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Possible resolutions of the D-puzzle
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We explore possible ways of explaining the net charge event-by-event fluctuations in Au+Au collisions
observed in experiments at the Relativistic Heavy Ion Collider within a quark recombination model. We estimate
the number of quarks at recombination and their implications for the predicted net charge fluctuations. We also
discuss the consequences of diquark and quark-antiquark clustering above the deconfinement temperature.
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Fluctuations of the net electric charge of all particles emitted
into a specified rapidity window have been proposed as a
possible signal for the formation of deconfined quark matter
in relativistic heavy ion collisions [1,2]. The argument at the
basis of this proposal is that charge fluctuations in a quark-
gluon plasma are expected to be significantly smaller (by a
factor 3–4) than in a hadronic gas. Because the net charge
contained in a given volume is locally conserved and can be
changed only by particle diffusion, thermal fluctuations gener-
ated within the deconfined phase could survive hadronization
and final-state interactions. Quantitative estimates of the
diffusion of net charge showed that the survival of these
fluctuations from an early stage of the collision requires a
moderately large rapidity window [3].

The most widely used measure for the entropy normalized
net charge fluctuations is the D measure [2]:

D = 4〈(�Q)2〉/Nch, (1)

where 〈(�Q)2〉 denotes the event-by-event net charge fluctu-
ation within a given rapidity window �y and Nch is the total
number of charged particles emitted in this window. For a free
plasma of quarks and gluons D ≈ 1, whereas for a free pion gas
D ≈ 4. For the comparison with experimental data a number
of corrections for acceptance and global charge conservation
must be applied to the expression for D [4]. The relation of
the D measure to other measures of net charge fluctuations has
been discussed by various authors [5–7].

Several experiments have measured net charge fluctuations
in heavy ion collisions at the CERN Super-Proton Synchrotron
(SPS) and at the Relativistic Heavy Ion Collider (RHIC) in
Brookhaven [8–11]. The results for D are generally somewhat
smaller than 4 but much larger than the value predicted for
a free quark-gluon gas. For example, the STAR collaboration
has measured D = 2.8 ± 0.05 in central Au+Au collisions
at

√
sNN = 130 GeV [8], before applying corrections for

global charge conservation and other effects [4]. The PHENIX
experiment measured net charge fluctuations in a limited
azimuthal acceptance window around midrapidity, which
extrapolate to a value D ≈ 3 [9]. These results are surprising,
because many other observables indicate that a deconfined
quark-gluon plasma is formed in these collisions.

Białas has argued that the measured values of D could be
compatible with the net charge fluctuations in a deconfined
quark phase, if hadronization proceeds according to simple
valence quark counting rules [12] and if gluons do not
play an active role in the hadronization. Indeed, hadron
abundances measured in relativistic heavy ion collisions at
the SPS and RHIC are well described by combinatorial
quark recombination models, such as ALCOR [13]. We here
pursue this idea further and explore various scenarios of
valence quark recombination to better understand how the
puzzle posed by the measured value of D can be resolved.
We also discuss the constraints on such a resolution from
the measured final-state entropy and the second law of
thermodynamics.

The recombination of thermalized valence quarks has
recently been proposed as the dominant mechanism for the
production of hadrons with transverse momenta of a few GeV/c
in Au+Au collisions at RHIC [14–19]. The RHIC data have
provided compelling evidence for this hadronization mecha-
nism. Valence quark recombination explains the enhancement
of baryon emission, compared with meson emission, in the
range of intermediate transverse momenta (roughly from
2 to 5 GeV/c), and it naturally describes the observed hadron
species dependence of the elliptic flow in the same momentum
region in terms of a universal elliptic flow curve for the
constituent quarks [14,17,18].

When one wants to describe hadronization by quark
recombination not only at intermediate momenta, but over the
entire hadron momentum range, except for very large momenta
where parton fragmentation is thought to dominate, entropy
becomes an important consideration. The naive application of
recombination can easily entail a violation of the second law of
thermodynamics, because the number of independent particles
decreases when valence quarks recombine into hadrons. Greco
et al. [15] have argued that this problem may be circumvented
by including the decay of hadronic resonances, such as the
ρ-meson, into the calculation of the entropy balance. We next
discuss the entropy problem in a more comprehensive manner
by considering the entropy content in realistic models of the
hadronic phase (the resonance gas model) and the quark phase
[lattice quantum chromodynamics (QCD) calculations].

The equilibrium entropy per particle is only a fixed
constant (3.60 for bosons, 4.20 for fermions) for free massless
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TABLE I. mPS/mV = 0.65 case. All calculations are performed
with Nt = 6. Statistical errors are shown only for s/sSB.

T/Tc ε/T 4 P/T 4 ε/εSB P/PSB s/sSB

0.92 8.03 0.88 0.489 0.172 0.413 ± 0.051
1.04 11.91 1.28 0.725 0.250 0.612 ± 0.043
1.30 13.67 2.75 0.833 0.536 0.762 ± 0.038
1.61 14.44 3.35 0.879 0.653 0.826 ± 0.038
2.00 12.93 3.96 0.787 0.772 0.784 ± 0.038

particles. For particle with mass, the entropy per particle
is a function of the particle mass m and the tempera-
ture T. For m/T > 3 a good approximation is S/N =
3.50 + m/T . The inclusion of mass is important, because
a large fraction of the hadrons created at the moment of
hadronization is quite heavy—the average hadron mass at
chemical freezeout is about 800 MeV/c2 in the absence
of medium induced modifications of the hadron masses
[20,21]. The average value of the entropy per hadron there-
fore significantly exceeds the canonical value (S/N )0 ≈ 4.
Including all known meson and baryon resonances, one
obtains 〈S/N〉 ≈ 7.58. This value has an uncertainty of about
±0.4 depending on the precise value of the hadronization
temperature Tc, the precise number of resonances included,
and how one treats the resonance widths.

An estimate of the final-state entropy per unit rapidity
produced in central

√
sNN = 130 GeV Au+Au collisions

has recently been derived from experimental data (hadron
yields, spectra, and source radii) by Pal and Pratt: dS/dy =
4450 ± 400 [22]. Using the measured charged multiplicity
of dNch/dy = 526 ± 2(stat) ± 36(syst) [8], this value can be
converted into an estimate of the final entropy per particle of
S/N ≈ (dS/dy)/(1.5dNch/dy) ≈ 5.64 ± 0.6, which is much
smaller than the equilibrium value for the full resonance gas
at chemical freeze-out. This is not surprising, because most
hadrons initially produced at Tc are short-lived and decay prior
to the measurement of the final-state multiplicity.

At the same time, the entropy content of the quark phase
is strongly reduced because of interactions near Tc. Recently,
the CP-PACS collaboration [23] and the Bielefeld group [24]
have calculated the pressure and energy density at finite
temperature and zero chemical potential on the lattice. To
extract physical quantities from lattice QCD calculations,
extrapolations (to the thermodynamic limit, continuum limit,
etc.) are mandatory. Because of a finer lattice spacing at a given
temperature, the CP-PACS simulation for Nt = 6 is closer to
the continuum limit and may be slightly better suited for the
purpose of extracting the entropy density near Tc than the
other calculations in Refs. [23,24]. However, we should keep
in mind that all lattice data for thermodynamic quantities are
still obtained with unphysically large quark masses.

We list the obtained values of ε/T 4, P/T 4, ε/εSB, P/PSB,
and s/sSB at mPS/mV = 0.65 and 0.80 below in Tables I and
II. ε, P , and s denote the energy density, pressure, and entropy
density, respectively, and εSB, PSB, and sSB, are their values for
the free gas of massless quarks and gluons on the lattice used in
the simulation. The statistical errors are shown only for s/sSB.
Obviously, the size of the systematic errors are still substantial.

TABLE II. Same as Table I except mPS/mV = 0.80.

T/Tc ε/T 4 P/T 4 ε/εSB P/PSB s/sSB

0.80 3.73 0.17 0.227 0.033 0.181 ± 0.054
0.89 1.91 0.26 0.116 0.061 0.101 ± 0.041
1.12 12.08 1.62 0.736 0.316 0.636 ± 0.044
1.38 11.98 2.66 0.730 0.519 0.679 ± 0.042
1.67 11.80 3.54 0.719 0.690 0.712 ± 0.039

However, at the same time, it is obvious that the entropy density
of the quark-gluon plasma is considerably suppressed with
respect to the corresponding Stefan-Boltzmann (SB) value
near Tc.

On the basis of these results we conclude that:

(1) The entropy per particle in the hadronic gas, and
therefore the entropy content of the hadronic phase at chemical
freeze-out, is considerably larger than often assumed.

(2) The entropy density of the quark phase is significantly
suppressed near Tc, most likely because of correlations among
the quasiparticles caused by their strong interactions.

These two conclusions make the recombination picture of
hadronization more compatible with the entropy constraint. If
the quark-gluon plasma at hadronization consists of strongly
interacting quasiparticles (e.g., constituent quarks) with strong
correlations, and if many of the hadrons created at hadroniza-
tion are heavy, quark recombination and the concomitant
particle number decrease could be reconciled with the second
law of thermodynamics.

At present, however, we cannot directly compare the
entropy content of both phases, because the volume at
hadronization is not unambiguously known. Besides, lattice
calculations do not tell us the number of (quasi-)particles,
because there is no lattice definition of particle density.
Therefore, a more detailed comparison of the entropy content
of the hadronic phase and the quark phase at hadronization
remains as a problem for future investigations. However, the
second law of thermodynamics gives us a rough estimate of
the maximum hadronization time τc/c. The entropy density in
the quark phase is given by the following:

sQ = sQ

sSB

∣∣∣∣
T/Tc=1.04

× sSB T 3

= 0.612 × 21.53 T 3, (2)

where the value of sQ/sSB is taken from Table I. At T =
Tc = 170 MeV, the entropy density of the quark phase is
sQ = 8.4 fm−3. Using the entropy estimate by Pal and Pratt,
dSH /dy = 4450, the volume per unit rapidity of the hadron
phase is dVH /dy = (dSH /dy)/sQ = 528 fm3. In the quark
phase the volume per unit rapidity is given by dVQ/dy =
πR2τc, assuming a boost-invariant longitudinal expansion,
where R ≈ 7 fm is the transverse radius in Au+Au collisions.
From the second law of thermodynamics, dVQ/dy � dVH /dy,
we obtain the maximum value of the hadronization time, τc =
3.4 fm/c under the assumption of entropy conservation (SQ =
SH ) during hadronization. If there is an entropy difference
between the hadronic phase and the quark phase because of
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viscous processes, heat conduction, and so on, or if hadroniza-
tion occurs gradually, the system will have to hadronize earlier.

We now return to the calculation of net charge fluctuations
in a bulk recombination scenario. The fluctuations of the net
charge Q = ∑

i qini are given by (the sum runs over quarks
and antiquarks) the following:

〈δQ2〉 ≡ 〈Q2〉 − 〈Q〉2

=
∑

i

(qi)
2〈ni〉 +

∑

i,k

c
(2)
ik 〈ni〉〈nk〉qiqk, (3)

where c
(2)
ik are the normalized two-particle correlation func-

tions as follows:

c
(2)
ii = 〈ni(ni − 1)〉

〈ni〉2
− 1; (4)

c
(2)
ik = 〈nink〉

〈ni〉〈nk〉 − 1

= 〈(ni − 〈ni〉)(nk − 〈nk〉)〉
〈ni〉〈nk〉 (i �= k). (5)

The last expression in Eq. (5) shows that c
(2)
ik is positive if

there is a positive correlation between the quarks of flavors i
and k. In the absence of two-particle correlations, Eq. (3) can
be rewritten as follows:

〈δQ2〉 = 4

9
(Nu + Nū) + 1

9
(Nd + Nd̄ + Ns + Ns̄), (6)

where Ni = 〈ni〉 denotes the average number of constituent
quarks of flavor i.

Our strategy is now as follows: Knowing the number of
final-state charged hadrons within a given rapidity interval,
dNch/dy, we can extrapolate by means of the statistical
hadronization model [20,21] to the thermal abundances of
hadrons produced at the critical temperature Tc. We can then
determine the total number and flavor distribution of valence
quarks contained in these hadrons. Assuming valence quark
recombination, using Eq. (6), and neglecting correlations,
we can then calculate the expected net charge fluctuation at
hadronization. The prediction for 〈δQ2〉 derived in this way
can then be compared with the measured value of this quantity.

We estimate the number of constituent quarks at the moment
of recombination by starting from the value dS/dy ≈ 4450
derived by Pal and Pratt. Assuming that entropy remains
conserved during the expansion of the hadronic gas phase and
using the calculated value of the entropy per hadron (S/N =
7.58) for a resonance gas at Tc, we obtain an estimate for the
number of hadrons at hadronization: dNhad/dy = 587 ± 53.
These 587 hadrons contain a total of 1300 ± 120 quarks and
antiquarks. Applying Eq. (6), this yields the following estimate
for the net charge fluctuations from quark recombination:

d〈δQ2〉q/dy = 331 ± 27. (7)

The measured value of the hadronic net charge fluctuation is
as follows [8]:

d〈δQ2〉had/dy = 1

4
D × dNch/dy

= 1

4
× (2.8 ± 0.05) × (526 ± 2 ± 36)

= 368 ± 33 . (8)

We note that the errors in Eqs. (7) and (8) are correlated because
they derive, in large part, from the same uncertainty in the
measured value of the charged particle multiplicity.

Considering the systematic uncertainties inherent in the
estimate (7), we conclude that the observed magnitude of
the net charge fluctuations in Au+Au collisions at RHIC is
compatible with the mechanism of bulk hadronization via
recombination of valence quarks in the absence of significant
net charge correlations among the quarks. One could turn
the argument around and ask which value of S/N at Tc,
combined with the Pal-Pratt estimate of the final entropy,
would reproduce the measured charge fluctuations. The answer
is S/N = 6.82. Including the theoretical uncertainty of S/N

and the experimental error in dNch/dy, this is within one
standard deviation from the best value. Clearly, a more detailed
estimate of the possible production of entropy in the hadronic
phase would be desirable to better constrain the analysis.
Another source of uncertainty in our analysis is the possibility
that the net-charge fluctuations increase modestly during the
hadronic phase owing to diffusion [3].

Because the difference between the value (7) obtained by
quark recombination and the measured value [Eq. (8)] may
survive improvements in theory and experiment, it makes sense
to discuss a modified variant of the recombination process.
Recently, quenched lattice QCD calculations have shown
evidence for the existence of mesonic bound state correlations
even above the critical temperature [25–28]. Brown et al.
argued within an effective field theory that bound states of
charmed quark mesons, light quark mesons, and gluons exist
above Tc [29]. These findings suggest that qq and qq̄ pairs
may participate in hadronization mechanism as “elementary”
constituents, just like individual quarks and antiquarks. To
explore such a scenario, we modified Eq. (3) as follows:

〈δQ2〉 =
∑

i

(qi)
2(Ni + Nī)

+
∑

ij

(qi + qj )2〈nij 〉 +
∑

ij

(qi − qj )2〈n̄ij 〉, (9)

where nij and n̄ij are the number of qq and q̄q̄ pairs (diquarks)
and qq̄ pairs, respectively. For simplicity, we assume that the
average number of diquarks and qq̄ pairs is proportional to the
products of the individual quark numbers: 〈nij 〉 = α(NiNj +
NīNj̄ ); 〈n̄ij 〉 = βNiNj̄ , where α and β are the relative pairing
weights. We have again neglected the correlation terms.

The first term in Eq. (9) yields Eq. (6). The second term,
which denotes the contribution from diquarks, is given by the
following:

∑

ij

(qi + qj )2〈nij 〉

= 16

9
αNuNu + 4

9
α(NdNd + NsNs + NdNs)

+ 1

9
α(NuNd + NuNs) + (q → q̄), (10)
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FIG. 1. (a) Relation between the weight of
the contributions from diquarks and qq̄ pairs
in the recombination process. The solid line
corresponds to a fixed total number of quarks
and antiquarks of 1302. The gray band represents
the systematic uncertainty stemming from the
measured value of the charged particle multiplic-
ity. (b) Relation between the sum of individual
quarks and antiquarks that contribute to the first
term of Eq. (9) (nq , in parenthesis) and the
number of diquarks or qq̄ pairs participating in
the recombination process.

whereas the third term, denoting the contribution from quark-
antiquark pairs, is as follows:

∑

ij

(qi − qj )2〈n̄ij 〉

= β (NdNū + NsNū + NuNd̄ + NuNs̄). (11)

We can now constrain the parameters α and β using the
experimental value of 〈δQ2〉. The total number of quarks and
antiquarks on the right-hand side of Eq. (9) is constrained to
be the same as that obtained from the statistical model.

Figure 1(a) shows the relation between the weights of
qq and qq̄ pairs. This calculation is done in the simplest
case (Nu = Nū = Nd = Nd̄,Ns = Ns̄). The important point
is the existence of the region where both α and β are
positive, which confirms the possibility of a contribution
from diquarks and qq̄ pairs in the hadronization mechanism.
Diquark pairs are more favored than qq̄ pairs in the sense that
a solution with β = 0 is possible, but one with α = 0 is not.
In fact, the value of β is not well constrained by the charge
fluctuations, because of the difference between the charge of qq
and qq̄ in Eqs. (10) and (11). For example, in the simplest
case,

∑
ij (qi + qj )2〈nij 〉 ∼ 42

9 αN2
u and

∑
ij (qi − qj )2〈n̄ij 〉 ∼

2βN2
u , which implies that diquarks are favored by a factor

of about 2. Perturbative QCD suggests that the qq̄ channel is
more attractive than the qq channel, implying α < β in Eq. (9).
However, because the lattice results indicate that hadronization
occurs via strong interactions between plasma quasiparticles,
it is not clear that this perturbative argument is applicable.

To clarify the relative numbers of diquarks, quark-antiquark
pairs, and individual (anti-)quarks participating in the re-
combination process, we plot the relation among

∑
i(Ni +

Nī) for quarks and antiquarks,
∑

ij 〈nij 〉 for diquarks, and

∑
ij 〈n̄ij 〉 for quark-antiquark pairs in Fig. 1(b). For example

on the horizontal axis of Fig. 1(b), we have
∑

i(Ni + Nī) =
826,

∑
ij 〈nij 〉 = 237, and

∑
ij 〈n̄ij 〉 = 1, showing that diquark

clustering dominates. The numbers of quarks and antiquarks
decrease linearly as those of diquarks and quark-antiquark
pairs increase along the solid line, respectively. However,
in this case with a few quarks and antiquarks, hadrons
are predominantly created from diquark or quark-antiquark
clusters, which is difficult to reconcile with the elliptic flow
data from RHIC [30,31], because that data strongly suggests a
constituent quark counting rule [14,15,18].

In summary, we have investigated charged particle fluctu-
ations at RHIC in the framework of the parton recombination
model of hadronization and find that within the present
systematic uncertainties parton recombination is compatible
with the measured charged-particle fluctuations. We find
that the behavior of the entropy density for an interacting
deconfined system close to Tc and the entropy per particle for
the massive resonance gas support the recombination picture.
Finally, we have investigated the possibility of bound state
correlations above Tc and find them consistent with the parton
recombination approach as well, albeit constrained by the
valence quark number scaling observed in the data.
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