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Accurately calibrated effective field theories are used to compute atomic parity nonconserving (APNC)
observables. Although accurately calibrated, these effective field theories predict a large spread in the neutron
skin of heavy nuclei. Whereas the neutron skin is strongly correlated to numerous physical observables, in this
contribution we focus on its impact on new physics through APNC observables. The addition of an isoscalar-
isovector coupling constant to the effective Lagrangian generates a wide range of values for the neutron skin of
heavy nuclei without compromising the success of the model in reproducing well-constrained nuclear observables.
Earlier studies have suggested that the use of isotopic ratios of APNC observables may eliminate their sensitivity
to atomic structure. This leaves nuclear structure uncertainties as the main impediment for identifying physics
beyond the standard model. We establish that uncertainties in the neutron skin of heavy nuclei are at present too
large to measure isotopic ratios to better than the 0.1% accuracy required to test the standard model. However, we
argue that such uncertainties will be significantly reduced by the upcoming measurement of the neutron radius
in 208Pb at the Jefferson Laboratory.

DOI: 10.1103/PhysRevC.71.045502 PACS number(s): 24.80.+y, 21.10.Gv, 32.80.Ys, 11.30.Er

I. INTRODUCTION

The quest for discovering fundamental characteristics of
atomic nuclei, such as their sizes and shapes, is as old as nuclear
physics itself. Although for the most part this challenge has
been met with enormous success, precise knowledge of certain
fundamental nuclear-structure properties—among them the
spatial distribution of neutrons—is still lacking. Although
the original motivation for measuring the neutron density of
atomic nuclei was deeply rooted in nuclear structure, the quest
has been recently revived in response to the widespread impact
that such a measurement will have over seemingly unrelated
areas of physics. Even though the present study concentrates
exclusively on atomic parity nonconservation (APNC) [1,2],
a brief review of areas that could benefit from an accurate
measurement of the neutron density is also presented.

Unquestionably, the accurate determination of the neutron
density—and in particular its root-mean-square (rms) radius—
remains a top priority in nuclear-structure physics. This
inadequate state of affairs is in stark contrast to our present
knowledge of proton densities. Indeed, the proton distribution
in nuclei has already been mapped with exquisite precision,
often much better than 1% [3], owing to the availability
of state-of-the-art electron-scattering facilities all over the
world. A particularly illustrative example is 208Pb, a nucleus
whose charge radius is presently known with an extremely
high accuracy (rch = 5.5010 ± 0.0009 fm [3]) that exceeds
at least by two orders of magnitude that of its neutron
radius. Clearly, an accurate determination of neutron radii is
a pressing issue. Further, without such knowledge for stable
nuclei, the prospects of real progress in the future domain
of nuclear structure, namely, exotic nuclei, may be seriously
compromised.

Precision studies of the nucleon-nucleon (NN ) force is an
area that has been directly affected by our poor knowledge
of neutron radii. At the most fundamental level, quantum
chromodynamics predicts a small flavor violation in the strong
force owing to the different charges and masses of the up and
down quarks. In turn, this flavor violation induces a small (of
the order of 1%) breaking in the isospin symmetry of the NN

force. However, to accurately quantify these “novel” isospin
violations, it is necessary to have all “conventional” effects
under control. A good example of this interplay between
novel and conventional is provided by the Nolen-Schiffer
(or Coulomb energy) anomaly. The anomaly consists in the
residual discrepancy observed in the ground-state energies
of mirror nuclei with a single nucleon added (or removed)
from a closed shell (e.g., 41Sc–41Ca). However, some of the
conventional effects depend sensitively on our knowledge of
neutron radii. Indeed, it has been argued that by using neutron
skins—defined as the difference between the neutron and
proton rms radii—significantly smaller than those predicted by
theory (and apparently justified by experiment) the anomaly
disappears [4].

Knowledge of neutron radii could also remarkably improve
our understanding of the equation of state of neutron-rich
matter. Although existing ground-state observables appear to
constrain the symmetry energy of nuclear matter at a neutron
density around ρn = 0.10 fm−3 (as a reference value typical in
nuclei) [5,6], the density dependence of the symmetry energy is
unknown. Recently, however, it has been found that the neutron
skin of a heavy nucleus, such as 208Pb, calculated with dif-
ferent nonrelativistic and relativistic mean field parametriza-
tions displays a tight linear relationship with the slope of
the equation of state of neutron matter (or, analogously,
with the derivative of the symmetry energy), evaluated at
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ρn ∼ 0.10 fm−3 [5–9]. In particular, models with a “stiffer”
symmetry energy predict larger neutron skins. For instance,
the neutron skin in 208Pb computed with relativistic models
is larger by typically 0.1–0.2 fm than the value obtained with
Skyrme forces. In turn, the neutron skin of 208Pb is linearly
correlated with the neutron skin of other relatively heavy nuclei
such as 132Sn or 138Ba. Thus, a measurement of the neutron
radius of 208Pb, or indeed of any other heavy nucleus, could
fix a fundamental property of the equation of state.

Fixing the slope of the symmetry energy at ρ = 0.10 fm−3

will also impact favorably on astrophysical observables,
particularly on the structure and dynamics of neutron stars.
Indeed, strong correlations between the neutron skin of 208Pb
and various neutron-star properties have been established
[10]. Among these, a model-independent relation between the
neutron skin of 208Pb and the transition density from uniform
neutron-rich matter (in the mantle) to a nonuniform phase (in
the crust) was observed. Other neutron-star properties sensitive
to the neutron skin of 208Pb include the radius of the star, its
composition, and its cooling mechanism [11,12]. Ultimately,
these correlations emerge as a result of the similar composition
of the neutron skin of a heavy nucleus and the crust of a neutron
star, namely, neutron-rich matter at similar densities.

Although these arguments are already compelling enough
to justify the commission of new experiments to measure the
neutron radius of 208Pb with unprecedented accuracy [13],
this manuscript will focus on the crucial role that such a
measurement could have on precision studies of the standard
model, vis-à-vis, atomic parity nonconservation. The road
to new physics beyond the standard model in low-energy
tests in atoms, which stems from violations of fundamental
symmetries that occur in the weak interaction, passes through
the observation of deviations between the values measured
in the laboratory and the predictions of the standard model.
The effects are inherently small and, traditionally, the analysis
of APNC experiments has been hindered by uncertainties in
both atomic and nuclear-structure theory. However, a fruitful
strategy has been devised to remove the sensitivity to atomic
theory. This strategy consists in measuring ratios of parity-
violating observables along an isotopic chain [14]. In this
manner, uncertainties in the atomic theory factor out from the
ratios. Based on their long chains of several naturally occurring
isotopes, cesium, barium, dysprosium, and ytterbium appear
as ideal candidates [1,2,15–18]. As a result, nuclear-structure
uncertainties—primarily in the form of neutron radii—remain
as the limiting factor in the search for physics beyond the
standard model [19–22].

In an earlier study, a strong correlation between the neutron
radius of 208Pb and the neutron radii of 138Ba, 158Dy, and 176Yb
was established [23]. In that study the density dependence of
the symmetry energy—and consequently the neutron radius of
208Pb—was modified through the addition of a new coupling
constant (�v) to the underlying Lagrangian [10,11]. This new
coupling allows us to modify the density dependence of the
symmetry energy without changing the saturation properties
of symmetric nuclear matter. In a heavy nucleus �v modifies
the rms radius of the neutron density while leaving the rms
radius of the proton density and the total binding energy
practically unchanged [10,11]. However, the nuclear-structure

model used lacked both deformation and pairing effects, which
are important for the nuclei considered in APNC experiments.
Thus, in Ref. [23] the calculations were limited to the study
of a single member of each isotopic chain (the one with a
closed neutron shell). This shortcoming is resolved in the
present contribution. As a result, one is now able to map
the neutron radii of these long isotopic chains as a function
of both the neutron number N and �v. There are previous
studies of the isotopic dependence of the neutron radius in the
relativistic mean-field (RMF) approximation [24,25] and of its
dependence on �v [23]. Yet the merit of the present work is that
uncertainties in the neutron radius are studied for the first time
as a function of both N and �v within a unified “best-fit” model.
In addition, it has been recently pointed out that the accuracy in
the measurements of APNC effects can be improved by using
high-Z atoms, such as francium, where the parity-violating
effects are expected to be an order of magnitude larger than
in cesium [26]. Thus we also include, in anticipation of future
experiments, the analysis of the nuclear-structure corrections
to the weak charge in francium isotopes.

The manuscript has been organized as follows. In Sec. II
a short description of the nuclear model is given, with
special emphasis paid to the treatment of deformation and
pairing correlations as well as to the predictions of the model
applied to cesium, barium, dysprosium, and ytterbium. In
Sec. III a brief review of atomic parity violation is given,
with the main goal of addressing uncertainties in APNC
observables emerging from our poor knowledge of neutron
radii; a detailed analysis of such uncertainties within our model
is also presented in the same section. Finally, the conclusions
are reserved for Sec. IV. We may summarize the two main
conclusions of our work as follows. First, it appears that even
when using the wealth of existing ground-state observables
to constrain our nuclear-structure models, the uncertainties
in the neutron radius of heavy nuclei—and consequently on
APNC observables—may have been underestimated. Second,
we have found, as others have before us, a tight correlation
between the neutron radius of 208Pb and the neutron radii of
barium, dysprosium, and ytterbium, which is shown here to
hold also in deformed systems and in the presence of pairing.
This correlation suggests that the nuclear-structure observables
relevant for APNC will profit positively from the upcoming
high-precision measurement of the neutron radius of 208Pb at
the Jefferson Laboratory [13].

II. THE NUCLEAR MODEL

The mean-field treatment of effective field theories of
hadrons, generally known as quantum hadrodynamics (QHD),
is well established as a successful approach for describing
diverse bulk and single-particle properties of finite nuclei and
uniform nuclear matter [27–29]. These effective field theories
are based on a Lagrangian density that contains the nucleon (as
an elementary Dirac particle) together with an isoscalar-scalar
(σ ) meson, an isoscalar-vector (ω) meson, an isovector-vector
(ρ) meson, and the photon as the relevant degrees of freedom
for describing the nuclear many-body problem. In the mean-
field approximation the meson fields are replaced by their
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ground-state expectation values, thereby becoming classical
fields. The quantum structure of the theory is carried by the
nucleon field. For systems with time-reversal symmetry, only
the timelike component of the vector fields contribute. At the
mean-field (“tadpole”) level, charge conservation implies that
only the third component (in isospin space) of the isovector
ρ-meson field does not vanish. As a final product, one obtains
the following Hamiltonian density:

H(r) =
∑
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2B2 − 1

2
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(1)

where the summation runs over the occupied nucleon states
ϕα(r) of positive energy and τ3 stands for the third component
of the isospin operator. The scaled meson fields associated with
the σ, ω, and ρ mesons are, respectively, � ≡ gsφ0(r),W ≡
gvV0(r), and B ≡ gρb0(r). Finally, A ≡ eA0(r) represents the
timelike component of the photon field.

The variation of Eq. (1) with respect to the Dirac spinors
yields the Dirac equation satisfied by the nucleons, whereas the
variations with respect to the meson fields lead to the Klein-
Gordon equations for the corresponding mesons [27–29].
The functional in Eq. (1) contains cubic and quartic scalar
meson self-interactions (couplings κ and λ, respectively) that
are tuned to bring the value of the compression modulus
of symmetric nuclear matter down to the empirical value
(K = 200–300 MeV) [30]. Further, through the inclusion of
these terms one can accurately reproduce the systematics of
finite nuclei throughout the periodic table as, for example, in
the case of the celebrated RMF parameter set NL3 [31]. The
additional isoscalar-isovector cross coupling �v enables one
to modify the density dependence of the symmetry energy
without compromising the success of the model.

Insofar as we are interested in the properties of some
relatively heavy nuclei that have been identified as possible
candidates for APNC experiments, we extend the model
of Ref. [23] to include nuclear deformation and pairing
correlations in the present RMF study. Only quadrupole
deformation (β2) is included though, as it is known that
hexadecapole deformation is generally small for the nuclei
under consideration [24]. A BCS framework is employed
to deal with the pairing correlations. Note that because the
nuclei to be studied lie relatively close to the β-stability line,
the use of the BCS approximation is justified as the Fermi
level is sufficiently bound and the mixing with continuum
states—essential for drip-line nuclei—is not relevant here. As
in most BCS calculations, the strength of the neutron-neutron
and proton-proton pairing interactions is determined from the
neutron and proton pairing gaps (respectively, 
n and 
p)
evaluated from the experimental odd-even mass differences,
using a five-point formula [32].

The Dirac equation and the Klein-Gordon equations for
the meson fields are treated using an axially deformed basis
expansion method as described in detail in Refs. [33,34].
The calculations presented here have been carried out by
expanding the fermionic wave functions and the bosonic fields
in 12 and 20 oscillator shells, respectively. The solution of the
equations in an axially deformed basis for the odd-even and
odd-odd nuclei is more complicated. Indeed, in these cases
time-reversal symmetry is broken and the odd particle induces
polarization currents and time-odd components in the mean
fields. However, the impact of these effects on deformation and
binding energies is small [35] and will be neglected henceforth.
In the pairing calculation of the odd nucleon we use the
blocking approximation [36], thereby restoring time-reversal
invariance in the intrinsic frame.

For the isotopic chains under consideration for APNC
experiments, namely, Cs, Ba, Dy, and Yb, the NL3 parameter
set yields ground-state properties, such as binding energies
and deformations, in good agreement with the available
experimental data [24]. For our calculations we adopt the
NL3 parameter set and suitably modify it with the addition
of the isoscalar-isovector coupling �v, prompted by the fact
that the slope of the nuclear symmetry energy at (or near) the
saturation density is at present unknown. Thus, we utilize the
nonlinear isoscalar-isovector term �v to change the density
dependence of the symmetry energy, which in turn modifies
the neutron radius of neutron-rich nuclei. This can be done
without a significant change in those ground-state properties
of finite nuclei that are well constrained experimentally [10].
In practice, for a given �v value we readjust the nucleon-rho
coupling constant gρ so that the symmetry energy of nuclear
matter at a density of ρ = 0.10 fm−3 becomes 25.68 MeV
[10,11,23]. The choice is motivated by the fact that the
symmetry energy of uniform nuclear matter at saturation
density is not well constrained by the known properties of finite
nuclei. Rather, it is some average between the bulk symmetry
energy at saturation and the surface symmetry energy, which
is constrained by the binding energy of finite nuclei [5,6]. For
example, typical effective nuclear forces fitted to the empirical
energies of nuclei predict a liquid-drop-model symmetry
energy coefficient, which contains a surface correction, of
22–24 MeV for 208Pb [37], far smaller than the value of the
bulk symmetry energy coefficient for that interaction.

Although it has been established that a variety of ground-
state properties of spherical nuclei are insensitive to the choice
of �v [10,11,23], this is not the case for the neutron skin.
The neutron skin t = rn − rp, where rn and rp are the neutron
and proton rms radii (rn(p) ≡ 〈r2〉1/2

n(p)), is strongly sensitive to
the density dependence of the symmetry energy and hence
to the isoscalar-isovector coupling �v. This is because the
slope (i.e., pressure) of the symmetry energy controls how far
the neutron skin is pushed out relative to the symmetric core.
To show that this scenario holds true even when spherical
symmetry is broken and pairing correlations are important, we
display in Fig. 1 the charge radius, binding energy, quadrupole
deformation, and the neutron skin as a function of �v for the
representative heavy nucleus 174Yb. Note that all observables
in Fig. 1 have been normalized to the corresponding NL3
values (�v = 0). It is seen that the charge radius, binding
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FIG. 1. The dependence of the ground-state charge radius,
binding energy, quadrupole deformation, and neutron skin on the
isoscalar-isovector coupling �v is exemplified for the 174Yb nucleus.
The observables have been normalized to the values of the NL3
interaction (�v = 0).

energy, and quadrupole deformation are insensitive to the
value of �v in the 0–0.025 range; the quadrupole deformation
displays the largest change, but this amounts to only 2%. In
contrast, the neutron skin decreases rapidly with increasing
�v and it varies by about 25% when �v is changed from 0
to 0.025. This reflects the softening of the symmetry energy
as �v increases. Therefore, we conclude that neither pairing
correlations nor deformation alter our earlier conclusions
about the role of �v in the systematics of finite nuclei.

The neutron skin of a nucleus is an important component
in the study of atomic parity nonconservation. So is its charge
radius. Although neutron radii of heavy nuclei (rn) are poorly
known, high-precision data for the charge radii are available.
To test the reliability of our model, we now compare in
Fig. 2 calculated charge radii with experimental data for some

of the relevant isotopes used in APNC experiments; these
include Cs, Ba, Dy, and Yb. The experimental values are
taken from the recent compilation of Ref. [3], which combines
measured data from electron scattering, from muonic x rays,
and from Kα and optical isotope shifts for the purpose of
providing a unified set of nuclear charge radii. Theoretical cal-
culations are presented with the original NL3 parametrization
(�v = 0) and with one for which the density dependence of the
symmetry energy has been softened by fixing the value of the
isoscalar-isovector coupling to �v = 0.025. It can be seen that
both sets of calculated charge radii are in excellent agreement
with the experimental values for all of the considered nuclei.
At a more quantitative level, we find that the relative χ2 value
between the theoretical and experimental charge radii for the
isotopic chains of Cs, Ba, Dy, and Yb is always smaller than
0.25% for both (�v = 0 and �v = 0.025) parameter sets. This
result validates the use of both parameter sets in computing
key nuclear observables of relevance to the APNC program.
Note that the binding energies and deformations for all the
nuclei considered here are also in good agreement with the
experimental data (not shown). Moreover, and as alluded to
earlier, these observables are highly insensitive to the choice
of �v.

A more daring challenge for a theoretical model than the
charge radii themselves is the reproduction of the observed
charge isotope shifts. One famous case is the pronounced
kink exhibited by the experimental charge radii of the Pb
nuclei at the magic neutron number N = 126. The kink is
not reproduced by conventional nonrelativistic theories (either
Skyrme or Gogny forces). In contrast, the RMF calculations
show a remarkable agreement with experiment [28]. The origin
for the deviations between the two models has been traced
back, largely, to the isospin dependence of the spin-orbit term.
We present in Fig. 3 results for the isotope shifts in two of
our flagship chains for the subsequent APNC analysis: the
cesium and francium alkali metals. The shifts are referred to
as 133Cs and 212Fr, respectively, as are the data of Ref. [3]. The
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FIG. 2. Charge radii calculated with the
models considered in the text are compared with
the available experimental data [3] in isotope
chains of interest for APNC studies. The actual
experimental error bar for 156Dy and 158Dy has
been reduced by a factor of 10 for display.
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FIG. 3. Isotope shifts of the charge radii of
cesium and francium nuclei. The experimental
data are from Ref. [3].

experimental method of preference for the measurement of
nuclear charge isotope shifts is high-resolution laser spec-
troscopy, which exploits the isotopic effects on the hyperfine
structure of atomic optical transitions. In addition to the RMF
calculations with �v = 0 and �v = 0.025 we have drawn in
Fig. 3 the SkM∗ and SIII results of the nonrelativistic Hartree-
Fock calculations of Ref. [21] for Cs. One immediately
recognizes the ability of the RMF model in reproducing the
trend of the changes of the experimental data when neutrons
are added; conspicuously, the change of slope at the N = 82
shell closure for Cs and at the N = 126 shell closure for Fr.
In spite of this, the theoretical predictions may differ from the
experiment values by a factor of ∼2 in some specific isotopes.
One should keep in mind that this happens in cases where the
isotope shift is a small quantity and that it emerges from the
cancellation of two much larger numbers (the square charge
radii of two isotopes). Similarly to the observables discussed
here, the calculated isotope shift is a quantity that remains
unaffected by the �v coupling.

As has been mentioned in earlier publications [6–8], typical
relativistic parametrizations predict a neutron skin in 208Pb
of about 0.3 fm. This should be contrasted with the case of
nonrelativistic forces of the Skyrme or Gogny type that yield
significantly smaller values (between 0.1 and 0.2 fm). As the
proton rms radius in 208Pb is reproduced by both relativistic
and nonrelativistic models, the spread in the neutron rms
radius in 208Pb—owing to the different density dependence
of the symmetry energy in different theoretical models—is
about 0.1–0.2 fm. Within the RMF models a spread (i.e.,
a theoretical uncertainty) of the neutron skin for a specific
nucleus can be simulated in a controlled manner through
the addition of the isoscalar-isovector coupling �v [10,23].
Starting from the original NL3 parameter set and changing the
isoscalar-isovector coupling constant from �v = 0 (pure NL3
interaction) to �v = 0.025, the neutron skin in 208Pb varies
from 0.280 to 0.209 fm [10]. Hence, in this formalism the
induced theoretical uncertainty of the neutron radius of 208Pb
between these two extreme values of �v is approximately
0.07 fm. This spread for 208Pb is only slightly larger than the
expected experimental error in the measurement of the neutron
radius in 208Pb via the parity-violating electron-scattering
experiment at the Jefferson Laboratory (known as the PREX
experiment) [13]. Thus we take the theoretical spread in the
neutron radius of 208Pb as a baseline to estimate a realistic
uncertainty in those nuclei involved in APNC experiments.

The neutron skins calculated with both of the relativistic
parametrizations (namely, �v = 0 and �v = 0.025) for stable
and long-lived isotopes of Cs, Ba, Dy, and Yb are displayed
in Fig. 4. For a specific isotope, the shift between the two
curves displayed in the figure gives the model spread (due
to �v) of the neutron skin of the given nucleus. For all
the considered isotopic chains the neutron skins calculated
with �v = 0 (the stiffest symmetry energy) and �v = 0.025
(the softest symmetry energy) lie roughly along two parallel
lines. In general, the effect of �v on the neutron skin is
more prominent for the more asymmetric and heavier nuclei.
This can be observed for the relatively long chain of Cs
isotopes in Fig. 4, where the spread of the neutron skin varies
approximately from 0.03 to 0.06 fm in passing from 123Cs
to 137Cs.

To the extent that in the RMF model used in this work the
proton rms radius of a given nucleus is almost independent
of �v, the theoretical spread of its neutron skin is therefore
approximately equal to the one for its neutron rms radius. At
present, the situation regarding our ignorance of the neutron
skin of heavy nuclei is unlikely to improve because the
existing experimental data cannot reduce the spread in the
neutron radii of Cs, Ba, Dy, or Yb any further. Thus, we
now examine whether the PREX experiment on the neutron
radius of 208Pb may place important constraints on the neutron
skin of APNC nuclei, including those deformed isotopes with
an odd number of nucleons. Figure 5 evidences the strong
linear correlation [5,7,23] between the neutron skin of 133Cs,
138Ba, 164Dy, and 174Yb and that of 208Pb. The calculations
include values for the isoscalar-isovector coupling constant
�v ranging from 0 to 0.025. Note that the correlation holds
even for the case of deformed nuclei having an odd number
of nucleons. With the culmination of the PREX experiment,
the present theoretical spread in the neutron radius of 208Pb of
∼0.3 fm (relativistic and non-relativistic models altogether)
[6,20,23] will be replaced by a genuine experimental error
five times smaller; that is, 
rn(208Pb) ≈ 0.056 fm [23]. This
experimental error in the neutron radius of 208Pb will also
be the experimental error in the neutron skin, as the proton
radius is known with a much higher accuracy. If the expected
experimental accuracy is attained, then the spread in the
neutron skin of the several APNC isotopes will also be
(indirectly) reduced. In turn, this result will impact favorably
on APNC observables by appreciably reducing the nuclear
structure uncertainty.
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FIG. 4. Variation of the neutron skin in four
isotope chains of possible relevance to APNC
isotope ratios measurements for the two effective
field theory models considered in this work.
Note that the change in the neutron skin of
208Pb predicted by these two models, otherwise
accurately calibrated for binding energies and
charge radii, mocks up the uncertainty that will
be left after the projected precision measurement
of the neutron radius of 208Pb at the Jefferson
Laboratory [13].

III. RESULTS FOR APNC OBSERVABLES

Parity violation in atomic systems arises from the in-
terference between the parity-conserving electromagnetic
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FIG. 5. Model correlation of the neutron skin of 133Cs, 138Ba,
164Dy, and 174Yb to the neutron skin of 208Pb. The isoscalar-isovector
coupling varies between �v = 0 (right side of the figure) and �v =
0.025 (left side).

interaction and the parity-violating weak interaction. Although
most of the binding energy of the atomic electrons comes from
their attractive Coulomb interaction with the Z protons in the
nucleus, the weak charge of the nucleus QW induces a small
correction in the binding energy and parity of the electronic
wave functions. These small corrections can be measured
experimentally. The experimentally measured quantity is the
electric dipole amplitude between two electronic states; in
the absence of parity-violating effects these states would have
the same parity, thereby making the amplitude vanish. The
observable related to the dipole amplitude can be parametrized
as follows [20–22,25,38]:

APNC(N,Z) = ξ (Z)QW (N,Z)

≡ ξ (Z)
[
QSM

W (N,Z) + 
Q
n−p

W (N,Z)
]
, (2)

where ξ (Z) embodies the atomic structure contribution and
QW (N,Z) represents the weak charge of a nucleus of neutron
number N and electric charge Z.

The experimentally measured weak charge of the nucleus
(without radiative corrections [20]) QW (N,Z) differs from the
standard model prediction,

QSM
W (N,Z) = −N + Z(1 − 4 sin2 θW ), (3)

by a nuclear correction factor that arises from the dif-
ference between proton and neutron one-body densities.
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That is,


Q
n−p

W (N,Z) = N

(
1 − qn

qp

)
, (4)

with

qn(p) =
∫

drf (r)ρn(p)(r). (5)

Note that in Eq. (3) θW is the Weinberg (or weak mixing)
angle, whereas ρn(p) in Eq. (5) is the neutron (proton) density
normalized to one, and f (r) is an electronic form factor that
describes the spatial variation of the electronic axial-vector
matrix element over the size of the nucleus.

The atomic parity formalism “starts” by assuming that
neutrons and protons have the same spatial distribution and
then adds a nuclear-structure correction factor to quantify the
differences between the actual neutron and proton densities.
This is motivated by the fact that the proton density, which
is needed to determine various parity-conserving observ-
ables, is very accurately known. During the course of this
presentation—and as has been done elsewhere [20,21]—an
additional quantity that parametrizes the nuclear-structure
corrections will be extensively used. This quantity is defined
as follows:

Qnucl
W (N,Z) = −N (qn − 1) + Z(1 − 4 sin2 θW )(qp − 1).

(6)

Note that, in terms of this quantity, the weak charge of the
nucleus may be written as

QW (N,Z) = [
QSM

W (N,Z) + 
Q
n−p

W (N,Z)
]

= [−Nqn + Zqp(1 − 4 sin2 θW )
] 1

qp

= [
QSM

W (N,Z) + Qnucl
W (N,Z)

] 1

qp

. (7)

To compute the axial form factor f (r) one expands the
electronic Dirac wave functions in a power series about the
origin [20], assuming the Coulomb potential to be that of a
uniform nuclear charge distribution. Using this prescription
yields the electronic form factor in closed form:

f (r) = 1 − (Zα)2

2

[(
r

Rp

)2

− 1

5

(
r

Rp

)4

+ 1

75

(
r

Rp

)6
]

,

(8)

where Rp is the cutoff radius of a sharp nuclear charge density.

Effects from the finite nuclear size are computed from the
ground-state expectation value of the timelike component of
the weak vector current by considering the neutron and proton
as pointlike particles. Again, we assume sharp proton and
neutron densities with rms radii equal to those predicted by
self-consistent RMF models. Note that the relation between
the sharp cutoff radii Rn(p) and the corresponding rms radii
rn(p) is given by

Rn(p) =
√

5

3
rn(p). (9)

Estimates for the weak matrix elements qp and qn are then
given by the following expressions:

qp = 1 − 817

3150
(Zα)2, (10)

qn = 1 − (Zα)2

[
3

10

(
Rn

Rp

)2

− 3

70

(
Rn

Rp

)4

+ 1

450

(
Rn

Rp

)6
]

= 1 − (Zα)2

[
817

3150
+ 232

525

t

rp

+ O((t/rp)2)

]
. (11)

Although in the present approximation qp does not depend
on nuclear-structure effects, the sensitivity of qn to nuclear-
structure uncertainties appears in the form of the rms proton
radius—which is well known—and the poorly known neutron
skin t.

A. Prospects for isotope ratios analyses

The measurement of the weak charge in APNC experiments
is plagued by theoretical uncertainties in both atomic and
nuclear structure. Fortunately, uncertainties in atomic structure
may be eliminated, or at least considerably reduced, by
studying parity violation along a chain of isotopes and taking
ratios of PNC measurements [14,19–22]. According to Eq. (2),
the dependence of the parity-violating amplitude APNC on the
atomic theory contribution ξ (Z) will cancel out in the ratio of
two measurements performed in two different isotopes of the
same element, provided ξ (Z) does not change appreciably
along that isotopic chain. Thus, we now address the role
of the remaining—nuclear-structure—uncertainty in APNC
observables along the isotopic chains of Cs, Ba, Dy, and Yb.
The observables of interest are expressed in the form of the
following two ratios:

R1 = QW (N ′, Z) − QW (N,Z)

QW (N ′, Z) + QW (N,Z)

= QSM
W (N ′, Z) + 
Q

n−p

W (N ′, Z) − QSM
W (N,Z) − 
Q

n−p

W (N,Z)

QSM
W (N ′, Z) + 
Q

n−p

W (N ′, Z) + QSM
W (N,Z) + 
Q

n−p

W (N,Z)

≈ QSM
W (N ′, Z) + Qnucl

W (N ′, Z) − QSM
W (N,Z) − Qnucl

W (N,Z)

QSM
W (N ′, Z) + Qnucl

W (N ′, Z) + QSM
W (N,Z) + Qnucl

W (N,Z)
(12)
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and

R2 = QW (N ′, Z)

QW (N,Z)
= QSM

W (N ′, Z) + 
Q
n−p

W (N ′, Z)

QSM
W (N,Z) + 
Q

n−p

W (N,Z)

≈ QSM
W (N ′, Z) + Qnucl

W (N ′, Z)

QSM
W (N,Z) + Qnucl

W (N,Z)
. (13)

The approximate sign (≈) in these two equations follows from
the assumption that the overlap qp appearing in Eq. (7) remains
constant along the whole isotopic chain. As can be realized
from Tables II and III (see later sections), this is an excellent
approximation.

It has been argued in Ref. [22] that corrections to standard
model predictions induced by new physics or uncertainties in
nuclear structure are essentially the same whether one uses
R1 and R2. Thus, we focus here exclusively on R1. Using
Eqs. (3) and (6) we can write the ratio R1 approximately as

R1 ≈ QSM
W (N ′, Z) − QSM

W (N,Z)

QSM
W (N ′, Z) + QSM

W (N,Z)

×
[

1 + N ′


N
[qn(N ′, Z) − qn(N,Z)]

]
, (14)

where N ′(N) is the largest (smallest) neutron number and

N ≡ N ′ − N represents the difference in neutron number
between the two extremes of the isotopic chain. Further,
Ref. [22] also established that a significant test of the standard
model on the basis of isotope ratios requires a measurement of
R1 with an accuracy better than 0.1%. Otherwise, a less precise
determination of isotope ratios would not be worthwhile to
compete with the sensitivity to new physics of the presently
known data for the cesium isotope 133Cs. The measurement
of the electron-nucleon parity-violating effect in 133Cs to
0.35% accuracy [39] remains to date as the paradigm of PNC
experimental precision.

Because atomic uncertainties have been eliminated from
the ratio (14), the remaining uncertainties in R1 reflect
the known accuracy in the neutron and proton rms radii.
Whereas proton densities have been determined from electron-
scattering experiments with remarkable accuracy, knowledge
of the neutron densities to a comparable level of accuracy is
lacking. Thus, the main nuclear-structure uncertainty in the
isotopic ratio R1 comes from our poor knowledge of the
neutron radii (or neutron skin) of heavy nuclei. Indeed, by

inserting Eq. (11) into Eq. (14), the relative uncertainty in R1

may be approximated by

δR1

R1
≈ −232

525
(Zα)2 N ′


N
δ

[
t

rp

(N ′, Z) − t

rp

(N,Z)

]
. (15)

In Sec. II we showed that a spread in the neutron
radius of 208Pb is obtained by using parametrizations with
isoscalar-isovector couplings �v = 0 and �v = 0.025, which
is representative of the experimental error (∼1%) expected
from the Jefferson Laboratory experiment. Note that the quoted
error in the neutron radius of 208Pb is also the error in its
neutron skin as the proton radius is known with a much higher
accuracy. Inasmuch as a linear correlation between the neutron
skin of 208Pb and that of the APNC nuclei has been established
(see Fig. 5), an estimate of the theoretical uncertainty in the
weak charge can be obtained from the spread in the neutron
skin of the APNC nuclei using the �v = 0 and the �v = 0.025
parameter sets.

Let us outline the procedure we shall follow to determine
the relative error in R1 (namely, δR1/R1). First, we calculate
the neutron skin t = rn − rp in a certain isotopic chain
using the �v = 0 parametrization. Since rp is roughly similar
for all the isotopes of the chain, the fractional neutron skin
variation along the chain is estimated as

(
t̄ )�v=0 = t(N ′, Z) − t(N,Z)

〈rp〉
∣∣∣∣
�v=0

, (16)

where (N ′, Z) refers to the heaviest member and (N,Z) to the
lightest member of the isotopic chain under consideration, and
〈rp〉 is the average proton rms radius of the nuclei in the chain.
Next, we compute the corresponding fractional neutron skin
variation (
t̄ )�v=0.025 for the softer �v = 0.025 parameter
set. Finally, the model spread [22] is obtained as the difference
between the fractional neutron skin variations calculated in the
two parameter sets. That is,

δ(
t ) = (
t̄ )�v=0 − (
t̄ )�v=0.025. (17)

In Table I we display the relative uncertainty δR1/R1

in the ratio R1 for each one of the isotope chains (Cs, Ba,
Dy, and Yb) together with the different components required
to compute it. These are the largest neutron number of the
isotopic chain N ′, the largest difference in the neutron number
of the isotopic chain 
N , the average proton rms radius 〈rp〉,

TABLE I. The relative uncertainty δR1/R1 in the APNC isotope ratio R1 and the various
components needed to evaluate it, as described in the text. The last row denotes the model spread
δ(
t̄ ), Eq. (17), that would be required to achieve δR1/R1 = 0.1%.

Observable Cs Ba Dy Yb

Z 55 56 66 70
N ′ 82 82 98 106

N 14 8 8 8
〈rp〉 4.752 4.766 5.134 5.254

δ(
t̄ ) 0.0059 0.0033 0.0022 0.0022
δR1/R1 0.0025 0.0025 0.0027 0.0035
[δ(
t̄ )]0.1% 0.0024 0.0013 0.0008 0.0007
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and the model spread δ(
t̄ ). The latter turns out to be a
small quantity, not only in the present relativistic calculations
but also in calculations with nonrelativistic nuclear energy
functionals (see Ref. [22] and references quoted therein). The
reason resides in the approximately linear relationship of the
neutron skin along a chain of isotopes with the neutron number.
Whereas the model dependence in the value of the intercept is
obvious (see Fig. 4), the slope is only mildly model dependent.
And it is the difference in slope that the model spread δ(
t̄ )
is sensitive to.

It is seen that the estimated relative uncertainty of the
APNC ratios R1 in the four isotopic chains considered is
around 0.25%–0.35%, with a slight increase with increasing
atomic number. The quoted uncertainty appears somewhat
larger than the 0.1% value that would be desirable to extract
new physics limits beyond the present reach of the 133Cs
experiment. Note that the neutron skin along a given isotopic
chain varies (almost) linearly with neutron number (see
Fig. 4). This makes the model spread δ(
t̄ ) roughly propor-
tional to the neutron difference 
N . Because the combination
δ(
t̄ )/
N is therefore nearly independent of 
N [38], it is
unlikely that the precision in R1 can be improved by enlarging
the range of the neutron difference 
N between the two
extremes of the isotopic chain [see Eq. (15)].

Table I also displays the model spread [δ(
t̄ )]0.1% that
would be required to reach the sought-after relative uncertainty
of 0.1% in the isotopic ratio R1. In all cases this number
is smaller than the value provided by the RMF model.
Recall that we have tuned the effective interaction by means
of �v to mimic the purported 1% accuracy of the PREX
experiment. Hence, it appears that under the present—and
future—situation, nuclear-structure uncertainties affecting the
variation of the neutron distribution along an isotopic chain
are too large to make R1 a useful probe for physics beyond
the standard model. However, note that the differences are
not dramatic: factors of 2.5 for Cs and Ba, 2.75 for Dy, and
3 for Yb. Thus, second-generation experiments and/or novel
facilities may significantly aid in this quest.

B. Prospects for single-isotope analyses

For most of the APNC nuclei—particularly Cs and Fr, with
one and no stable isotopes, respectively—one cannot envisage
obtaining precision data on several members of the isotopic
chain from experiments at the present time. For these cases,
and to provide useful hints for future experiments, accurate
estimates of the uncertainty in the neutron skin are essential.
Thus, we now compute the weak charge—including nuclear
and one-loop electroweak radiative corrections—for some
Cs isotopes using both relativistic (�v = 0 and �v = 0.025)
parametrizations. The relevant formulas to be employed are
given by Eqs. (3)–(6) suitably modified by the inclusion of
radiative corrections derived by Marciano and Rosner [40];
that is,

QSM
W (N,Z) = (0.9857 ± 0.0004)

× [−N + Z(1 − (4.012 ± 0.010)x̄)], (18)

Qnucl
W (N,Z) = (0.9857 ± 0.0004)[−N (qn − 1)

+Z(1 − (4.012 ± 0.010)x̄)(qp − 1)], (19)

where we have adopted the shorthand notation

x̄ ≡ sin2 θW = 0.2323. (20)

Notice that corrections due to new physics have not been
included in these expressions; these may be found in
Refs. [20,22,40].

To be able to compare more precisely our results with those
in the available literature, the weak matrix elements qp and
qn appearing in Eq. (19) have been slightly modified from
those in Eqs. (10) and (11). We now take into account the
corrections due to the finite size of the proton and neutron
charge distributions, which originate additive correction terms
qc

p and qc
n to Eqs. (10) and (11), respectively. These terms are

given by [20]

qc
n(p) =

∫
dr

1

6
〈r2〉WI,n(p) f (r) ∇2ρc

n(p)

/
QW

n(p), (21)

where 〈r2〉WI,n(p) are the intrinsic nucleon weak rms radii, ρc
n(p)

are the density distributions of nucleon centers, and QW
n(p)

are the nucleon weak charges. Assuming uniform nucleon
distributions,we can cast the corrective terms qc

n(p) due to the
finite size of the nucleon as [20]

qc
p = −(Zα)2 0.32

R2

(
2.1 − 0.14

2QW
p

)
, (22)

qc
n = −(Zα)2 0.32

R2

(
0.74 − 0.14

2QW
n

)
, (23)

where R denotes the sharp cutoff charge radius (which now
includes the finite size of the proton) and a contribution of
0.14 fm2 from the strangeness radius of the nucleon is included.

The analysis of the data of a clean measurement by Wood
et al. [39] of the amplitude of the parity nonconserving
transition between the 6s and 7s states of 133Cs, the only
naturally occurring cesium isotope, established a value of
Q

exp
W = −72.06(28)exp(34)theor for the weak charge of this

element [15]. This experimentally extracted result differed
by 2.5 σ from the standard model prediction with radiative
corrections of QSM

W = −73.20 ± 0.13 [Ref. [40] and Eq. (18)].
Let us mention that σ is evaluated by adding in quadrature
the experimental and theoretical errors quoted for Q

exp
W . The

excitement over this apparent disagreement has faded as
a consequence of recent reports that demonstrate that the
deviation between the experimental results and the standard
model prediction can be removed by taking into account
self-energy and vertex QED radiative corrections [41,42]
(see also Ref. [2] for an up-to-date review of the status
of measurements and calculations of parity violation in
atoms). The newly reported values of the weak charge for
133Cs—which reconcile the experiment with the standard
model prediction—are Q

exp
W = −72.71(29)exp(39)theor [41]

and Q
exp
W = −72.90(28)exp(35)theor [42]. It should be noted

that in the extraction of the experimental values of the weak
charge Q

exp
W , one assumes equal proton and neutron densities

(normalized to unity), so that the overall nuclear correction
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TABLE II. A variety of quantities of relevance to APNC (as defined in the text) for four Cs isotopes (Z = 55), including the
sole stable element 133Cs. The experimental value for the weak charge of this isotope is given by Q

exp
W = −72.71(29)exp(39)theor

[41] and Q
exp
W = −72.90(28)exp(35)theor [42].

�v N QSM
W Qnucl

W qn qp rn/rp rp 
Q
n−p

W QW

0.000 76 −71.226 3.284 0.95410 0.95803 1.04103 4.74141 0.308 −70.918
78 −73.197 3.400 0.95377 0.95803 1.04568 4.74551 0.342 −72.855
80 −75.169 3.512 0.95350 0.95803 1.04949 4.74979 0.373 −74.796
82 −77.140 3.622 0.95327 0.95804 1.05277 4.75903 0.402 −76.738

0.025 76 −71.226 3.228 0.95484 0.95803 1.03062 4.75244 0.249 −70.977
78 −73.197 3.338 0.95457 0.95804 1.03449 4.75720 0.278 −72.919
80 −75.169 3.444 0.95436 0.95804 1.03742 4.76113 0.302 −74.867
82 −77.140 3.549 0.95418 0.95804 1.04007 4.76972 0.325 −76.815

(namely qp) factors out. An efficient way to account for the
difference between neutron and proton densities—and thus
between qn and qp—has been indicated in Eq. (4). Including
radiative corrections, this nuclear-structure correction factor
becomes


Q
n−p

W = 0.9857N

(
1 − qn

qp

)
, (24)

and the total weak charge of the nucleus is computed as QW =
QSM

W + 
Q
n−p

W .
Results for the weak charge together with other relevant

quantities, such as qn(p) [including the intrinsic structure
corrections (22) and (23)], the proton rms radius rp, and the
ratio rn/rp of neutron to proton rms radii are displayed in
Table II for Cs isotopes. As expected, we find that qp is
constant, model independent, and within 0.04% of the sharp-
radius value expressed in Eq. (10). However, both the changes
and the model dependence of the neutron radii along the
isotopic chain are noteworthy. Clearly, the ratio rn/rp increases
with increasing neutron number N. Further, for a given neutron
number N, rn/rp decreases with increasing �v, owing to the
softening of the symmetry energy. Hence, qn decreases with
increasing neutron number and with a decreasing �v. This
ultimately leads to an increase in the nuclear part of the weak
charge Qnucl

W [see Eq. (19)]. In summary, whereas qp is largely
independent of �v, qn shows a moderate increase with �v.
Thus, through variations in �v one has a margin to adjust the
nuclear contribution to the weak charge. In particular, with the
proposed model dependence a change of 0.062 is induced in
Qnucl

W for the 133Cs atom.
The values of the nuclear-structure correction factor


Q
n−p

W for the studied Cs isotopes, calculated from (24), have
been tabulated in Table II. For the specific case of 133Cs, we
find a nuclear-structure correction factor of 
Q

n−p

W = 0.342
(0.278) for the �v = 0 (�v = 0.025) parameter set. Addition
of this nuclear correction term to the standard model prediction
with radiative corrections (−73.197, third column of Table II)
ends in a total weak charge

QW (133Cs) =
{−72.855, if �v = 0,

−72.919, if �v = 0.025,
(25)

which is in satisfactory agreement with the measured values
according to recent revisions [2,41,42].

It has been discussed in the literature [24,25] that 
Q
n−p

W

calculated with RMF parametrizations is almost twice as large
as the corresponding values predicted by Skyrme interactions
[21]. This is a reflection of the stiffer symmetry energy of the
relativistic models. For example, by using the sharp-cutoff-
radius approximation of Eqs. (10) and (11) one can write


Q
n−p

W = 0.9857N
(Zα)2

qp

232

525

t

rp

. (26)

Because this nuclear correction factor is directly proportional
to the neutron skin t, RMF parametrizations with stiffer
symmetry energies—and consequently larger neutron skins—
yield larger values for 
Q

n−p

W relative to Skyrme interactions.
Equation (26) may also be used to estimate the model spread
in 
Q

n−p

W for 133Cs. This is given by

δ (
Q
n−p

W ) = 0.9857N
(Zα)2

qp

232

525
δ

(
t

rp

)
≈ 0.064, (27)

where the model spread for t/rp has been derived from the
rn/rp values calculated with �v = 0 and �v = 0.025 for 133Cs
(listed in Table II). A straightforward estimate of the spread
computed as the difference of the values of 
Q

n−p

W between
the �v = 0 and the �v = 0.025 parameter sets yields

δ (
Q
n−p

W ) ≈ 0.342 − 0.278 = 0.064, (28)

which compares well with our previous value. In Ref. [43] it
has been argued that for the purpose of significantly reducing
the nuclear-structure uncertainties, relative to those arising
from radiative corrections, the neutron radius of 133Cs must
be known within 2%. The promise of a 1% measurement of
the neutron radius of 208Pb at the Jefferson Laboratory [13],
together with theoretical correlations of the type displayed in
Fig. 5, will be of considerable help in reaching the desired
goal.

C. A glimpse into the future: Fr isotopes

Another strategy proposed as a means for attempting to
improve the accuracy in APNC experiments is the utilization
of high-Z atoms that enhance parity-violating effects owing to
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FIG. 6. Calculated ground-state properties
(neutron skin, charge radius, binding energy per
particle, and quadrupole deformation) of some
francium isotopes. Experimental data are shown
for comparison when available [3,47].

both the increase in the number of nucleons and the increased
electronic density in the neighborhood of the nucleus. Further,
alkali atoms have the simplest atomic structure, thereby
minimizing theoretical uncertainties. This makes francium,
the heaviest “simple” atom, an attractive candidate for APNC
experiments. Indeed, the increased number of nucleons and the
increased electronic density in the region of the nucleus makes
the APNC effect in Fr some 15 to 20 times larger than in Cs
[26,44]. Unfortunately, francium has no stable naturally occur-
ring isotopes. Although remarkable experimental progress has
already been achieved in the field [26,45,46], the production of
intense beams of radioactive Fr isotopes represents an exciting
challenge for the future of the rare-isotope facilities all over
the world.

We present estimates for APNC observables in francium
along an isotopic chain that ranges from 207Fr to 225Fr and that
includes the two isotopes with the longest half-life (of about
20 min); these are 212Fr and 223Fr. In Fig. 6 we display the
neutron skin, charge radii, binding energy per nucleon, and
deformation for six isotopes in the chain computed with the
two extremes of the values of the isoscalar-isovector coupling
constant used in this work (�v = 0 and �v = 0.025). As
established earlier for 174Yb in Fig. 1, the calculated values for
the charge radii, binding energies, and deformation show little
model dependence and reproduce the existing experimental
data (where available) [3,47] rather well. As expected, it is
only the (experimentally unknown) neutron skins that are
sensitive to the value of �v. Note that with the exception
of the semimagic nucleus 213Fr, the ground state of all other
isotopes is found to be deformed.

As was done for the Cs isotopes in Table II, we display
in Table III the calculated weak charge for the six considered
Fr isotopes, alongside other relevant observables. According
to Eq. (18), the standard model predictions for the weak

charges of 212Fr and 223Fr result in QSM
W = −117.380 ± 0.20

and −128.223 ± 0.20, respectively, where the uncertainty in
QSM

W has been estimated in a similar way to that of 133Cs in
Ref. [40]. The nuclear corrections to the weak charge of 212Fr
(223Fr) calculated from qn and qp through Eq. (24) are given
as follows:


Q
n−p

W =
{

1.171 (1.584), if �v = 0,

0.905 (1.237), if �v = 0.025.
(29)

These results suggest that nuclear-structure uncertainties in
our model, arising from differences in the shape of the neutron
density relative to that of the proton, are 0.266 and 0.347 for the
francium isotopes 212Fr and 223Fr, respectively. The numbers
are similar to the uncertainties 0.264 and 0.345 that one would
obtain with the sharp-radius approximation of Eqs. (26) and
(27).

Thus, with the expected precision to be attained by the
PREX experiment, which we mimic here through a change in
�v, our predictions for the weak charge QW = QSM

W + 
Q
n−p

W

of the 212Fr and 223Fr isotopes vary between QW = −116.209
(�v = 0) and −116.475 (�v = 0.025) for 212Fr, and between
QW = −126.639 and −126.986 for 223Fr. Note that the
uncertainty due to �v should be augmented by a ±0.20 error
from QSM

W .

IV. CONCLUSIONS

Motivated by the prospects of a high-precision (1%)
measurement of the neutron radius of 208Pb at the Thomas
Jefferson Laboratory, we have examined the impact of such
experiment on atomic parity nonconserving observables.
Although such a measurement will have far-reaching con-
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TABLE III. A variety of quantities of relevance to APNC (as defined in the text) for six Fr isotopes (Z = 87). Francium
has no stable isotopes.

�v N QSM
W Qnucl

W qn qp rn/rp rp 
Q
n−p

W QW

0.000 120 −112.451 12.650 0.88788 0.89510 1.02993 5.51834 0.954 −111.497
125 −117.380 13.361 0.88659 0.89510 1.03724 5.53761 1.171 −116.209
126 −118.366 13.502 0.88636 0.89510 1.03857 5.53974 1.213 −117.153
132 −124.280 14.294 0.88544 0.89511 1.04402 5.60901 1.406 −122.874
136 −128.223 14.866 0.88454 0.89511 1.04921 5.64364 1.584 −126.639
138 −130.194 15.171 0.88397 0.89512 1.05246 5.66462 1.693 −128.501

0.025 120 −112.451 12.453 0.88955 0.89510 1.02062 5.52739 0.734 −111.717
125 −117.380 13.123 0.88853 0.89510 1.02641 5.54760 0.905 −116.475
126 −118.366 13.250 0.88839 0.89510 1.02723 5.55034 0.932 −117.434
132 −124.280 14.015 0.88759 0.89511 1.03199 5.61457 1.094 −123.186
136 −128.223 14.556 0.88686 0.89511 1.03624 5.65014 1.237 −126.986
138 −130.194 14.844 0.88637 0.89512 1.03904 5.67325 1.329 −128.865

sequences in fields as diverse as nuclear structure, flavor
violations in the strong interactions, and nuclear astrophysics,
we have focused in this contribution exclusively on APNC
observables.

Our theoretical framework is based on the highly successful
relativistic NL3 parameter set, suitably modified by the
addition of an isoscalar-isovector term (�v). The virtue of
such a term is that it enables one to change the neutron radius
of heavy nuclei—which at present is poorly known—without
compromising the success of the model in reproducing a
variety of ground-state properties of nuclei throughout the
periodic table. Relative to an earlier study based closely
on this formalism, the present study improves on it in one
essential aspect: the inclusion of deformation and pairing
correlations. Without adding these effects, the predictions
for the structure of most nuclei along the isotopic chains of
relevance to the APNC program would be unreliable. As a
result, in the present work we have mapped the neutron radii
of the relevant isotopic chains as a function of both N and
�v. As established by others before us, we have found a
strong correlation between the neutron radius of 208Pb and
the neutron radius of APNC nuclei—even for the case of
odd-even and odd-odd nuclei. Employing this correlation, we
have used a range of values for �v that closely matches the
1% (or ∼0.056 fm) uncertainty expected to be achieved by the
Jefferson Laboratory experiment.

With this information at hand, we proceeded to study the
impact of such a 1% measurement on two different combi-
nations of APNC observables. The first set of observables
(R1 and R2) are formed from ratios of weak nuclear charges
along isotopic chains. The merit of such observables is that
the ratios are largely insensitive to uncertainties in atomic
structure, leaving nuclear uncertainties—in the form of the
neutron skin—as the main source of theoretical error. The
second set of observables involves a direct determination of
the weak charge of various alkali metals, such as cesium
and francium. Unfortunately, these elements have very few
stable or long-lived isotopes, so in their case the accurate

determination of ratios of weak nuclear charges is more
difficult.

In the case of the isotopic ratioR1, it has been claimed that a
significant test of the standard model requires a determination
of R1 to better than 0.1%. This precision would be required
for R1 to supersede the 133Cs experiment as the most stringent
test for new physics within the APNC program. Unfortunately,
our results indicate that the projected 1% accuracy in the
measurement of the neutron radius of 208Pb at the Jefferson
Laboratory appears unlikely to translate into the required 0.1%
(or lower) uncertainty in R1. Instead, we have established an
uncertainty in R1 that is two to three times larger (of the
order of 0.25%–0.35%). Although the Jefferson Laboratory
experiment is unlikely to achieve the desired accuracy, it is
plausible that second-generation experiments may reach this
goal.

In the case of the weak nuclear charge of the alkali
metals, where few stable or long-lived isotopes exist, one must
consider theoretical uncertainties arising from both atomic
and nuclear structure. Although it is no longer possible to
fully eliminate uncertainties in atomic structure (as was done
for R1) alkali metals at least enjoy the simplest atomic
structure. As far as the nuclear structure is concerned, the
uncertainty is fully subsumed into a single factor: the neutron
skin of the nucleus of interest. It has been argued that to
reduce significantly the nuclear-structure uncertainties relative
to radiative corrections, the neutron radius of 133Cs must be
known with an accuracy of 2% or better. Similar accuracy
should be expected for the case of other alkali metals.
Indeed, in anticipation of the commissioning of rare isotope
accelerators all over the world and the ongoing advances in
the field of production and magneto-optical trapping of
radioactive atoms, we have computed the weak nuclear charge
of the two longest lived francium isotopes: 212Fr (20 min) and
223Fr (21.8 min). Our assumed uncertainty in the neutron radii
of 212Fr and 223Fr translated into a theoretical uncertainty in
the value of their weak nuclear charges of 0.2% and 0.3%,
respectively.
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In summary, we have studied the impact of a high-precision
measurement of the neutron radius of 208Pb on atomic parity
nonconservation experiments. However, the relevance of such
a measurement on a plethora of other research areas—such as
nuclear structure, flavor violations in QCD, and neutron-star
structure—has been strongly emphasized here and elsewhere.
Thus, the neutron radius of 208Pb stands as one of the most
fundamental nuclear physics quantities yet to be accurately
determined. This unfortunate situation should be promptly
corrected.
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