλ′

v
= ρα∗

λ′
vλv

, (17)

the decomposed distributions can be obtained:

W 0(cos θc, φc, ρ
0) = 3

8π

C2p2
0

σ0

{
sin2 θcρ

0
00 + 1

2

[
F2

1 (θc)

+F2
2 (θc)

]
ρ0

11 + sin2 θc cos 2φcρ
0
1−1

+
√

2[F1(θc) − F2(θc)]

× sin θc cos φc Re ρ0
10

}
, (18)

W 1(cos θc, φc, ρ
0) = 3

8π

C2p2
0

σ0

{
sin2 θcρ

1
00 + 1

2

[
F2

1 (θc)

+F2
2 (θc)

]
ρ1

11 + sin2 θc cos 2φcρ
1
1−1

+
√

2[F1(θc) − F2(θc)]

× sin θc cos φc Re ρ1
10

}
, (19)

W 2(cos θc, φc, ρ
2) = 3

8π

C2p2
0

σ0

{
sin2 θc sin 2φcIm ρ2

1−1

−
√

2[F1(θc) − F2(θc)]

× sin θc sin φc Im ρ2
10

}
, (20)

and

W 3(cos θc, φc, ρ
2) = 3

8π

C2p2
0

σ0

{
sin2 θc sin 2φcIm ρ3

1−1

−
√

2[F1(θc) − F2(θc)]

× sin θc sin φc Im ρ3
10

}
. (21)

Recalling again that θc is a function of θ , we see that
strong kinematic correlations have been embedded in these
expressions. Naturally, one would expect that in the limit of
|q| → 0, and hence q0 → MV , the azimuthal angles (θc, φc)
will be identical to (θ, φ), and C2p2

0/σ0 = p2
0/|r|2 = 1. These

expressions then reduce to the ones derived in the vector meson
rest frame [10]:

W 0(cos θ, φ, ρ0) = 3

8π

{
sin2 θρ0

00 + (1 + cos2 θ )ρ0
11

+ sin2 θ cos 2φρ0
1−1

+
√

2 sin 2θ cos φ Re ρ0
10

}
, (22)

W 1(cos θ, φ, ρ1) = 3

8π

{
sin2 θρ1

00 + (1 + cos2 θ )ρ1
11

+ sin2 θ cos 2φρ1
1−1

+
√

2 sin 2θ cos φ Re ρ1
10

}
, (23)

W 2(cos θ, φ, ρ2) = 3

8π

{
sin2 θ sin 2φ Im ρ2

1−1

+
√

2 sin 2θ sin φ Im ρ2
10

}
, (24)

and

W 3(cos θ, φ, ρ3) = 3

8π

{
sin2 θ sin 2φ Im ρ3

1−1

+
√

2 sin 2θ sin φ Im ρ3
10

}
. (25)
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As shown in Eq. (5), the nonvanishing three momentum
of the vector meson in the overall c.m. system introduces
an additional term for the transverse vector meson decays.
As a consequence, kinematic factors F1,2(θc), which are
functions of the decay angle θc, appear in the TT and TL
decay distributions. Nevertheless, coordinate transformations
also exist between θc and θ . In comparison with Eqs. (22–25)
for vector meson decay in its rest frame, kinematic factors in
Eqs. (18–21) cannot be cleanly factored out in the measure-
ment of V → Pγ in the overall c.m. system. This differs from
the measurement of vector meson decay into spinless mesons
[11] (e.g., ρ0 → π+π− or φ → K+K−), where a kinematic
factor can be taken out of the distribution functions by
selecting the polar angle θ as the angle between the momentum
difference of the final-state pions and the vector meson
momentum in the overall c.m. system. Such a correlation
also reflects the dynamical difference between V → Pγ and
V → PP , from which we expect to learn more about the
vector meson production mechanism via the measurement of
the decay distributions.

In the next section, we will discuss some features arising
from the kinematic correlations and their impact on the
polarized beam asymmetry measurement in different frames.

III. KINEMATIC CORRELATIONS IN POLARIZED
BEAM ASYMMETRY

In the production plane, the measurement of the linearly
polarized beam asymmetry is defined as the cross section
difference between polarizing the photons along the xi (� =
0◦) and yi axis (� = 90◦), which correspond to Pγ along ∓xi ,
respectively. The cross sections for these two polarizations
thus can be expressed as

W̄⊥(� = 90◦, ρ) =
∫ π

θ=0

∫ 2π

φ=0
d�W 0(cos θc, φc, ρ

0)

− Pγ

∫ π

θ=0

∫ 2π

φ=0
d�W 1(cos θc, φc, ρ

1)

= W̄ 0(ρ0) + Pγ W̄ 1(ρ1) (26)

and

W̄‖(� = 0◦, ρ) = W̄ 0(ρ0) − Pγ W̄ 1(ρ1). (27)

The linearly polarized photon asymmetry is thus defined as

�̌ ≡ W̄⊥(�= 90◦, ρ) − W̄‖(�= 0◦, ρ)

W̄⊥(�= 90◦, ρ) + W̄‖(�= 0◦, ρ)
= Pγ

W̄ 1(ρ1)

W̄ 0(ρ0)
,

(28)

where Pγ is determined by the experimental setup, and W̄ 1(ρ1)
and W̄ 0(ρ0) are the integrals over (θ, φ):

W̄ 1(ρ1) ≡
∫

d�W 1(cos θc, φc, ρ
1)

= 3

8π

1

|r|2M2
V

∫
d�

{[
(p · q)2 − M2

V

(
p · ε0

v

)2]
ρ1

00

+ [
(p · q)2 + M2

V

(
p · ε0

v

)2]
ρ1

11

}
(29)

and

W̄ 0(ρ0) ≡
∫

d�W 0(cos θc, φc, ρ
0)

= 3

8π

1

|r|2M2
V

∫
d�

{[
(p · q)2 − M2

V

(
p · ε0

v

)2]
ρ0

00

+ [
(p · q)2 + M2

V

(
p · ε0

v

)2]
ρ0

11

}
, (30)

where the relation p2
0[F2

1 (θc) + F2
2 (θc)]/2 = [(p · q)2 +

M2
V (p · ε0

v )2]/M2
V has been applied, and ε0

v = (|q|, q0q̂)/MV

is the longitudinal polarization vector of the vector meson.
Note that the density matrix elements ρα (α = 0, 1, 2, 3) are

independent of θ and φ. We define the following two integrals:

Wa ≡ 3

8π

1

|r|2M2
V

∫
d�

[
(p · q)2 − M2

V

(
p · ε0

v

)2]
,

(31)

Wb ≡ 3

8π

1

|r|2M2
V

∫
d�

[
(p · q)2 + M2

V

(
p · ε0

v

)2]
.

Hence, the polarized beam asymmetry can be expressed as

�̌ = ρ1
00 + (Wb/Wa)ρ1

11

ρ0
00 + (Wb/Wa)ρ0

11

, (32)

and the ratio of the integrals gives

Wb

Wa

= 2 + 1

2

|q|2
M2

V

(
1 + 3

2

M2
P

|r|2
)

, (33)

where, in the integration, the relation 2q0p0 = q2
0 + p2

0 −
M2

P − (r − q/2)2 has been used. In the vector meson rest
frame, |q| → 0, we have Wb/Wa = 2, and the polarized beam
asymmetry reduces to

�̌ = ρ1
00 + 2ρ1

11

ρ0
00 + 2ρ0

11

, (34)

which is the familiar result derived for the vector meson decays
into pseudoscalar mesons [16].

Because of the nontrivial kinematic correlations arising
from the decay distributions, the polarized photon beam
asymmetry is also accompanied by a kinematic correlation
factor when transforming from the vector meson rest frame to
the overall c.m. frame. Although one, in principle, can select
the vector meson rest frame as the working frame for deriving
the polarization asymmetry, in reality, it will depend on how
well the vector meson kinematics is reconstructed. For narrow
states, such as ω and φ, the transformation of the working
frame from the overall c.m. one to the vector meson rest one
should have relatively small ambiguities. However, for broad
states, such as ρ, the sizeable width will lead to uncertainties
in determining the three moment q. The kinematic correlations
hence will produce significant effects in the measurement of
the polarization observables.

This kind of situation makes Eq. (34) useful for evaluating
the kinematic correlation effects. First, note that the second
term in Eq. (34) explicitly depends on the mass and momentum
of the pseudoscalar meson in the vector meson rest frame.
This shows that the kinematic correlations will become
more significant if the vector meson decays into a heavier
pseudoscalar meson instead of a lighter one owing of the
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increasing ratio M2
P /|r|2. For instance, for the final state decays

of ω → ηγ,M2
π/|rπ |2 = 0.13, and for ω → π0γ,M2

η/|rη|2 =
7.56. This ratio is essentially a constant for a fixed decay
channel. Therefore, Eq. (34) suggests that above the vector
meson production channel and at a fixed production energy,
kinematic correlation effects should become increasingly
significant for heavier pseudoscalar decay channels.

Second, for a fixed pseudoscalar decay channel, Eq. (34)
shows that the kinematic correlation should also become
increasingly important with increasing reaction energy owing
to the term proportional to |q|2/M2

V . In other words, only
when the vector meson is produced near threshold (i.e., |q|2/
M2

V � 1) can the kinematic correlation effects be neglected
as a reasonable approximation. Otherwise, uncertainties from
such correlations could be substantial.

IV. SUMMARY

We have carried out an analysis of vector meson decay
into a pseudoscalar meson plus a photon in photoproduction
reactions (e.g., ω → π0γ, φ → ηγ, ρ → πγ , and K∗ →
Kγ ). Compared with previous measurements of vector meson
decays into pseudoscalars, this channel has the advantage of
providing additional dynamical information about the vector
meson production mechanism owing to the different spin
structures carried by the differential decay distributions.

It was found that kinematic correlations become im-
portant in this decay channel in the overall c.m. system.
An explicit relation for the correlations between the vector
meson rest frame and the overall c.m. system was derived in
Eq. (33), which highlighted the kinematic sensitivities of the
polarization observables studied in different reactions and
different pseudoscalar meson decay channels. It is thus useful
for providing guidance for experimental investigation of vector
meson photoproduction for the purpose of studying nucleon
resonance excitations in polarization reactions.

Although the decay channel V → Pγ generally has small
branching ratios for most vector mesons, it is relatively large
for the ω meson with bω→π0γ = (8.5 ± 0.5)% [13]. Therefore,
for ω meson photoproduction, not only will this channel
increase the experimental statistics but it will also provide
an independent measurement of polarized beam asymmetry,
which can then be compared with the one measured in ω →
π0π+π−. For φ and ρ0, their dominant decays are into two
pseudoscalars. Hence, additional spin structure information
can be expected in φ → ηγ and ρ0 → π0γ . In particular,
brφ→ηγ = (1.295 ± 0.025)% [13] is still sizeable, making this
channel an important source for the φ meson photoproduction
mechanism near threshold. Experimental facilities at ESRF
(GRAAL), SPring-8 (LEPS), and ELSA (Crystal Ball) with
linearly polarized photon beams and charge-neutral particle
detectors should have advantages for addressing this issue.

We also derived the single polarization observables for
vector meson photoproduction in terms of the density matrix
elements for the polarized particles. Those elements can be
directly related to the experimental measurement of the corre-
sponding angular distributions of the vector meson decays into
either spinless mesons or a spinless meson plus a photon. For

linearly polarized photon beams the angular distribution of the
photoproduced vector meson decay into spinless particles has
been developed in the literature [10]. Polarization observables
in terms of the bilinear helicity product of the helicity
amplitudes have also been discussed widely in the literature
[9]. In the Appendix, we present the vector meson decay
distribution functions in terms of those measurable density
matrix elements defined for those polarized particles. This
should be useful for future experimental analyses at GRAAL,
JLab, and SPring-8, with polarized targets, recoil polarization,
or beam-target double polarizations.
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APPENDIX: DENSITY MATRIX ELEMENTS FOR
POLARIZATION OBSERVABLES

In Ref. [10], the density matrix elements for polarized
photon beams were derived. We shall adopt the same con-
vention and derive density matrix elements for other single-
polarization (i.e., polarized target, recoil polarization, and vec-
tor meson polarization) and double-polarization observables.
First, we will outline several basic aspects of density matrix
elements with polarized photon beams, which will be useful
for further discussions.

For the convenience of comparing with other analyses [9],
we also express the invariant amplitudes as the following 12
independent helicity amplitudes:

H1λv
= 〈λv, λf = +1/2|T |λγ = 1, λi = −1/2〉,

H2λv
= 〈λv, λf = +1/2|T |λγ = 1, λi = +1/2〉,

(35)
H3λv

= 〈λv, λf = −1/2|T |λγ = 1, λi = −1/2〉,
H4λv

= 〈λv, λf = −1/2|T |λγ = 1, λi = +1/2〉.

A. Convention and kinematics

The general form of the angular distribution for the
vector meson decay into spinless particles (e.g., ω →
π+π−π0, ρ0 → π+π−, and φ → K+K−) is

dN

d cos θdφ
= W (cos θ, φ)

=
∑
λvλ′

v

〈θ, φ|M|λv〉ρλvλ′
v
(V )〈λ′

v|M†|θ, φ〉, (36)

where M is the vector meson decay amplitude and can be
factored as

〈θ, φ|M|λv〉 = C

√
3

4π
D1∗

λv0(φ, θ,−φ). (37)
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The decay angles, θ and φ, are defined as the polar and
azimuthal angles, respectively, of the flight direction of one of
the decay particles in the vector meson rest frame in the case
of two-body decay (e.g., ρ0 → π+π−, or φ → K+K−). For
three-body decay of the vector meson (e.g., ω → π0π+π−)
θ and φ denote the polar and azimuthal angles, respectively,
of the normal direction of the decay plane. The constant C is
independent of λv and determined by the vector meson decay
width; the Wigner rotation functions D follow the convention
of Ref. [15] as defined by Eq. (7).

Consequently, the angular distribution of Eq. (36) can
be expressed in terms of the vector meson density matrices
ρλvλ′

v
(V ):

W (cos θ, φ) = 3

4π

∑
λvλ′

v

D1∗
λv0(φ, θ,−φ)ρλvλ′

v
(V )

×D1
λ′

v0(φ, θ,−φ), (38)

where ρ(V ) is Hermitian, that is, ρλvλ′
v
(V ) = ρ∗

λ′
vλv

(V ). Mean-
while, since W (cos θ, φ) is a linear function of ρ(V ), it can
be decomposed into a linear combination in terms of the
polarization status of the particles.

Equation (38) is general for vector meson decays into
spinless particles. The vector meson density matrix element
ρ(V ) can be related to the polarization status of the initial and
final state particles in their spin space via the transition ampli-
tudes Tλvλf ,λγ λi

. Therefore, for different polarization reactions
with the vector meson decays into spinless particles, ρ(V )
is the source containing information about the polarization
observables. The angular distribution, as a function of ρ(V ),
hence provides access to the physics reflected by ρ(V ). In
experiments, ρ(V ) is a quantity that can be derived from the
data for vector meson decay distributions, whereas in theory,
it can be calculated with dynamical models [17–29].

Since ρ(V ) is related to the polarization of the initial and
final state particles in their spin space, this is equivalent to say-
ing that for different polarizations of the initial and final state
particles there are different density matrix elements that can be
measured. In this sense, we are also interested in the number
of minimum measurements that can provide the maximum
amount of information on the transition mechanisms [9].

In the following; we will first rederive the polarized beam
asymmetry in terms of the density matrix elements following
Ref. [10] and then derive other polarization asymmetries in
terms of the corresponding density matrix elements.

B. Polarized beam asymmetry

Substituting Eq. (14) into (38), we can easily reproduce the
results of Ref. [10] and obtain the angular distribution

W (cos θ, φ,�) = W 0(cos θ, φ, ρ0
λvλ′

v

) − Pγ cos 2�

× W 1(cos θ, φ, ρ1
λvλ′

v

) − Pγ sin 2�

× W 2(cos θ, φ, ρ2
λvλ′

v

) + λγ Pγ

× W 3(cos θ, φ, ρ3
λvλ′

v

)
, (39)

where

W 0(cos θ, φ, ρ0) = 3

4π

[
1

2
sin2 θ + 1

2
(3 cos2 θ − 1)ρ0

00

−
√

2 Re ρ0
10 sin 2θ cos φ

− ρ0
1−1 sin2 θ cos 2φ

]
,

W 1(cos θ, φ, ρ1) = 3

4π

[
ρ1

11 sin2 θ + ρ1
00 cos2 θ

−
√

2 Re ρ1
10 sin 2θ cos φ

(40)
− ρ1

1−1 sin2 θ cos 2φ
]
,

W 2(cos θ, φ, ρ2) = 3

4π

[√
2 Im ρ2

10 sin 2θ sin φ

+ Im ρ2
1−1 sin2 θ sin 2φ

]
,

W 3(cos θ, φ, ρ3) = 3

4π

[√
2 Re ρ3

10 sin 2θ sin φ

+ Im ρ3
1−1 sin2 θ sin 2φ

]
.

For polarized photon beams, the density matrix element
ρ0 corresponds to the unpolarized photon measurement, ρ1

and ρ2 correspond to the linearly polarized photon, and ρ3

corresponds to the circularly polarized photon. The linearly
polarized beam asymmetry then is given by the cross-section
differences between polarizing the photons along the xi axis
(� = 0◦) and the yi axis (� = 90◦), which correspond to Pγ

along ∓xi , respectively. Similar to Eq. (28), we have

�̌ ≡ W̄⊥(� = 90◦, ρ) − W̄‖(� = 0◦, ρ)

W̄⊥(� = 90◦, ρ) + W̄‖(� = 0◦, ρ)
= Pγ

ρ1
00 + 2ρ1

11

ρ0
00 + 2ρ0

11

.

(41)

In terms of the helicity amplitudes this expression can be
written as

�̌ = 1
2

{−Hr
1−1H

r
41 − Hi

1−1H
i
41 + Hr

10H
r
40 + Hi

10H
i
40

−Hr
11H

r
4−1 − Hi

11H
i
4−1 + Hr

2−1H
r
31 + Hi

2−1H
i
31

−Hr
20H

r
30 − Hi

20H
i
30 + Hr

21H
r
3−1 + Hi

21H
i
3−1

}
= 1

2 〈H |�4ωA|H 〉. (42)

This expression is the same as that defined in Ref. [9].

C. Target polarization asymmetry

Proceeding to other single-polarization observables, we
shall derive the angular distributions of the vector meson de-
cays into spinless particles and express the polarization observ-
ables in terms of the corresponding density matrix elements.

The polarization status of the target is defined as

ρ(N ) = 1
2 (INi

+ σ · PNi
), (43)

where INi
is the 2 × 2 unity matrix in the spin space of

the target and PNi
is the polarization vector for the target

nucleon. In the coordinates of the initial states, we define
PNi

≡ PNi
(cos �, sin �, 0) for polarizing the initial nucleon

within the xiyi plane, and PNi
≡ PNi

(0, 0, λi) for polarizing
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the initial nucleon along zi , where PNi
is the initial nucleon

degree of polarization, and � is the angle between the
polarization vector of the initial nucleon and the production
plane (xizi plane).

The polarized target density matrix elements can be related
to the elements of the vector meson decay via the production
amplitudes T:

ρλvλ′
v
(V ) = 1

N

∑
λf λγ λiλ

′
i

Tλvλf ,λγ λi
ρλiλ

′
i
(Ni)T

∗
λ′

vλf ,λγ λ′
i
.

(44)

Decomposition of the polarization status of the target gives

ρ(V ) = ρ0 +
3∑

α=1

P α
Ni

ρα, (45)

where ρ0 denotes the density matrix elements with the
unpolarized target, and ρ1,2,3 denotes the elements with the
target polarized along xi, yi , and zi axes in the initial frame.
Explicitly, the elements are given as

ρ0
λvλ′

v
= 1

2N

∑
λf λγ λi

Tλvλf ,λγ λi
T ∗

λ′
vλf ,λγ λi

,

ρ1
λvλ′

v
= 1

2N

∑
λf λγ λi

Tλvλf ,λγ −λi
T ∗

λ′
vλf ,λγ λi

,

(46)

ρ2
λvλ′

v
= i

2N

∑
λf λγ λi

λ̂iTλvλf ,λγ −λi
T ∗

λ′
vλf ,λγ λi

,

ρ3
λvλ′

v
= 1

2N

∑
λf λγ λi

λ̂iTλvλf ,λγ λi
T ∗

λ′
vλf ,λγ λi

,

where λ̂i = ±1 represents the sign of λi .
The vector meson decay distribution depends on the prop-

erties of the density matrix elements defined here. Applying
the parity conservation relation and the requirement that the
density matrix elements be Hermitian, we obtain the matrix
elements for ρα

λvλ′
v

with α = 1, 2, 3, corresponding to the
polarization of the initial nucleon spin along xi, yi , and zi .
Substituting the elements into Eq. (38), we obtain the vector
meson distribution in terms of the different polarization status
of the target nucleons:

W (cos θ, φ,�) = W 0
(
cos θ, φ, ρ0

λvλ′
v

)
+PNi

cos �W 1
(
cos θ, φ, ρ1

λvλ′
v

)
+ PNi

sin �W 2
(
cos θ, φ, ρ2

λvλ′
v

)
+ λ̂iPNi

W 3
(
cos θ, φ, ρ3

λvλ′
v

)
, (47)

where

W 0(cos θ, φ, ρ0) = 3

4π

[
1

2
sin2 θ + 1

2
(3 cos2 θ − 1)ρ0

00

−
√

2 Re ρ0
10 sin 2θ cos φ

− ρ0
1−1 sin2 θ cos 2φ

]
,

W 1(cos θ, φ, ρ1) = 3

4π

[√
2 Im ρ1

10 sin 2θ sin φ

+ Im ρ1
1−1 sin2 θ sin 2φ

]
,

(48)

W 2(cos θ, φ, ρ2) = 3

4π

[
ρ2

11 sin2 θ + ρ2
00 cos2 θ

−
√

2 Re ρ2
10 sin 2θ cos φ

− ρ2
1−1 sin2 θ cos 2φ

]
,

W 3(cos θ, φ, ρ3) = 3

4π

[√
2 Re ρ3

10 sin 2θ sin φ

+ Im ρ3
1−1 sin2 θ sin 2φ

]
, (48)

where � again denotes the angle between the polarization
vector of the initial nucleon and the production plane.

As addressed earlier, the corresponding angular distribution
of the vector meson decays into pions with the polarized
target has the same form as Eq. (38), whereas the density
matrix elements represent different dynamical information.
In analogy with the polarized photon measurement, the cross
sections for polarizing the initial nucleon spin projection along
the ±yi axis (i.e., � = ±90◦) can be obtained by summing all
the events together:

W̄↑(� = 90◦, ρ) =
∫ π

θ=0

∫ 2π

φ=0
d�W 0(cos θ, φ, ρ0)

+ PNi

∫ π

θ=0

∫ 2π

φ=0
d�W 2(cos θ, φ, ρ2)

= W̄ 0(ρ0) + PNi
W̄ 2(ρ2) (49)

and

W̄↓(� = −90◦, ρ) = W̄ 0(ρ0) − PNi
W̄ 2(ρ2). (50)

The polarized target asymmetry is hence defined as the cross-
section differences between these two polarizations:

Ť ≡ W̄↑(� = 90◦,ρ)− W̄↓(� = −90◦, ρ)

W̄↑(� = 90◦,ρ)+ W̄↓(� = −90◦,ρ)
= PNi

ρ2
00 +2ρ2

11

ρ0
00 +2ρ0

11

,

(51)

where PNi
depends only on the experimental setup.

Compared with the polarized beam asymmetry, this equa-
tion shows that the density matrix elements ρ1,2,3 defined in the
target polarization have different properties. In particular, the
asymmetry of polarizing the initial nucleon along the xi axis
would be zero if the vector meson decay events are integrated
over θ and φ.

The dynamic significance can be seen more transparently
in terms of the helicity amplitudes, that is,

Ť =
∑
λv

{
Hr

1λv
H i

2λv
− Hi

1λv
H r

2λv
+ Hr

3λv
H i

4λv
− Hi

3λv
H r

4λv

}

= −1

2
〈H |�10ω1|H 〉, (52)

which now involves interferences between different helicity
amplitudes and again arrives at the same result as that of
Ref. [9].
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D. Recoil polarization asymmetry

Similarly, we can also establish the relations for the density
matrix elements between the vector meson and the recoil
nucleon by defining

ρ(Nf ) = 1
2 (INf

+ σ · PNf
), (53)

where INf
is the 2 × 2 unity matrix in the spin space of the

recoil nucleon and PNf
is the polarization direction defined

in the final state coordinates [i.e., the frame of (xf , yf , zf ) in
Fig. 1]. In the spin space for the recoil nucleon, the decompo-
sition of the recoil polarizations leads to

ρ0
λvλ′

v
= 1

2N

∑
λf λγ λi

Tλvλf ,λγ λi
T ∗

λ′
vλf ,λγ λi

,

ρ1
λvλ′

v
= 1

2N

∑
λf λγ λi

Tλv−λf ,λγ λi
T ∗

λ′
vλf ,λγ λi

,

(54)

ρ2
λvλ′

v
= i

2N

∑
λf λγ λi

λ̂f Tλv−λf ,λγ λi
T ∗

λ′
vλf ,λγ λi

,

ρ3
λvλ′

v
= 1

2N

∑
λf λγ λi

λ̂f Tλvλf ,λγ λi
T ∗

λ′
vλf ,λγ λi

,

where λ̂f = ±1 represents the sign of λf .
The angular distribution of the vector meson decays can

then be expressed as

W (cos θ, φ,�) = W 0
(
cos θ, φ, ρ0

λvλ′
v

)
+ PNf

cos �W 1
(
cos θ, φ, ρ1

λvλ′
v

)
+ PNf

sin �W 2
(
cos θ, φ, ρ2

λvλ′
v

)
+ λ̂f PNf

W 3
(
cos θ, φ, ρ3

λvλ′
v

)
, (55)

where the W 0,1,2,3 correspond to distributions with the final
state baryon unpolarized, polarized along xf , yf , and zf direc-
tions, respectively. The expressions of W 0,1,2,3 are the same as
Eq. (48).

Similar to the derivation in previous subsections, the
recoil polarization asymmetry is defined as the cross-section
differences between polarizing the final-state nucleon along
the ±yf axis (corresponding to � = ±90◦):

P̌Nf
≡ W̄↑(� = 90◦, ρ) − W̄↓(� = −90◦, ρ)

W̄↑(� = 90◦, ρ) + W̄↓(� = −90◦, ρ)

= PNf

ρ2
00 + 2ρ2

11

ρ0
00 + 2ρ0

11

, (56)

which is familiar in form to Eq. (51).
Again, in terms of the helicity amplitudes, the dynamic

significance can be seen:

P̌Nf
=

∑
λv

{
Hi

3λv
H r

1λv
− Hr

3λv
H i

1λv
+ Hi

4λv
H r

2λv
− Hr

4λv
H i

2λv

}

= 1

2
〈H |�12ω1|H 〉, (57)

which is the same as that given by Ref. [9].

E. Beam-target double-polarization asymmetry

With the density matrix elements for the photon beams,
target nucleon, recoil nucleon, and vector meson, one can
proceed to the investigation of double polarizations in terms
of the vector meson density matrix elements.

We shall start with the beam-target double polarization, for
which experiments will soon be available at GRAAL [7] and
JLab [8]. Similar to the single polarizations, the vector meson
density matrix elements is related to the polarization status of
the photon and target nucleon. Namely, we have

ρ(V ) = Tρ(γ )ρ(Ni)T
†

= 1
4T (Iγ + σ · Pγ )(INi

+ σ · PNi
)T †

= 1
4T (Iγ INi

+ σ · Pγ INi
+ Iγ σ · PNi

+ σ · Pγ σ · PNi
)T †, (58)

where one can see that the double polarization only involves
the last term in the parentheses. This formula tell us that the
double polarization eventually provides access to the single
polarizations as well.

We introduce the indices α and β for the polarization status
of the photon beam and the target nucleon, respectively, and
express the B-T polarization as

W (cos θ, φ, ραβ ) = W 00(cos θ, φ, ρ00)

+
3∑

α=1

P α
γ Wα0(cos θ, φ, ρα0)

+
3∑

β=1

P
β

Ni
W 0β (cos θ, φ, ρ0β )

+
3∑

α,β=1

P α
γ P

β

Ni
Wαβ (cos θ, φ, ραβ ). (59)

We shall concentrate on the last term, where both the photon
and the target nucleon are polarized. The density matrix
elements thus can be expressed as

ρ
αβ

λvλ′
v
(V ) = 1

N

∑
λf λγ λ′

γ λiλ
′
i

Tλvλf ,λγ λi
ρα

λγ λ′
γ
(γ )ρβ

λiλ
′
i
(Ni)T

∗
λ′

vλf ,λ′
γ λ′

i
.

(60)

Given the polarization status of the photon and target nucleon,
one can derive the transition elements ρα

λγ λ′
γ
(γ ) and ρ

β

λiλ
′
i
(Ni)

in their spin space. For instance, for the polarization that the
photon is linearly polarized along the x axis (α = 1) and the
target nucleon is polarized along the y axis (β = 2), we have

ρ12
λvλ′

v
(V ) = i

4N

∑
λf λγ λi

λ̂iTλvλf ,−λγ −λi
Tλ′

vλf ,λγ λi
, (61)

where λ̂i denotes the sign of λi .
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The angular distribution again gives access to the exper-
imental measurement of the B-T asymmetry in terms of the
density matrix elements:

CγNi

xy = ρ12
00 + 2ρ12

11

ρ00
00 + 2ρ00

11

, (62)

which has the same form as other single polarizations; ρ00
00

and ρ00
11 denote the unpolarized density matrix elements and

ρ00
00 + 2ρ00

11 = 1 owing to the normalization. Undoubtedly, the
dynamic information is contained in the helicity products
selected by the polarization status, and again, the B-T

polarization experiment will pick up the double-polarization
asymmetry:

CγNi

xy = − i

2
{H ∗

11H3−1 + H ∗
21H4−1 − H ∗

31H1−1 − H ∗
41H2−1

+H ∗
1−1H31 + H ∗

2−1H41 − H ∗
3−1H11 − H ∗

4−1H21

−H ∗
10H30 − H ∗

20H40 + H ∗
30H10 + H ∗

40H20}
= −1

2

∑
a,b,λv,λ′

v

H ∗
aλv

�12
abω

A
λvλ′

v
Hbλ′

v
, (63)

which is the same as defined in Ref. [9] and �12
ab and ωA

λvλ′
v

are
4 × 4 and 3 × 3 Hermitian matrices, respectively.
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