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Number of spin I states of identical particles
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In this article we study the enumeration of number (denoted as DI ) of spin I states for fermions in a single-j
shell and bosons with spin l. We show that DI can be enumerated by the reduction from SU(n + 1) to SO(3).
New regularities of DI are discerned. As an example of our new algorithm, we obtained analytical expressions
of DI for four particles.
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The enumeration of number of spin I states (denoted as
DI ) for fermions in a single-j shell or bosons with spin l (we
use a convention that j is a half integer and l is an integer)
is a very common practice in nuclear structure theory. One
usually obtains this number by subtracting the combinatorial
number of angular momentum projection M = I + 1 from
that with M = I [1]. More specifically, DI equals the combi-
natorial number of M = I subtracted by that of M = I + 1,
where M = m1 + m2 + · · · + mn, with the requirement that
m1 � m2 � · · · � mn for bosons and m1 > m2 > · · · > mn for
fermions, where n is the number of particles. (This procedure is
called process A in this article.) The combinatorial numbers of
different M’s look irregular, and such an enumeration would be
prohibitively tedious when j and l are very large. The number
of states of a few nucleons in a single-j shell is usually tabulated
in textbooks, for sake of convenience.

Another well-known solution was given by Racah [2] in
terms of the seniority scheme, where one has to introduce
(usually by computer choice) additional quantum numbers.
More than one decade ago, a third route was studied by Katriel
et al. [3] and Sunko et al. [4], who constructed generating
functions of the number of states for fermions in a single-j
shell or bosons with spin l.

There were two efforts in constructing analytical formulas
of DI . In Ref. [5], D0 for n = 4 was obtained analytically. In
Ref. [6], DI was constructed empirically for n = 3 and 4, and
some DI ’s for n = 5. It is therefore desirable to obtain a deeper
insight into this difficult problem.

Equivalent to process A, we propose here another pro-
cedure, called process B and explained as follows. Let
P(n, I0) be the number of partitions of I0 = i1 + i2 +
· · · in, with 0 � i1 � i2 � · · · � in � 2j + 1 − n for fermions
or 0 � i1 � i2 � · · · � in � 2l for bosons. Here Imax = nj −
[n(n − 1)]/2 for fermions in a single-j shell, and Imax = nl

for bosons with spin l. One defines P(n, 0) = DI=Imax = 1 for
I0 = 0. Then one has DI=Imax−I0 = P(n, I0) − P(n, I0 − 1).

Now we look at DI for n̄ “bosons” of spin L = n/2,
with n̄ = 2l for bosons or n̄ = 2j + 1 − n for fermions.
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Imax of these n̄ “bosons” with spin L equals that of
n bosons with spin l or that of n fermions in a
single-j shell. Furthermore, P(n, I0) of I0 = i1 + i2 + · · · in̄
with the requirement 0 � i1 � i2 � · · · � in̄ � 2L = n, always
equals that of I0 = i1 + i2 + · · · in with the requirement
that 0 � i1 � i2 � · · · � in � 2j + 1 − n for n fermions or
0 � i1 � i2 � · · · � in � 2l for n bosons. This result can be
explained from the fact as follows. The P(n, I0) of n̄ “bosons”
with spin L corresponds to Young diagrams up to n rows, and
2l columns for bosons or 2j + 1 − n columns for fermions.
The conjugates of these Young diagrams are those up to 2l

rows for bosons or 2j + 1 − n rows for fermions, and up to
n columns, which correspond to partitions in process B for n
fermions in a single-j shell or bosons with spin l. Therefore,
process B for n̄ bosons with spin L = n/2 provides us with
an alternative to construct DI for n bosons with spin l or n
fermions in a single-j shell.

This alternative (process B for n̄ bosons with spin L)
suggests the following identity. If l = (2j + 1 − n)/2 (n is
even), i.e., Imax of bosons equals that of fermions, then
DI for bosons equals that of fermions. This identity can
be easily confirmed. It means that one can obtain DI of n
fermions in a single-j shell by using that of n bosons with spin
l = (2j + 1 − n)/2, or vice versa.

Process B for n̄ bosons with spin L = n/2 is also useful
in constructing formulas of DI . One can see this point from
the fact that process B involves SU(n + 1) symmetry, which is
independent of j and l, while in process A different j shell for
fermions and spin l for bosons involve different symmetries
[SU(2j + 1) and SU(2l + 1)].

Below we exemplify our idea by n = 4. The relevant
symmetry for process B of n̄ bosons with spin L is SU(5)
(i.e., L = n/2 = 2, d bosons). n̄ equals 2l and 2j − 3, for
four bosons and four fermions, respectively.

Our first result is that DI of four bosons with spin l
always equals that of four fermions in a single j shell when
l = (2j − 3)/2. Our second result is that we can derive
DI of four bosons with spin l by this new method. Here
one needs DI of d bosons with n̄ = 2l. This problem
was studied in the interacting boson model, suggested by
Arima and Iachello [7] in the 1970’s. Below we revisit
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the enumeration of DI for d bosons with particle number
n̄ = 2l.

Let us follow the notation of Ref. [7] and define n̄ =
2l = 2ν + v = 2ν + 3nδ + λ. DI of n̄ d bosons is enumerated
via the procedure as follows: (1) v takes the value 2l, 2l −
2, 2l − 4, . . . , 0, which corresponds to ν = 0, 1, 2, . . . , n/2 =
l, respectively. (2) For each value of v, n� takes value from
0 to [ v

3 ]. (3) For each set of v and n�, λ is determined by
v − 3n�. (4) For each λ obtained in step (3), the allowed spin
is given by λ, λ + 1, λ + 2, . . . , 2λ − 3, 2λ − 2, 2λ. Note that
there is no state with 2λ − 1. One easily sees that there is no
I = 1 states for d bosons, because λ = 1 presents I = 2 state
(2λ − 1 is missing).

In order to obtain DI , it is necessary to know the number
of λ appearing in the above process for each I. Let us call
this number fλ and define n̄ = 2l = 6k + κ, κ = 0, 2, 4, and
k � 1. Below we exemplify how we obtain fλ by the case of
κ = 0. We have the following hierarchy:

λ fλ v

0 k + 1 0, 6, 12, . . . , 6k

1 k 4, 10, 16, . . . , 6k − 2

2 k 2, 8, 14, . . . , 6k − 4

3 k 6, 12, 18, . . . , 6k

4 k 4, 10, 16, . . . , 6k − 2

5 k − 1 8, 14, 20, . . . , 6k − 4

6 k 6, 12, 18, . . . , 6k

7 k − 1 10, 16, 22, . . . , 6k − 2

8 k − 1 8, 14, 20, . . . , 6k − 4

9 k − 1 12, 18, 24, . . . , 6k

10 k − 1 10, 16, 22, . . . , 6k − 2

11 k − 2 14, 20, 26, . . . , 6k − 4

12 k − 1 12, 18, 24, . . . , 6k

13 k − 2 16, 22, 28, . . . , 6k − 2

14 k − 2 14, 20, 26, . . . , 6k − 4

15 k − 2 18, 24, 30, . . . , 6k

16 k − 2 16, 22, 28, . . . , 6k − 2

17 k − 3 20, 26, 32, . . . , 6k − 4
...

...
... .

From this tabulation we have fλ = k + δm0 − δm5 − [ λ
6 ],

where m is equal to λ mod 6 when κ = 0, and [ ] means to
take the largest integer not exceeding the value inside.

For the sake of simplicity we define I = 2I0 for even values
of I and I = 2I0 + 3 for odd values of I. For I0 � l,

DI = 2I0 =
2I0∑

λ = I0

fλ. (1)

For κ = 0 and I0 � l (I = 2I0 � 2l),

DI=2I0 = (I0 + 1)k − (9K2 − K + 3KK
+ (2K − 5)θ (2K − 5)) + δK0, (2)

where K = [ I0
6 ],K = (I0 mod 6). θ (x) = 1 if x > 0 and zero

otherwise. One can repeat the same procedure for κ = 2 and
4. We list these results as below.

For κ = 2 and I0 � l,

DI=2I0 = (I0 + 1)k − (9K2 − K + 3KK + (2K − 5)

× θ (2K − 5)) +
[
I0 + 3

6

]
+

[
I0 + 5

6

]
+ δK0 − δK3.

(3)

For κ = 4 and I0 � l,

DI=2I0 = (I0 + 1)(k + 1) − (9K2 − K + 3KK + (2K − 5)

× θ (2K − 5)) −
[
I0 + 3

6

]
−

[
I0 + 4

6

]
+ δK4. (4)

For I is odd and I � 2l, we use a relation DI=2I0 −
DI=2I0+3 = [ I0

2 ] + 1. This relation was obtained empirically
in Ref. [6] and can be obtained mathematically by calculating

DI = 2I0+3 =
2I0+3∑

λ = I0+3

fλ

and comparing with DI=2I0 .
For the case with I � 2l, we define I = Imax − 2I0 for even

I and I = Imax − 2I0 − 3 for odd I. fλ=I0 = [ I0
6 ] − δ(I0 mod 6),0.

We obtain

DImax−2I0 = DImax−2I0−3

= 3

[
I0

6

]([
I0

6

]
+ 1

)
−

[
I0

6

]
+

( [
I0

6

]
+ 1

)

× ((I0 mod 6) + 1) + δ(I0 mod 6),0 − 1. (5)

Thus we solve the problem of enumeration of DI for four
bosons with spin l or four fermions in a single-j shell by using
the new enumeration procedure. One may obtain DI of other
n (n is even) cases by applying this method similarly, if the
reduction rule of SU(n + 1) →SO(3) is available.

A question arises when we apply this method to odd n cases,
for which spin L of n̄ bosons involved in process B is not an
integer (L = n/2). These bosons are therefore not “realistic.”
For such cases I of n bosons with spin l cannot equal that
of n fermions in a single-j shell. Namely, there is no similar
correspondence of DI between bosons and fermions when n is
odd [8].However, DI of n̄ fictitious bosons with spin n/2 (n is
odd) obtained by process A equals that of n bosons with spin
l or that of n fermions in a single-j shell, where n̄ = 2l (even
value) and 2j + 1 − n (odd value) for bosons and fermions,
respectively. In other words, DI of n̄ fictitious bosons with
spin n/2 equals that of n bosons with spin l if n̄ = 2l or that of
n fermions in a single-j shell if n̄ = 2j + 1 − n, here n is odd.
Further discussion is warranted on this problem.

To summarize, We have presented in this article an
alternative to enumerate the number of spin I states, DI , for n
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fermions in a single-j shell or n bosons with spin l. We proved
that DI of n bosons with spin l equals that of n fermions in
a single-j shell when 2l = 2j + 1 − n, where n is even. We
have also exemplified the usefulness of this new method in
constructing analytical formulas of DI by n = 4.

For odd n, the procedure of our new method involves half
integer spin L for “bosons.” Further consideration of this
fictitious situation is necessary.

Finally, it might be helpful to compare the present for-
mulas with earlier results of Refs. [5,6]. According to our
discussion of the n = 4 case, DI for n = 4 equals that of d
bosons with n̄ = 2l = 2j + 1 − n = 2j − 3. I0 = K = K =
0 in Eqs. (2)–(4). In such cases these formulas can be readily
reduced to

DI=0 = k + 1 =
[
n̄

6

]
+ 1 =

[
2j − 3

6

]
+ 1 =

[
2j + 3

6

]
.

This is identical to the expression in Ref. [5]. Equations (2)–(4)
are also consistent with those in Ref. [6]. The enumeration of

d boson states in Ref. [7] and process B suggested in this
article provide a microscopic foundation of Table I in Ref. [6],
i.e., the staggering of DI for n = 4. For I � 2l, DI in this
article is identical to that of Ref. [6]; for I � 2l, DI obtained
here always equals that of Ref. [6], although they seem
different.

Note added in proof: After this paper was accepted,
Dr. Igal Talmi informed us of his mathematical proof of
Eq. (2) in Ref. [6], where the case with n = 3 and I � j

was empirically obtained. The case with n = 3 and I = j

was also discussed in a recent preprint, nucl-th/0502062, by
Drs. L. Zamick and A. Escuderos. The number of states with
arbitrary spin I for n = 3 can be analytically obtained by
studying fictitious bosons with spin 3/2 and applying the new
recipe presented in this paper.

We would like to thank Professors K. T. Hecht and I.
Talmi for their reading and constructive comments of this
manuscript.
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