Number of spin *I* **states of identical particles**

Y. M. Zhao^{1,2,3,4,*} and A. Arima⁵

¹*Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China*

²*Cyclotron Center, Institute of Physical Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan*

³*Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000, China*

⁴*Department of Physics, Southeast University, Nanjing 210018, China*

⁵*Science Museum, Japan Science Foundation, 2-1 Kitanomaru-koen, Chiyodaku, Tokyo 102-0091, Japan*

(Received 27 January 2005; published 18 April 2005)

In this article we study the enumeration of number (denoted as D_I) of spin *I* states for fermions in a single-*j* shell and bosons with spin *l*. We show that D_I can be enumerated by the reduction from SU($n + 1$) to SO(3). New regularities of D_I are discerned. As an example of our new algorithm, we obtained analytical expressions of D_I for four particles.

DOI: 10.1103/PhysRevC.71.047304 PACS number(s): 05.30.Fk, 05.45.−a, 21.60.Cs, 24.60.Lz

The enumeration of number of spin *I* states (denoted as D_I) for fermions in a single-*j* shell or bosons with spin *l* (we use a convention that j is a half integer and l is an integer) is a very common practice in nuclear structure theory. One usually obtains this number by subtracting the combinatorial number of angular momentum projection $M = I + 1$ from that with $M = I$ [1]. More specifically, D_I equals the combinatorial number of $M = I$ subtracted by that of $M = I + 1$, where $M = m_1 + m_2 + \cdots + m_n$, with the requirement that $m_1 \ge m_2 \ge \cdots \ge m_n$ for bosons and $m_1 > m_2 > \cdots > m_n$ for fermions, where *n* is the number of particles. (This procedure is called process A in this article.) The combinatorial numbers of different *M*'s look irregular, and such an enumeration would be prohibitively tedious when *j* and *l* are very large. The number of states of a few nucleons in a single-*j*shell is usually tabulated in textbooks, for sake of convenience.

Another well-known solution was given by Racah [2] in terms of the seniority scheme, where one has to introduce (usually by computer choice) additional quantum numbers. More than one decade ago, a third route was studied by Katriel *et al*. [3] and Sunko *et al*. [4], who constructed generating functions of the number of states for fermions in a single-*j* shell or bosons with spin *l*.

There were two efforts in constructing analytical formulas of D_I . In Ref. [5], $D₀$ for $n = 4$ was obtained analytically. In Ref. [6], D_I was constructed empirically for $n = 3$ and 4, and some D_I 's for $n = 5$. It is therefore desirable to obtain a deeper insight into this difficult problem.

Equivalent to process A, we propose here another procedure, called process B and explained as follows. Let $\mathcal{P}(n, I_0)$ be the number of partitions of $I_0 = i_1 + i_2 + \cdots$ $\cdots i_n$, with $0 \le i_1 \le i_2 \le \cdots \le i_n \le 2j + 1 - n$ for fermions or $0 \le i_1 \le i_2 \le \cdots \le i_n \le 2l$ for bosons. Here $I_{\text{max}} = nj [n(n-1)]/2$ for fermions in a single-*j* shell, and $I_{\text{max}} = nl$ for bosons with spin *l*. One defines $P(n, 0) = D_{I=Im} = 1$ for *I*₀ = 0. Then one has $D_{I=I_{\text{max}}-I_0} = \mathcal{P}(n, I_0) - \mathcal{P}(n, I_0 - 1)$.

Now we look at D_l for \bar{n} "bosons" of spin $L = n/2$, with $\bar{n} = 2l$ for bosons or $\bar{n} = 2j + 1 - n$ for fermions.

 I_{max} of these \bar{n} "bosons" with spin *L* equals that of *n* bosons with spin *l* or that of *n* fermions in a single-*j* shell. Furthermore, $P(n, I_0)$ of $I_0 = i_1 + i_2 + \cdots + i_n$ with the requirement $0 \le i_1 \le i_2 \le \cdots \le i_{\bar{n}} \le 2L = n$, always equals that of $I_0 = i_1 + i_2 + \cdots + i_n$ with the requirement that $0 \le i_1 \le i_2 \le \cdots \le i_n \le 2j + 1 - n$ for *n* fermions or $0 \le i_1 \le i_2 \le \cdots \le i_n \le 2l$ for *n* bosons. This result can be explained from the fact as follows. The $P(n, I_0)$ of \bar{n} "bosons" with spin *L* corresponds to Young diagrams up to *n* rows, and 2*l* columns for bosons or $2j + 1 - n$ columns for fermions. The conjugates of these Young diagrams are those up to 2*l* rows for bosons or $2j + 1 - n$ rows for fermions, and up to *n* columns, which correspond to partitions in process B for *n* fermions in a single-*j* shell or bosons with spin *l*. Therefore, process B for \bar{n} bosons with spin $L = n/2$ provides us with an alternative to construct D_l for *n* bosons with spin *l* or *n* fermions in a single-*j* shell.

This alternative (process B for \bar{n} bosons with spin *L*) suggests the following identity. If $l = (2j + 1 - n)/2$ (*n* is even), i.e., *I*max of bosons equals that of fermions, then D_I for bosons equals that of fermions. This identity can be easily confirmed. It means that one can obtain D_I of *n* fermions in a single-*j* shell by using that of *n* bosons with spin $l = (2j + 1 - n)/2$, or vice versa.

Process B for \bar{n} bosons with spin $L = n/2$ is also useful in constructing formulas of D_I . One can see this point from the fact that process B involves $SU(n + 1)$ symmetry, which is *independent* of *j* and *l*, while in process A different *j* shell for fermions and spin *l* for bosons involve different symmetries $[SU(2j + 1)$ and $SU(2l + 1)]$.

Below we exemplify our idea by $n = 4$. The relevant symmetry for process B of \bar{n} bosons with spin *L* is SU(5) (i.e., $L = n/2 = 2$, *d* bosons). \bar{n} equals 2*l* and 2*j* − 3, for four bosons and four fermions, respectively.

Our first result is that D_l of four bosons with spin l always equals that of four fermions in a single *j* shell when $l = (2j - 3)/2$. Our second result is that we can derive *DI* of four bosons with spin *l* by this new method. Here one needs D_l of *d* bosons with $\bar{n} = 2l$. This problem was studied in the interacting boson model, suggested by Arima and Iachello [7] in the 1970's. Below we revisit

[∗]Electronic address: ymzhao@sjtu.edu.cn

the enumeration of D_I for d bosons with particle number $\bar{n}=2l$.

Let us follow the notation of Ref. [7] and define $\bar{n} =$ $2l = 2v + v = 2v + 3n_{\delta} + \lambda$. *D_I* of \bar{n} *d* bosons is enumerated via the procedure as follows: (1) *v* takes the value $2l$, $2l$ − 2*,* $2l - 4, \ldots, 0$, which corresponds to $\nu = 0, 1, 2, \ldots, n/2 = 1$ *l*, respectively. (2) For each value of v, n_{Δ} takes value from 0 to $\left[\frac{v}{3}\right]$. (3) For each set of *v* and n_{Δ} , λ is determined by $v - 3n_{\Delta}$. (4) For each λ obtained in step (3), the allowed spin is given by λ , λ + 1, λ + 2, ..., 2λ – 3, 2λ – 2, 2λ . Note that there is no state with $2\lambda - 1$. One easily sees that there is no *I* = 1 states for *d* bosons, because $\lambda = 1$ presents *I* = 2 state $(2\lambda - 1)$ is missing).

In order to obtain D_I , it is necessary to know the number of *λ* appearing in the above process for each *I*. Let us call this number f_{λ} and define $\bar{n} = 2l = 6k + \kappa, \kappa = 0, 2, 4$, and $k \geq 1$. Below we exemplify how we obtain f_{λ} by the case of $\kappa = 0$. We have the following hierarchy:

λ	f_{λ}	v
0	$k + 1$	$0, 6, 12, ..., 6k$
1	k	$4, 10, 16, ..., 6k - 2$
2	k	$2, 8, 14, ..., 6k - 4$
3	k	$6, 12, 18, ..., 6k - 2$
5	$k - 1$	$8, 14, 20, ..., 6k - 4$
6	k	$6, 12, 18, ..., 6k$
7	$k - 1$	$10, 16, 22, ..., 6k - 2$
8	$k - 1$	$8, 14, 20, ..., 6k - 4$
9	$k - 1$	$12, 18, 24, ..., 6k$
10	$k - 1$	$12, 18, 24, ..., 6k - 2$
11	$k - 2$	$14, 20, 26, ..., 6k - 4$
12	$k - 1$	$12, 18, 24, ..., 6k$
13	$k - 2$	$14, 20,$

From this tabulation we have $f_{\lambda} = k + \delta_{m0} - \delta_{m5} - [\frac{\lambda}{6}],$ where *m* is equal to λ mod 6 when $\kappa = 0$, and [] means to take the largest integer not exceeding the value inside.

For the sake of simplicity we define $I = 2I_0$ for even values of *I* and $I = 2I_0 + 3$ for odd values of *I*. For $I_0 \le l$,

$$
D_{I=2I_0} = \sum_{\lambda=I_0}^{2I_0} f_{\lambda}.
$$
 (1)

For
$$
\kappa = 0
$$
 and $I_0 \le l$ ($I = 2I_0 \le 2l$),
\n
$$
D_{I=2I_0} = (I_0 + 1)k - (9K^2 - K + 3KK + (2K - 5)\theta(2K - 5)) + \delta_{K0},
$$
\n(2)

where $K = [\frac{l_0}{6}], K = (I_0 \text{ mod } 6). \theta(x) = 1 \text{ if } x > 0 \text{ and zero}$ otherwise. One can repeat the same procedure for $\kappa = 2$ and 4. We list these results as below.

For $\kappa = 2$ and $I_0 \leq l$,

$$
D_{I=2I_0} = (I_0 + 1)k - (9K^2 - K + 3KK + (2K - 5)
$$

$$
\times \theta(2K - 5) + \left[\frac{I_0 + 3}{6}\right] + \left[\frac{I_0 + 5}{6}\right] + \delta_{K0} - \delta_{K3}.
$$

(3)

For $\kappa = 4$ and $I_0 \le l$,

$$
D_{I=2I_0} = (I_0 + 1)(k + 1) - (9K^2 - K + 3KK + (2K - 5)
$$

$$
\times \theta(2K - 5)) - \left[\frac{I_0 + 3}{6}\right] - \left[\frac{I_0 + 4}{6}\right] + \delta_{K4}.
$$
 (4)

For *I* is odd and $I \le 2l$, we use a relation $D_{I=2I_0}$ – $D_{I=2I_0+3} = \left[\frac{I_0}{2}\right] + 1$. This relation was obtained empirically in Ref. [6] and can be obtained mathematically by calculating

$$
D_{I=2I_0+3} = \sum_{\lambda=I_0+3}^{2I_0+3} f_{\lambda}
$$

and comparing with $D_{I=2I_0}$.

For the case with $I \ge 2l$, we define $I = I_{\text{max}} - 2I_0$ for even *I* and *I* = *I*_{max} – 2*I*₀ – 3 for odd *I*. $f_{\lambda=I_0} = \left[\frac{I_0}{6}\right] - \delta_{(I_0 \text{ mod } 6),0}$. We obtain

$$
D_{I_{\max}-2I_0} = D_{I_{\max}-2I_0-3}
$$

= $3\left[\frac{I_0}{6}\right] \left(\left[\frac{I_0}{6}\right]+1\right) - \left[\frac{I_0}{6}\right] + \left(\left[\frac{I_0}{6}\right]+1\right)$
× $((I_0 \mod 6)+1) + \delta_{(I_0 \mod 6),0} - 1.$ (5)

Thus we solve the problem of enumeration of D_I for four bosons with spin *l* or four fermions in a single-*j* shell by using the new enumeration procedure. One may obtain D_I of other *n* (*n* is even) cases by applying this method similarly, if the reduction rule of $SU(n + 1) \rightarrow SO(3)$ is available.

A question arises when we apply this method to odd *n* cases, for which spin L of \bar{n} bosons involved in process B is not an integer $(L = n/2)$. These bosons are therefore not "realistic." For such cases *I* of *n* bosons with spin *l* cannot equal that of *n* fermions in a single-*j* shell. Namely, there is no similar correspondence of D_I between bosons and fermions when *n* is odd [8]. However, D_I of \bar{n} fictitious bosons with spin $n/2$ (*n* is odd) obtained by process A *equals* that of *n* bosons with spin *l* or that of *n* fermions in a single-*j* shell, where $\bar{n} = 2l$ (even value) and $2j + 1 - n$ (odd value) for bosons and fermions, respectively. In other words, D_I of \bar{n} fictitious bosons with spin $n/2$ equals that of *n* bosons with spin *l* if $\bar{n} = 2l$ or that of *n* fermions in a single-*j* shell if $\bar{n} = 2j + 1 - n$, here *n* is odd. Further discussion is warranted on this problem.

To summarize, We have presented in this article an alternative to enumerate the number of spin I states, D_I , for n fermions in a single-*j* shell or *n* bosons with spin *l*. We proved that D_l of *n* bosons with spin *l* equals that of *n* fermions in a single-*j* shell when $2l = 2j + 1 - n$, where *n* is even. We have also exemplified the usefulness of this new method in constructing analytical formulas of D_I by $n = 4$.

For odd *n*, the procedure of our new method involves half integer spin *L* for "bosons." Further consideration of this fictitious situation is necessary.

Finally, it might be helpful to compare the present formulas with earlier results of Refs. [5,6]. According to our discussion of the $n = 4$ case, D_I for $n = 4$ equals that of *d* bosons with $\bar{n} = 2l = 2j + 1 - n = 2j - 3$. $I_0 = K = \mathcal{K} =$ 0 in Eqs. (2)–(4). In such cases these formulas can be readily reduced to

$$
D_{I=0} = k + 1 = \left[\frac{\bar{n}}{6}\right] + 1 = \left[\frac{2j - 3}{6}\right] + 1 = \left[\frac{2j + 3}{6}\right].
$$

This is identical to the expression in Ref. [5]. Equations (2)–(4) are also consistent with those in Ref. [6]. The enumeration of

- [1] For example, R. D. Lawson, *Theory of Nuclear Shell Model* (Clarendon, Oxford, 1980), pp. 8–20.
- [2] G. Racah, Phys. Rev. **63**, 367 (1943); A. de-Shalit and I. Talmi, *Nuclear Shell Model Theory* (Academic, New York, 1963).
- [3] J. Katriel, R. Pauncz, and J. J. C. Mulder, Int. J. Quantum Chem. **23**, 1855 (1983); J. Katriel and A. Novoselsky, J. Phys. A **22**, 1245 (1989).
- [4] D. K. Sunko and D. Svrtan, Phys. Rev. C **31**, 1929 (1985); D. K. Sunko, *ibid.* **33**, 1811 (1986); **35**, 1936 (1987).

d boson states in Ref. [7] and process B suggested in this article provide a microscopic foundation of Table I in Ref. [6], i.e., the staggering of D_I for $n = 4$. For $I \ge 2l$, D_I in this article is identical to that of Ref. [6]; for $I \le 2l$, D_I obtained here always equals that of Ref. [6], although they seem different.

Note added in proof: After this paper was accepted, Dr. Igal Talmi informed us of his mathematical proof of Eq. (2) in Ref. [6], where the case with $n = 3$ and $I \ge j$ was empirically obtained. The case with $n = 3$ and $I = j$ was also discussed in a recent preprint, nucl-th*/*0502062, by Drs. L. Zamick and A. Escuderos. The number of states with arbitrary spin *I* for $n = 3$ can be analytically obtained by studying fictitious bosons with spin 3/2 and applying the new recipe presented in this paper.

We would like to thank Professors K. T. Hecht and I. Talmi for their reading and constructive comments of this manuscript.

- [5] J. N. Ginocchio and W. C. Haxton, *Symmetries in Science VI*, edited by B. Gruber and M. Ramek (Plenum, New York, 1993), p. 263.
- [6] Y. M. Zhao and A. Arima, Phys. Rev. C **68**, 044310 (2003).
- [7] F. Iachello and A. Arima, *The Interacting Boson Model* (Cambridge University Press, Cambridge, England, 1987), p. 38.
- [8] A correspondence of D_I was noted in Sec. II of Ref. [6] for large-*I* cases.