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Narrow Jπ = 1/2+, 3/2+, and 3/2− states of �+ in a quark model
with antisymmetrized molecular dynamics
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The exotic baryon �+(uudds̄) is studied with microscopic calculations in a quark model by using a
method of antisymmetrized molecular dynamics. We predict that three narrow states, J π = 1/2+(I = 0), J π =
3/2+(I = 0), and J π = 3/2−(I = 1) nearly degenerate with the lowest 1/2− state in the uudds̄ system. We
discuss KN decay widths and estimate them to be � < 7 for the J π = {1/2+, 3/2+}, and � < 1 MeV for the
J π = 3/2− state. In contrast to these narrow states, the 1/2− states should be much broader. We assign the
observed �+ as the J π = {1/2+, 3/2+}.
DOI: 10.1103/PhysRevC.71.045202 PACS number(s): 14.20.−c, 12.38.Aw, 12.39.Jh

I. INTRODUCTION

The exotic baryon �+ has recently been reported by several
experimental groups [1–9]. Because the quantum numbers
determined from its decay modes indicate that the minimal
quark content is uudds̄, these induced experimental and
theoretical studies of multiquark hadrons. However, it should
be kept in mind that the �+ has not been well established yet
because of the low statistics, and there is no evidence of the
�+ in some experiments [10–12].

The prediction of a Jπ = 1/2+ state of uudds̄ by a chiral
soliton model [13] motivated the experiments of the first
observation of �+ [1]. Their prediction of even parity is
unnatural in the naive quark model, because the lowest q4q̄

state is expected to be spatially symmetric and have odd parity
because of the odd intrinsic parity of the antiquark. Theoretical
studies were done to describe �+ by many groups [14–21],
some of which predicted the opposite parity, Jπ = 1/2−
[18–20]. The problem of spin and parity of �+ is not only open
but also essential to understand the dynamics of pentaquark
systems. To solve this problem, it is crucial to calculate a
five-quark system relying on fewer a priori assumptions such
as the existence of quark clusters or the spin parity.

In this article we would like to clarify the mechanism of
the existence of the pentaquark baryon and predict possible
narrow �+ states. We try to extract a simple picture for the
pentaquark baryon with its energy, width, spin, parity and also
its shape from explicit five-body calculation. To achieve this
goal, we study the pentaquark with a flux-tube model [24,25]
based on strong coupling quantum chromodynamics (QCD),
by using a method of antisymmetrized molecular dynamics
(AMD) [22,23]. In the flux-tube model, the interaction energy
of quarks and antiquarks is given by the energy of the stringlike
color-electric flux, which is proportional to the minimal length
of the flux-tube connecting quarks and antiquarks at long
distances supplemented by perturbative one-gluon-exchange
(OGE) interaction at short distances. For the q4q̄ system the
flux-tube configuration has an exotic topology [Fig. 1(c)], in
addition to an ordinary meson-baryon topology [Fig. 1(d)], and
the transition between different topologies takes place only in
higher orders of the strong coupling expansion. Therefore, it
seems quite natural that the flux-tube model accommodates

the pentaquark baryon. In 1991, Carlson and Pandharipande
studied exotic hadrons in the flux-tube model [26]. They
calculated for only a few q4q̄ states with very limited quantum
numbers and concluded that pentaquark baryons are absent.
We apply the AMD method to the flux-tube model. The AMD
is a variational method to solve a finite many-fermion system.
This method is powerful for the study of nuclear structure.
One of the advantages of this method is that the spatial and
spin degrees of freedom for all particles are independently
treated. This method can successfully describe various types
of structure such as shell-model-like structure and clustering
(correlated nucleons) in nuclear physics. In the application of
this method to a quark model, we take the dominant terms
of OGE potential and string potential because of the gluon
flux tube. Different flux-tube configurations are assumed to be
decoupled. Because we are interested in the narrow states, we
only adopt the confined configuration given by Fig. 1(c). We
calculate all the possible spin parity states of uudds̄ system
and predict low-lying states. By analyzing the wave function,
we discuss the properties of �+ and estimate the decay widths
of these states with a method of reduced width amplitudes.

This article is organized as follows. We explain the
formulation of the present framework in the next section
and show the results in Sec. III. In Sec. IV, we discuss the
structure of low-lying states and their widths. Finally, we give
a summary in Sec. V.

II. FORMULATION

In the present calculation, the quarks are treated as nonrel-
ativistic spin- 1

2 fermions. We use a Hamiltonian as follows:

H = H0 + HI + Hf , (1)

where H0 is the kinetic energy of the quarks, HI represents
the short-range OGE interaction between the quarks, and Hf

is the energy of the flux tubes. For simplicity, we take into
account the mass difference between the ud quarks and the
s quark, only in the mass term of H0 but not in the kinetic
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FIG. 1. Flux-tube configurations for confined states of qq̄ (a),
q3 (b), q4q̄ (c) and the disconnected flux tube of q4q̄ (d). Figures (e)
and (f ) represent the flux tubes in the color configurations, [ud][ud]s̄
and [uu][dd]s̄, respectively.

energy term. Then, H0 is represented as follows:

H0 =
Nq∑
i

mi +
Nq∑
i

p2
i

2mq

− T0, (2)

where Nq is the total number of quarks and mi is the mass of
i-th quark, which is mq for a u or d quark and ms for a s̄ quark.
T0 denotes the kinetic energy of the center-of-mass motion.

HI represents the short-range OGE interaction between
quarks and consists of the Coulomb and the color-magnetic
terms as follows:

HI = αc

∑
i<j

FiFj

[
1

rij

− 2π

3mimj

s(rij )σi · σj

]
. (3)

Here, αc is the quark-gluon coupling constant, and FiFj is
defined by

∑
α=1,...,8 Fα

i F α
j , where Fα

i is the generator of

color SU(3), 1
2λα

i for quarks and − 1
2 (λα

i )∗ for antiquarks. The
usual δ(rij ) function in the spin-spin interaction is replaced

by a finite-range Gaussian, s(rij ) = [ 1
2
√

π�
]3 exp [− r2

ij

4�2 ], as in
Ref. [26]. Of course, the full OGE interaction contains other
terms such as tensor and spin-orbit interactions. However,
because our main interest here is to see the basic properties of
the pentaquark, we do not include these minor contributions.

In the flux-tube quark model [24], the confining string
potential is written as Hf = σLf − M0, where σ is the string
tension, Lf is the minimum length of the flux tubes, and M0

is the zero-point string energy. M0 depends on the topology
of the flux tubes and is necessary to fit the qq̄, q3, and q4q̄

potential obtained from lattice QCD or phenomenology. In the
present calculation, we adjust the M0 to fit the absolute masses
for each of three-quark and pentaquark.

For the meson and 3q-baryon systems, the flux-tube
configurations are the linear line and the Y-type configuration
with three bonds and one junction as shown in Figs. 2(a) and
2(b), respectively. The string potential given by the Y-type flux
tube in a 3q-baryon system is supported by lattice QCD [27].
For the pentaquark system, the different types of flux-tube
configurations appear as shown in Figs. 1(e), 1(f ), and 1(d),
which correspond to the states, |	(e)〉 = |[ud][ud]s̄〉, |	(f )〉 =
|[uu][dd]s̄〉, and |	(d)〉 = |(qqq)1(qq)1〉, respectively. ([qq] is
defined by color antitriplet of qq.) The flux-tube configuration
shown in Figs. 1(e) and 1(f ) have seven bonds and three
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FIG. 2. Flux-tube topologies for the qq̄ (a), q3 (b), [q1q2][q3q4]q̄1

(c) and disconnected flux tubes (d) for the (qqq)1(qq̄)1. The flux-tube
topologies are described by the bonds with the lengths Rk and the
junctions jk .

junctions, whereas the configuration in Fig. 1(d) has four
bonds and one junction. In principle, in addition to these
color configurations ([qq][qq]q̄ and (qqq)1(qq)1), other
color configurations are possible in totally color-singlet q4q̄

systems by incorporating a color-symmetric (qq)6 pair as in
Refs. [16,21]. However, because such a string from the (qq)6

is energetically excited and is unfavored in the strong coupling
limit of gauge theories as shown in Ref. [28], we consider only
color-3 flux tubes as the elementary tubes. In fact, the string
tension for the color-6 string in the strong coupling limit is 5/2
times larger than that for the color-3 string from the expectation
value of the Casimir operator. The string potentials given by
the tube lengths of the configuration Fig. 1(c) is supported by
lattice QCD calculations [29].

In the present calculation of the energy, we neglect the
transition among |	(e)〉, |	(f )〉, and |	(d)〉 because they have
different flux-tube configurations. It is reasonable in the first-
order approximation, as mentioned. In each tube configuration,
the minimum length Lf is given by a sum of the lengths
(Ri) of bonds Lf = R1 + · · · + Rk [k is the number of the
bonds (see Fig. 2)]. Here we define Lij to be the length
of the path between i-th (anti-)quark and j-th (anti-)quark
along the flux tubes. For example, in case of the [qq][qq]q̄
state shown in Fig. 2(c), the path lengths are given by the
bond lengths Ri as L12 = R1 + R2, L13 = R1 + R6 + R7 +
R3, L11̄ = R1 + R6 + R5, and so on. Then we can rewrite Lf

in the expectation values of the string potential 〈	|Hf |	〉 with
respect to a meson system(	qq̄), a three-quark system(	q3 ),
and the pentaquark states 	(e),	(f ),	(d), as follows:

Lf = L12 in 〈	qq̄ |Hf |	qq̄〉, (4)

Lf = 1
2 (L12 + L23 + L31) in 〈	q3 |Hf |	q3〉, (5)

Lf = 1
2 (L12 + L34) + 1

8 (L13 + L14 + L23 + L24)

+ 1
4 (L1̄1 + L1̄2 + L1̄3 + L1̄4) in 〈	(e,f )|Hf |	(e,f )〉,

(6)

Lf = 1
2 (L12 + L23 + L31) + L1̄4 in 〈	(d)|Hf |	(d)〉. (7)
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In the practical calculation, we approximate the minimum
length of the flux tubes Lf by a linear combination of
two-body distances rij between the i-th (anti-)quark and the
j-th (anti-)quark as follows:

Lf ≈ r12 in 〈	qq̄ |Hf |	qq̄〉, (8)

Lf ≈ 1
2 (r12 + r23 + r31) in 〈	q3 |Hf |	q3〉, (9)

Lf ≈ 1
2 (r12 + r34) + 1

8 (r13 + r14 + r23 + r24)

+ 1
4 (r1̄1 + r1̄2 + r1̄3 + r1̄4) in 〈	(e,f )|Hf |	(e,f )〉,

(10)

Lf ≈ 1
2 (r12 + r23 + r31) + r1̄4 in 〈	(d)|Hf |	(d)〉. (11)

It is clear that the above equations are obtained by ap-
proximating the path length Lij with the distance rij as
Lij ≈ rij for all qq and qq̄ pairs. In the meson system,
Eq. (8) gives the exact Lf value. The approximation,
Eq. (9), for 3q baryons is used in Ref. [24] and has been proved
to be a good approximation. We note that the confinement
is reasonably realized by the approximation in Eq. (10)
for 	(e,f ) as follows. The flux-tube configuration shown in
Fig. 1(e) [and 1(f )] consists of seven bonds and three junctions.
In the limit that the length (Ri) of any i-th bond becomes much
larger than other bonds, the string potential 〈Hf 〉 approximated
by Eq. (10) behaves as a linear potential σR. It means
that all the quarks and antiquarks are bound by the linear
potential with the tension σ . In that sense, the approximation
in Eq. (10) for the connected flux-tube configurations is
regarded as a natural extension of the approximation [Eq. (9)]
for 3q baryons. It is convenient to introduce an operator
O ≡ − 3

4σ
∑

i<j FiFj rij − M0. One can easily prove that
the above approximations, Eqs. (8)–(11), are equivalent to
〈	|Hf |	〉 ≈ 〈	|O|	〉 within each of the flux-tube configu-
rations because the proper factors arise from FiFj depending
on the color configurations of the corresponding qq (or qq̄)
pairs.

To see the accuracy of the approximation Eqs. (9) and (10),
we calculate the ratio of the approximated length Lapp to the
exact Lf in a simple quark distribution with Gaussian form that
imitates the model wave function of the present calculation.
Figure 3 shows the ratio Lapp/Lf in a q3 system and a
[qq][qq]q̄ system. The quark positions ri are randomly chosen
in Gaussian deviates with the probability ρ = exp(−r2

i /b2),
and (Lf ,Lapp/Lf ) values for 1000 samplings are plotted. We
use the same size parameter b as that of the single-particle
Gaussian wave function in the present model explained later.
Comparing Figs. 3(a) and 3(b), we found that the Lapp/Lf ratio

for the [qq][qq]q̄ system is about 10% smaller than that for
the q3 system. Because the zero-point energy M0 in the string
potential is adjusted in each of the q3 and the [qq][qq]q̄, this
underestimation should relate only to the relative energy of the
string potential in each system and may give a minor effect on
the level structure of the pentaquark.

We solve the eigenstates of the Hamiltonian with a
variational method in the AMD model space [22,23]. We take
a base AMD wave function in a quark model as follows:

	(Z) = (1 ± P )A
[
φZ1φZ2 · · · φZNq

X
]
, (12)

φZi
=

(
1

πb2

)3/4

exp

[
− 1

2b2
(r −

√
2bZi)

2 + 1

2
Z2

i

]
, (13)

where 1 ± P is the parity projection operator, A is the
antisymmetrization operator, and the spatial part φZi

of the
i-th single-particle wave function is given by a Gaussian
whose center is located at Zi in the phase space. X is
the spin-isospin-color function. For example, in case of the
proton, X is given as X = (|↑↓↑〉S − |↑↑↓〉S) ⊗ |uud〉 ⊗
εabc|abc〉C . Here, |m〉S(m =↑,↓) is the intrinsic-spin function
and |a〉C(a = 1, 2, 3) expresses the color function. Thus, the
wave function of the Nq quark system is described by the
complex variational parameters, Z = {Z1, Z2, . . . , ZNq}. By
using the frictional cooling method [22] the energy variation
is performed with respect to Z.

For the pentaquark system (uudds̄),

X =
∑

m1,m2,m3,m4,m5

cm1m2m3m4m5 |m1m2m3m4m5〉S

⊗ {|ududs̄〉 or |uudds̄〉} ⊗ εabgεcehεghf |abcef̄ 〉C, (14)

where |ududs̄〉 and |uudds̄〉 correspond to the configurations
[ud][ud]s̄ and [uu][dd]s̄ in Fig. 1, respectively. Because
we are interested in the confined states, we do not use
the meson-baryon states, (qqq)1(qq̄)1. This assumption of
decoupling of the reducible and irreducible configurations
of the flux tubes can be regarded as a kind of bound-state
approximation. The decoupling of the different flux-tube
configurations can be characterized by the suppression factor
ε from the transition of the gluon field in the nondiagonal
matrix elements ε〈	1|O|	2〉. In a simple flux-tube model, ε

is roughly estimated by the area s swept by the tubes when
moving from one configuration into the other configuration as
ε ∼ exp(−σs). We make an estimation of the expectation
value of exp(−σs) by assuming a simple quark distribution
with Gaussian form that imitates the model wave function
in the same way as the evaluation of the Lapp/Lf . The
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suppression factor ε among the configurations [ud][ud]s̄,
[uu][dd]s̄, and (qqq)1(qq̄)1 is estimated to be ε2 <∼ 1/10
within the present model space. Therefore, we consider that
the present assumption of the complete decoupling ε = 0 in
the energy variation is acceptable in first-order calculations.

The coefficients cm1m2m3m4m5 for the spin function are
determined by diagonalization of Hamiltonian and norm
matrices. After the energy variation with respect to the {Z}
and cm1m2m3m4m5 , the intrinsic-spin and parity Sπ eigenwave
function 	(Z) for the lowest state is obtained for each Sπ .
In the AMD wave function, the spatial wave function is
given by multicenter Gaussians. When the Gaussian centers
are located in some groups, the wave function describes
the multicenter cluster structure and is equivalent to the
Brink model wave function (a cluster model often used in
nuclear structure study) [30,31]. Conversely, because of the
antisymmetrization, it can also represent shell-model wave
functions when all the Gaussian centers are located near the
center of the system [30,31]. In nuclear structure study, it has
been already proved that the AMD is one of the powerful tools
because of the flexibility of the wave function [23]. In general,
the relative motions in the AMD are given by such Gaussian
forms as exp[−ν ′(x − R)2], where x is a Jacobi coordinate
and R is given by a linear combination of the Gaussian
centers {Z1, Z2, . . . , ZNq

}. Here we explain the details of the
relative motion in a simple case of a two-body cluster structure
in a Nq = 5 system. If the Gaussian centers are located
in two groups as Z1 = Z2 = Z3 = Q1/

√
2b and Z4 = Z5 =

Q2/
√

2b, and if each group contains no identical particles,
the wave function expresses the two-body cluster state, where
each cluster is the harmonic oscillator 0s-orbital state, (0s)2,3,
with zero orbital-angular momentum. The intercluster motion
X is given as X (x, R, ν ′) = exp[−ν ′(x − R)2], where ν ′ =

3
5b2 , R = Q2 − Q1 and x is the relative coordinate between
the clusters. In the partial wave expansion of the intercluster
motion X ,

X (x, R, ν ′) = exp[−ν ′(x − R)2],

= �L4πiL(2ν ′Rx)e−ν ′(x2+R2)

×�MYLM (x̂)Y ∗
LM (R̂), (15)

where iL is the modified spherical Bessel function, it is
found that the wave function contains higher orbital-angular
momentum L components in general. However, in the case of
ν ′R2 � O(1), the wave function is dominated by the lowest

L component because the L components rapidly decrease
with the increase of L. As a result, the even-parity Sπ=+ 3q

and odd-parity q4q̄ states are almost the L = 0 eigenstates,
whereas the odd-parity 3q and even-parity q4q̄ states are nearly
the L = 1 eigenstates. (The q4q̄ contains an odd intrinsic
parity of the q̄ in addition to the parity of the spatial part.)
Therefore, we do not perform the explicit L projection in
present calculation for simplicity. We have actually checked
that the obtained wave functions are almost the L eigenstates
(L = 0 or 1) and higher L components are minor in most of
the q3 and q4q̄ states.

In the present wave function we do not explicitly perform
the isospin projection; however, the wave functions obtained
by energy variation are found to be approximately isospin-
eigenstates in most of the low-lying states of the q3 and q4q̄

because of the color-spin symmetry.
In the numerical calculation, the linear and Coulomb

potentials are approximated by seven-range Gaussians. We
use the following parameters:

αc = 1.05,

� = 0.13 fm,

mq = 0.313 GeV, (16)

ms = 0.513 GeV,

σ = 0.853 GeV/fm.

Here, the quark-gluon coupling constant αc is chosen to fit the
N and  mass difference. The string tension σ is adopted to
adjust the excitation energy of N∗(1520). The size parameter
b is chosen to be 0.5 fm.

III. RESULTS

In Table I, we display the calculated energy of q3 states
with Sπ = 1/2+(N), Sπ = 3/2+(), and Sπ = 1/2−(N∗).
The zero-point energy M0 of the string potential is chosen
to be M0

q3 = 972 MeV to fit the masses of q3 systems, N,N∗,
and . The calculated masses for � with Sπ = 1/2− and
1/2+ correspond to the experimental data of �(1115) and
�∗(1670). The contributions of the kinetic and each potential
term are consistent with the results of Ref. [26]. We checked
that the obtained states are almost eigenstates of the angular
momentum L and the L projection gives only minor effects on
the energy.

TABLE I. Calculated masses (GeV) of the q3 systems. The expectation values of the kinetic,
string, Coulomb, and color-magnetic terms are also listed.

Sπ (uud)1 (uud)1 (uuu)1 (uds)1 (uds)1
1
2

+ 1
2

− 3
2

+ 1
2

+ 1
2

−

Kinetic (H0) 1.74 1.87 1.66 1.93 2.09
String (HF ) 0.02 0.27 0.07 0.03 0.25
Coulomb −0.65 −0.52 −0.62 −0.65 −0.53
Color mag. −0.17 −0.09 0.14 −0.16 −0.14
E 0.94 1.52 1.24 1.14 1.67
Exp. (MeV) N (939) N∗(1520), N∗(1535) (1232) �(1115) �(1670)
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TABLE II. Calculated masses (GeV) of the uudds̄ system. M0
q4 q̄

= 2385 MeV is used to adjust the energy of the lowest
state to the observed mass. The expectation values of the kinetic, string, Coulomb, and color-magnetic terms and that of
the color-magnetic term in qq̄ pairs are listed. In addition to the lowest 1/2− state with the [uu][dd]s̄ configuration, we
show the results of the 1/2− state with [ud][ud]s̄ configuration, which lies in the low-energy region.

Sπ [uu][dd]s̄ [ud][ud]s̄ [ud][ud]s̄ [ud][ud]s̄ [uu][dd]s̄ [ud][ud]s̄ [ud][ud]s̄
1
2

− 3
2

− 1
2

+ 1
2

− 5
2

− 3
2

+ 5
2

+

Kinetic (H0) 3.23 3.22 3.36 3.19 3.19 3.36 3.33
String (HF ) −0.67 −0.66 −0.55 −0.64 −0.64 −0.56 −0.54
Coulomb −1.05 −1.04 −0.99 −1.03 −1.03 −0.99 −0.98
Color mag. −0.01 0.01 −0.25 0.04 0.19 −0.06 0.17
qq̄Color mag. −0.06 −0.01 0.00 0.02 0.06 0.02 0.04
E 1.50 1.53 1.56 1.56 1.71 1.75 1.98

Now, we apply the AMD method to the uudds̄ system.
For each spin parity, we calculate energies of the [ud][ud]s̄
and [uu][dd]s̄ states and adopt the lower one. In Table II,
the calculated results are shown. We adjust the zero-point
energy of the string potential M0 as M0

q4q̄
= 2385 MeV to

fit the absolute mass of the recently observed �+. This M0
q4q̄

for pentaquark system is chosen independently of M0
q3 for

3q baryon. If M0
q4q̄

= 5
3M0

q3 is assumed as in Ref. [26], the
calculated mass of the pentaquark is around 2.2 GeV, which is
consistent with the result of Ref. [26].

The most striking point in the results is that the Sπ = 3/2−
and Sπ = 1/2+ states nearly degenerate with the Sπ = 1/2−
states. The Sπ = 1/2+ correspond to Jπ = {1/2+, 3/2+}
(S = 1/2, L = 1), and the Sπ = 3/2− is Jπ = 3/2−(S =
3/2, L = 0). The lowest Sπ = 1/2−(Jπ = 1/2−, L = 0) state
appears just below the Sπ = 3/2− and the second Sπ =
1/2−(Jπ = 1/2−, L = 0) state is at the same energy as the
Sπ = 1/2+(Jπ = 1/2+, 3/2+, L = 1) states. However, these
Jπ = 1/2− states, as we discuss later, are expected to be much
broader than other states. The Jπ = 1/2+ and 3/2+ exactly
degenerate in the present Hamiltonian that does not contain
the spin-orbit force. Other spin-parity states are much higher
than these low-lying states.

IV. DISCUSSION

In this section, we analyze the structure of the obtained
low-lying states of the uudds̄ system and discuss the level
structure and the width for KN decays.

A. Structure of low-lying states

We analyzed the spin structure of these states and found
that the Jπ = {1/2+, 3/2+} states consist of two spin-zero
[ud] pairs, whereas the Jπ = 3/2− contains of a spin-zero
[ud] pair and a spin-one [ud] pair. Here we call the color
antitriplet qq pair with the same spatial single-particle wave
functions a [qq] pair and note a spin S [qq] pair as [qq]S .
Because the [ud]0 pair has the isospin I = 0 and the [ud]1

pair has the isospin I = 1 because of the color asymmetry, the
Jπ = 3/2− state is isovector, whereas the lowest even-parity

Jπ = {1/2+, 3/2+} states are isoscalar. The Jπ = 1/2+ state
corresponds to the �+(1530) in the flavor 10-plet predicted by
Diakonov et al. [13]. It is surprising that the odd-parity state,
Jπ = 3/2− has the isospin I = 1, which means that this state
is a member of the flavor 27-plet and belong to a new family
of � baryon. We denote the Jπ = {1/2+, 3/2+}, I = 0 states
by �+

0 and the Jπ = 3/2−, I = 1 state by �+
1 . The mass

difference E(�+
0 ) − E(�+

1 ) is about 30 MeV. In the energy
region compatible to the Jπ = {1/2+, 3/2+} and Jπ = 3/2−
states, there appear two Jπ = {1/2−} states. The lowest one
is the [uu][dd]s̄ state with [uu]1 and [dd]1 pairs, whereas
the higher one is the [ud][ud]s̄ with [ud]0 and [ud]1 pairs.
The former is the isospin symmetric state and is dominated by
I = 0 component. The latter is isovector and is regarded as the
spin S partner of the Jπ = 3/2− state. The Jπ = 1/2− state
is the lowest in the uudds̄ system. We, however, consider this
state not to be the observed �+ because its width should be
broad as discussed later.

Although it is naively expected that unnatural spin parity
states are much higher than the natural spin-parity 1/2− state,
the present results show the abnormal level structure of the
(ududs̄) system, where the high spin Jπ = 3/2− state and the
unnatural parity Jπ = {1/2+, 3/2+} states nearly degenerate
just above the Jπ = 1/2− state. By analyzing the details
of these states, the abnormal level structure can be easily
understood with a simple picture as follows. As shown in
Table II, the Jπ = {1/2+, 3/2+}(L = 1) states have larger
kinetic and string energies than the Jπ = 3/2−(L = 0) and
Jπ = 1/2−(L = 0) states, whereas the former states gain the
color-magnetic interaction. It indicates that the degeneracy
of parity-odd states and parity-even states is realized by
the balance of the loss of the kinetic and string energies
and the gain of the color-magnetic interaction. In the Jπ =
{1/2+, 3/2+} and the Jπ = 1/2−, 3/2− states, the competition
of the energy loss and gain can be understood by Pauli principle
from the point of view of the [qq] pair structure as follows.
As already mentioned by Jaffe and Wilczek [14], the relative
motion between two [qq]0 pairs must have the odd parity
(L = 1) because the L = 0 is forbidden between the two
identical [qq] pairs because of the color antisymmetry. In
the Jπ = 3/2− state and the second Jπ = 1/2− state, one
of the [ud]0 pairs is broken to be a [ud]1 pair and the L = 0
is allowed because two diquarks are not identical. The L = 0
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FIG. 4. The q and q̄ density distribution in the J π =
1/2+, 3/2+(S = 1/2, L = 1) states of the uudds̄ system. The u
density (a), s̄ density (b), and total quark-antiquark density (c) of
the intrinsic state before parity projection are shown. The schematic
figure of the corresponding flux-tube configuration is illustrated in
(d). Open squares in (a) and (b) indicate the positions of Gaussian
centers Re[

√
2bZi] for the i-th single-particle wave functions.

is energetically favored in the kinetic and string terms, and the
energy gain cancels the color-magnetic energy loss of a [ud]1

pair. Also in the lowest Jπ = 1/2− state, the competition of
energy loss and gain is similar; each contribution of the kinetic,
string, and potential energies in the lowest Jπ = 1/2− state
is almost the same as those in the Jπ = 3/2− and the second
Jπ = 1/2−(Table II). It means that the gain of the kinetic
energy of the L = 0 state competes with the color-magnetic
energy loss in the lowest Jπ = 1/2− as well as the Jπ = 3/2−
and the second Jπ = 1/2−.

We should stress that the existence of two spin-zero
ud diquarks in the Jπ = {1/2+, 3/2+} states predicted by
Jaffe and Wilczek [14] is actually confirmed in the present
calculations without a priori assumptions for the spin and
spatial configurations. In fact, the component with two spin-
zero [ud] pairs is 97% in the present Jπ = {1/2+, 3/2+}
state. In Fig. 4, we show the quark and antiquark density
distribution in the Jπ = {1/2+, 3/2+} states and display the
centers of Gaussians for the single-particle wave functions. In
the intrinsic wave function, Gaussian centers for two [ud]0

pairs are located far from each other with the distance about
0.6 fm. This indicates the spatially developed diquark-cluster
structure, which means the spatial and spin correlations in
each [ud] pair. It is found that the center of the s̄ stays at
the same point of that of one [ud]0, as Z1 = Z2 = 3

5
√

2b
Q12

and Z3 = Z4 = Z5 = − 2
5
√

2b
Q12, where {Z1, Z2, . . . , Z5} are

the Gaussian centers in Eq. (12) and |Q12| ∼ 0.6 fm. As a
result, we found the spatial development of ud-uds clustering
and a parity-asymmetric shape in the intrinsic state before
parity projection (Fig. 4). As explained in Table II, the wave
function is equivalent to the [ud]0-[ud]0s̄ cluster wave function
in the Brink model [30] with L = 1 relative motion. After the
parity projection, the s̄ is exchanged between two diquarks.
In contrast to the spatially developed cluster structure in the
even-parity state, the odd-parity states Jπ = 1/2−, 3/2− are

almost the spatially symmetric (0s)5 states with spherical
shapes.

As mentioned, the degeneracy of the even-parity states and
the odd-parity states originates in the balance of the L = 1
excitation energy and the energy gain of the color-magnetic
interaction. Here we consider the L = 1 excitation energy
E(L = 1) as the total energy loss in the kinetic, string, and
Coulomb terms. It is important that E(L = 1) ∼ 0.3 GeV in
the pentaquark is much smaller than E(L = 1) ∼ 0.5 GeV
in the nucleon system. The reason for the relatively small
E(L = 1) in the pentaquark can be easily understood by
the ud-uds cluster structure. In the two-body cluster state
with the L = 1 relative motion, the E(L = 1) is roughly
estimated by the reduced mass µ = A1A2/(A1 + A2) of two
clusters, as is given as E(L = 1) ∝ 1

µ
(A1 and A2 are the

masses of the clusters). In the nucleon, µ = 2
3mq is obtained

from the ud-u cluster structure in the Jπ = 1/2−(L = 1) state,
whereas µ ∼ 6

5mq for the pentaquark system is found in the
ud-uds clustering. The reduced mass in the pentaquark is
9/5 times larger than that in the nucleon system, therefore,
E(L = 1) should be smaller in the pentaquark than in the
nucleon by the factor 5/9. This factor is consistent with the
present E(L = 1) values.

We give a comment on the LS splitting between Jπ = 1/2+
and 3/2+(S = 1/2, L = 1). In the present calculation, where
the spin-obit force is omitted, the Jπ = 1/2+ and 3/2+ states
exactly degenerate. Even if we introduce the spin-orbit force
into the Hamiltonian, the LS splitting should not be large in this
diquark structure because the effect of the spin-orbit force from
the spin-zero diquarks is very weak as discussed in Ref. [33].

We remark that the [ud]0-[ud]0s̄ cluster structure in the
present result is different from the diquark-triquark structure
proposed by Karliner and Lipkin [16] because the uds̄ triquark
in Ref. [16] is the (us)S=1

6 s̄ with the color-symmetric spin-one
ud diquark. In the (us)S=1

6 s̄ triquark, the s̄ quark should be
tightly bound in the triquark because of the strong color-
magnetic interaction between (us)S=1

6 and s̄. Conversely, in
the present [ud]0s̄ cluster, the s̄ feels no strong color-magnetic
interaction and is bound more weakly than in the (us)S=1

6 s̄

triquark. The color-6 flux tubes are not taken into account in
the present framework because they are excited. However,
the (us)S=1

6 s̄ triquark might be possible if the short-range
correlation in the triquark make the flux tube short enough
to be excited into the color-6 flux tube.

B. Width for K N decays

In the �+ → KN decays, it is important that the allowed
decay mode in the �+

1 (Jπ = 3/2−) is D wave, which should
make the �+

1 state narrower than the �+
0 (Jπ = 1/2+, 3/2+)

because of the higher centrifugal barrier. We estimate the KN

decay widths of these states by using a method of reduced
width amplitudes [31,32]. This method has been applied for
the study of α-decay width in the nuclear physics within bound
state approximations. In this method, the decay width � is
estimated by the penetrability PL(k, a) of the barrier and the
reduced width γ 2(a) as a function of the threshold energy Eth
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and the channel radius a,

� = 2PL(k, a)γ 2(a),

PL(k, a) = ka

j 2
L(ka) + n2

L(ka)
, (17)

γ 2(a) = h̄2

2µa
Sfac(a),

where µ is the reduced mass, k is the wave number k =√
2µEth/h̄

2, and jL(nL) is the regular(irregular) spherical
Bessel function. Sfac(a) is the probability of a decaying
particle at the channel radius a. We define �0

L(a,Eth) ≡
h̄2k/µ(j 2

L(ka) + n2
L(ka)); then, the decay width can be rewrit-

ten in a simple form as � = �0
L × Sfac. In the following

discussion, we choose the channel radius a = 1 fm and Eth =
100 MeV. Because the transitions between the different flux-
tube configurations, a confined state [ud][ud]s̄ and a decaying
state (udd)1(us̄)1, are of higher order, the Sfac should be small
in general when the suppression by the flux-tube transition is
taken into account. Here, we evaluate the maximum values of
the widths for the Jπ = 1/2+, 3/2+ states with the method
of the reduced width amplitudes, by using meson-baryon
probability considering only the simple overlap for the quark
wave functions.

In case of even-parity Jπ = 1/2+, 3/2+ states, the KN de-
cay modes are the P wave, which gives �0

L=1 ≈ 100 MeV fm.
By assuming (0s)2 and (0s)3 harmonic-oscillator wave func-
tions for K0 and p, we calculate the overlap between the
obtained pentaquark wave function and the K0p state. As
explained in the previous subsection, the Jπ = 1/2+, 3/2+
states have the ud-uds̄ cluster structure where five Gaussian
centers are written as Z1 = Z2 = 3

5
√

2b
Q12 and Z3 = Z4 =

Z5 = − 2
5
√

2b
Q12. We assume a simple K0p wave function as

follows:

	K0p = (1 + P )A
[
φZ1φZ2 · · · φZNq

X
]
, (18)

φZi
=

(
1

πb2

)3/4

exp

[
− 1

2b2
(r −

√
2bZi)

2 + 1

2
Z2

i

]
, (19)

where the Z’s are chosen as Z1 = Z2 = Z3 = a 2
5
√

2b
Q12/

|Q12|, Z4 = Z5 = − a 3
5
√

2b
Q12/|Q12|, and the spin-isospin-

color wave function is taken to be the following:

X =
∑

m1,m2,m3,m4,m5

cm1m2m3m4m5 |m1m2m3m4m5〉S

⊗ |ududs̄〉 ⊗ εabcδef |abcef̄ 〉C. (20)

The same size parameter b as that of the pentaquark is
used. The coefficients cm1m2m3m4m5 for the spin function are
taken to express the Jπ = 1/2+ proton and the pseudoscalar
K0 meson. The probability Sfac is evaluated by the overlap
with the obtained Jπ = 1/2+, 3/2+ wave function, Sfac =
|〈	K0p|	(Z)〉|2. [The 	K0p and 	(Z) are normalized.] The
probability Sfac = 0.034 fm−1 is evaluated by the overlap.
Roughly speaking, the main factors in this meson-baryon
probability are the factor 1

3 from the color configuration, the
factor 1

4 from the intrinsic spin part, and the other factor
that arises from the spatial overlap. By using the probability

Sfac = 0.034, the K0p partial decay width is evaluated as
� < 3.4 MeV. The K+n decay width is the same as that of
the K0p decay, and the total width of the Jπ = 1/2+, 3/2+
states is estimated to be � < 7 MeV. This is consistent with
the discussion in Ref. [34].

It is interesting that the KN decay width of the �+
1 (Jπ =

3/2−) is strongly suppressed by the D-wave centrifugal barrier,
because lower spin (S- and P-wave) decays are forbidden
because of the conservation of spin and parity. Consequently,
�0

L=2 is ≈30 MeV fm, which is much smaller than that
for the P-wave case. Moreover, the �+

1 (Jπ = 3/2−) is the
state with Sπ = 3/2− and L = 0, which has no overlap
with the KN (Sπ = 1/2− and L = 2) states in the present
calculation because the spin-orbit or tensor forces are omitted.
If we introduce the spin-orbit or tensor forces, the D state
(Sπ = 1/2− and L = 2) will be slightly mixed into the
�+

1 (Jπ = 3/2−). However, the mixing component should be
small because of the dominant central force in the potential. In
other words, the KN probability (Sfac) in the �+

1 (Jπ = 3/2−)
state is expected to be more suppressed than that in the
�+

0 (Jπ = 1/2+, 3/2+) states. Considering the suppression
effects in both terms �0 and Sfac, the Jπ = 3/2− state should
be extremely narrow. If we assume the Sfac in the Jπ = 3/2−
to be half of that in the Jπ = 1/2+, 3/2+ states, the KN decay
width is estimated to be � < 1 MeV.

Contrary to the narrow width of the Jπ = 3/2− state, the
Jπ = 1/2− state should be much broader than other states
because S-wave (L = 0) decay is allowed and therefore the
centrifugal barrier is absent. We cannot evaluate the width of
the Jπ = 1/2− states with the present method, because the
method of the reduced width amplitudes works only when
there exist barriers in the decaying channels. If we adopt the
theoretical width � = 1.1 GeV for the Jπ = 1/2− states in
[34] and the suppression factor ε2 <∼ 1/10 because of the string
transition, the width is evaluated to be � ∼ 100 MeV, which
is still too large to describe that of the observed �+. We
consider that the Jπ = 1/2− states may melt away because
of the coupling with KN continuum states with no centrifugal
barrier.

Also in other spin-parity states, the coupling with the KN

continuum states is important for more quantitative discussions
on the widths. We should point out that, in introducing the
meson-baryon coupling, one should not treat only the quark
degrees of freedom but take into account the suppression
because of the rearrangement of flux-tube topologies between
the meson-baryon states and the confined states.

V. SUMMARY

We proposed a quark model in the framework of the
AMD method and applied it to the uudds̄ system. The
level structure of the uudds̄ system and the properties of
the low-lying states were studied within the model space of
the [qq][qq]q̄ configuration, where all the (anti-)quarks are
connected by the color-3 flux tubes. We predicted that the
narrow Jπ = {1/2+, 3/2+} (�0) and Jπ = 3/2− (�1) states
nearly degenerate with the Jπ = 1/2− states. The widths of
the Jπ = {1/2+, 3/2+} states and the 3/2− state are estimated

045202-7



Y. KANADA-EN’YO, O. MORIMATSU, AND T. NISHIKAWA PHYSICAL REVIEW C 71, 045202 (2005)

to be � < 7 MeV and � < 1 MeV, respectively. Conversely,
the Jπ = 1/2− states should be broad, and we consider
that they may melt away because of the coupling with KN

continuum states with no centrifugal barrier. Two spin-zero
diquarks are found in the {1/2+, 3/2+} states, which confirms
the Jaffe-Wilczek picture. We comment that the formation
of two spin-zero diquarks does not always occur in Jπ =
{1/2+, 3/2+} pentaquarks. For example, in case of the ddssū

system, the diquark structure disappears. Instead, a dss-dū

clustering appears in the Jπ = {1/2+, 3/2+} [ds][ds]ū states
because the color-magnetic interaction is weaker for ds pairs
than for dū pairs in OGE potential. In other words, the diquark
structure is formed in such a certain pentaquark as the �+

0
because of the strong color-magnetic attraction between ud
quarks. The degeneracy of the Jπ = 1/2−, 3/2−, 1/2+, and
3/2+ states is realized by the balance of the kinetic and string
energies and the color-magnetic interaction. The origin of the
novel level structure is due to the color structure in the confined
five quark system bound by the connected flux tubes.

The Jπ = {1/2+, 3/2+} (�+
I=0) states in the present re-

sults may be assigned to the experimentally observed �+,
whereas Jπ = 3/2−(�I=1) is not observed yet. One should
pay attention to the properties of these states, because the
production rates depend on their spin, parity, and widths. The
existence of many narrow states, Jπ = 1/2+, 3/2+, and 3/2−,
for the �+

0 and �+
1 may help to explain the inconsistent

mass positions of the �+ among the different experiments.
Especially, the double peaks of the Jπ = 1/2+ and 3/2+
states in the �+

0 are expected. In the �+
0 peaks observed

in the invariant mass or missing mass spectra, it is difficult
to find the possible double peaks because the statistics and
the resolutions are not enough [1–9]. The analysis of the
NK scattering [35] provided the upper limit � < 1 MeV
for the widths of each peaks. Considering the suppression

factor because of the gluon transitions, the possibility of the
double peaks (Jπ = 1/2+ and 3/2+) suggested in the present
works has not been excluded yet. We should comment that
another explanation for the inconsistency of the experimental
mass positions was suggested in Ref. [36], where a systematic
lowering in mass of K0p peaks relative to the K+n was
noted. In the I = 1 channel, there is no significant �++ signal
in the experimental data of the invariant K+p mass in the
photo-induced reactions [5,9,37]. It is important that the widths
of the Jπ = 3/2− �I=1 should be about one order smaller
than those of the Jπ = 1/2+ and 3/2+ for the �+

0 . For the
�++ search, it would be helpful to choose proper entrance
and decay channels based on the further investigation of the
production mechanism. To compare the present findings with
the experimental data in more detail, further experimental data
with high resolution and high statistics are required.

Finally, we remind the reader that the absolute masses
of the pentaquark in the present work are not predictions.
We have an ambiguity of the zero-point energy of the string
potential, which depends on the flux-tube topology in each of
the meson, three-quark baryon, and pentaquark systems. In the
present calculation of the pentaquark, we phenomenologically
adjust it to reproduce the observed mass of the �+. To predict
absolute masses of unknown multiquarks with new flux-tube
topologies, it is desirable to determine the zero-point energy
more theoretically.
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