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The dynamical appearance of scaling solutions in relativistic hydrodynamics is studied for boost-invariant,
cylindrically symmetric systems. Such solutions reproduce key qualitative features of the blast-wave, Buda-Lund,
and Cracow models, which in turn fit a broad set of data measured in ultrarelativistic heavy-ion collisions. Effects
of a phase transition are taken into account by using a temperature-dependent speed of sound, inferred from a
lattice QCD equation of state. The transverse flow may acquire the asymptotic Hubble form r/t within short
evolution times, 7–15 fm, only if an initial pre-equilibrium transverse flow is present. The precise amount of the
requisite pre-equilibrium flow is anticorrelated with the initial value of the central temperature.
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I. INTRODUCTION

Hadronic data collected in the heavy-ion experiments at
RHIC support the idea that the system formed in Au + Au
collisions is highly thermalized and undergoes strong trans-
verse and longitudinal expansion [1]. Moreover, successful
parameterizations of the freeze-out process indicate that such
expansion may be characterized by the Hubble law [2–4].
In the simplest form, used in cosmology, this law states the
proportionality of the relative velocity of galaxies to their
relative separation,

v = Hr. (1)

The constant of proportionality, or Hubble’s constant H, is
a function of time. In the Friedmann universe [5] as well as
in analytic solutions of nonrelativistic fireball hydrodynamics
[6], its value is

H = Ṙ

R
, (2)

where the function R(t) is in general a complicated function of
time. In nuclear hydrodynamics, the Hubble law characterizes
the fluid velocity distributions of the expanding matter; in
cosmology the Hubble law characterizes the expansion of
space. In nonrelativistic hydrodynamics, the scale parameter
R(t) depends on the initial conditions as well as on the equation
of state, whereas in cosmology the time evolution of the scale
parameter R depends not only on the initial conditions (flat,
open, or closed universe) and the properties of matter (matter-
dominated and radiation-dominated epoch) but also on the
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possible existence of dark energy and cosmological constants
and the possible presence of an exponentially accelerating,
inflatory period. At the end of the accelerating period, when
Ṙ = constant, and R ≈ Ṙ t , the Hubble constant is simply the
inverse of the lifetime, H = 1/t .

At the very end of the nuclear fireball explosion, the
pressure decreases to vanishing values; hence the acceleration
caused by pressure gradients becomes negligibly small. In this
case, in analogy to the case observed in cosmology, we may
expect that a simple form of the Hubble law connects the
hydrodynamic four-velocity uµ with the space-time position
of the fluid element xµ,

uµ = xµ

τ
= t

τ

(
1,

x

t
,
y

t
,
z

t

)
. (3)

The quantity τ in Eq. (3) is the proper time characterizing the
freeze-out hypersurface,

τ =
√

t2 − r2 − z2, r =
√

x2 + y2. (4)

Clearly, the parametrization (3) and (4) makes sense in the
space-time region defined by the condition r2 + z2 < t2. In
fact, the three-velocity field of the form

v =
(x

t
,
y

t
,
z

t

)
, (5)

following directly from Eq. (3), appears very often in the analy-
sis of the hydrodynamic equations applied to describe hadronic
or nuclear collisions. In this context it is called the scaling
solution [7–12]. In particular, for the boost-invariant systems
the longitudinal velocity must be of the form vz = z/t , which
is a direct consequence of Lorentz symmetry [11,13–17]. It is
often believed that during the initial pre-equilibrium period
of high-energy nuclear collisions, no significant transverse
flow is generated. (For recent reviews of the hydrodynamic
description of relativistic heavy-ion collisions see, e.g.,
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Refs. [18–21].) In such a case, the transverse fluid velocity
builds up during the hydrodynamic evolution of the system
[12] and the scaling form in the transverse direction, vr = r/t ,
may be reached only for sufficiently large times (with details
depending on the equation of state and initial conditions).
Similar features also characterize a spherically symmetric
expansion of the system being initially at rest. In this case,
the radial flow is formed by the outward action of the pressure
gradient, and both the analytic [10,22] and numerical [10,12]
calculations show that Eq. (3) is the asymptotic solution
if the sound velocity satisfies the condition c2

s � 1/5. For
more general cases various numerical calculations [12,19,23]
show that the transverse-velocity profiles approach a linear
dependence characterized by Eq. (1).

Recently, there is a revived theoretical interest in finding
exact solutions of relativistic hydrodynamics. Bı́ró found an
interesting solution, relevant for the case of a vanishing speed
of sound, which interpolates between an early Bjorken type
of flow profile and the Hubble profile in the late period of
the expansion [24,25]. New exact solutions of relativistic
hydrodynamics were found, using more general equations of
state, in the (1 + 1)-dimensional case [26] and in the (1 + 3)-
dimensional case for axially symmetric [27,28] as well as
for ellipsoidally symmetric expansions [29]. Although these
solutions contain arbitrary scaling functions describing the
rapidity profile, the flow profile in all of these works coincides
with the Hubble law.

In view of the success of the fits [2,4,30,31] (which all
indicate very strong transverse flows), one of the central issues
is whether the times actually available in relativistic heavy-ion
collisions are sufficient to allow for a dynamical development
of such strong transverse flows, in particular, the scaling
solutions corresponding to Eq. (3). The situation is especially
intriguing for RHIC, where several measurements indicate
an unexpected, rather short (about 6–15 fm) duration time
for the collision process. For example, one finds τ ∼ 10 fm
using the RHIC data in the relation RL(mT ) = τ

√
Tk/mT [32],

which connects the longitudinal pion correlation radius RL,
the kinetic freeze-out temperature Tk , the evolution time τ ,
and the transverse mass of the pion pair mT . The authors of
Ref. [4] obtained only 6 fm for the effective duration of the
hydrodynamic evolution in Au + Au collisions at RHIC.

These measurements, when interpreted with care, yield only
the inverse of the (longitudinal) Hubble constant, which can
be identified with the lifetime only if the scaling solution is
assumed to be developed in the longitudinal direction. This
situation is analogous to the estimate of the lifetime of the
Universe: The inverse of the presently measured value of
the Hubble constant yields an order-of-magnitude estimate
of the lifetime, which has to be corrected for the effects of
inflation and possible other acceleration periods. Similarly,
in nuclear hydrodynamics, there is an initial longitudinal
acceleration period; hence the estimated lifetimes should be
interpreted only as (lower) limits on the total lifetime of the
system [33,34].

Many hydrodynamic codes used to describe heavy-ion
data show that the scaling solutions do not appear before
the freeze-out of the system. However, such approaches
assume commonly that the initial transverse flow is zero.

An exception to this rule is the work by Kolb and Rapp
[35], who consider the pre-equilibrium transverse flow, the
presence of which improves the agreement of the model
calculations with the data. Another important exception is a
class of the nonrelativistic, self-similar solutions of the fireball
hydrodynamics, which is by now solved completely in the
ellipsoidally symmetric case for arbitrary initial sizes and
expansion velocities of the principal axes of the expanding
ellipsoids [36], arbitrary initial temperature profiles [37], and
arbitrary (temperature-dependent) speed of sound [38].

In this paper we follow such ideas and assume that the ele-
mentary parton-parton collisions, leading to the thermalization
of the system, lead also to collective behavior and development
of the transverse flow already at the initial stage of the
equilibrium hydrodynamic evolution at the time t = t0 ∼ 1 fm.
For simplicity, we consider boost-invariant and cylindrically
symmetric systems with the initial transverse flow defined by
the formula

v0
r = vr (t = t0, r) = H0r√

1 + H 2
0 r2

. (6)

The parameter H0 in Eq. (6) may be interpreted as the Hubble
constant that determines the magnitude of the initial transverse
flow; in the range r < 1/H0 the flow is well approximated by
the linear function v 0

r ∼ H0r , whereas for r > 1/H0 the flow
approaches the speed of light, a boundary condition frequently
assumed in hydrodynamic equations for large values of r [12].
Also, if Eq. (6) is specified on a hypersurface corresponding
to a constant proper time, it coincides with the Hubble law of
Eq. (3).

By varying the value of H0 we control the amount
of the initial transverse flow that may possibly develop into
the scaling form (5). We note that in the scaling solution (5)
the role of the Hubble constant is played by the inverse
of the time coordinate t. This means that by setting H0 =
1/t0 = 1 (fm)−1 we assume that the initial flow is already
very close to the scaling form at t0. In this particular case the
question arises whether the flow remains close to the scaling
form in the subsequent time evolution of the system.

A few comments are now in order. Following the con-
ventional hydrodynamic approach [12], we specify the initial
conditions at a constant time, t0 = 1 fm, and search for the
solutions that are regular functions of t and r in the region
t > t0, r > 0. In this case, at a given value of time t, the scaling
solution cannot hold for arbitrary large values of r, since this
would yield flow velocities larger than the speed of light, and
also the initial condition deviates from Eq. (1) for large values
of the transverse radius. Hence, in our analysis we search for
solutions of the hydrodynamic equations that yield the flow
profiles possibly close to the scaling solution in the region
r < t . In a separate paper we intend to explore a different type
of the initial conditions, which are specified at a fixed value of
the proper time and lead, in certain special cases, to the exact
solutions given in Refs. [28,29]. We also note that in view of the
recent BRAHMS data [39,40] describing rapidity dependence
of hadron production, the boost-invariant approach assumed
in the present calculation may be appropriate only if limited
to the rapidity range −1 < y < 1.
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II. CHARACTERISTIC FORM OF THE
HYDRODYNAMIC EQUATIONS

In this section we introduce the basic notation and rewrite
the hydrodynamic equations in a form convenient for numer-
ical calculations. We follow closely the method introduced
by Baym et al. [12]. We restrict our considerations to the
systems with zero net baryon density, which is a good
approximation for description of the central rapidity region
at RHIC energies. (Thermal analysis of the ratios of hadron
multiplicities indicates that the baryon chemical potential at
RHIC energies is about 30 MeV; i.e., it is much smaller than
the corresponding temperature of about 170 MeV [4,41,42].)
In this case the hydrodynamic equations have the form

uµ∂µ (T uν) = ∂νT , (7)

∂µ (σuµ) = 0, (8)

where T is the temperature, σ is the entropy density, and
uµ = γ (1, v) is the hydrodynamic four-velocity (with γ =
1/

√
1 − v2). Equation (7) follows from the relativistic Euler

equation for perfect fluids and vanishing baryon chemical
potential, whereas Eq. (8) represents entropy conservation
(the adiabaticity of the flow). Since T is the only independent
thermodynamic variable, all other thermodynamic quantities
can be obtained from the equation of state P (T ), connecting
pressure P with the temperature T. With the help of the
thermodynamic relations

dε = T dσ, dP = σdT , w = ε + P = T σ, (9)

other thermodynamic quantities, such as the energy density ε

or the enthalpy density w, can be obtained. In addition, the
equation of state allows us to calculate the sound velocity

c2
s = ∂P

∂ε
= σ

T

∂T

∂σ
. (10)

Equation (8) and the spatial components of Eq. (7) may
be rewritten for boost-invariant systems with cylindrical
symmetry as

vr

∂ ln T

∂t
+ ∂ ln T

∂r
+ ∂α

∂t
+ vr

∂α

∂r
= 0, (11)

∂ ln σ

∂t
+ vr

∂ ln σ

∂r
+ vr

∂α

∂t
+ ∂α

∂r
+ 1

t
+ vr

r
= 0, (12)

where α is the transverse rapidity of the fluid defined by the
condition vr = tanh α. The longitudinal component has the
well-known boost-invariant form vz = z/t [11].

By introducing the potential � (T ) defined by the differen-
tials

d� = d ln T

cs

= csd ln σ, (13)

and by using the two functions a± defined by the formula

a± = exp (� ± α) , (14)

Eqs. (11) and (12) may be cast into the characteristic form [12]

∂

∂t
a±(t, r) + vr ± cs

1 ± vr cs

∂

∂r
a±(t, r)

+ cs

1 ± vr cs

(
vr

r
+ 1

t

)
a±(t, r) = 0 (15)

If the functions a± are known, the potential � may be
calculated from the formula

� = 1

2
ln(a+a−), (16)

and the velocity is obtained from the equation

vr = a+ − a−
a+ + a− . (17)

Knowledge of the function cs(T ) allows us, by the integration
of Eq. (13), to determine � as a function of the temperature;
this function will later be called �T . However, to get a closed
system of equations for a+ and a−, we have to invert this
relation and obtain T as a function of �; this function will later
be called T�. In this way, the sound velocity may be expressed
in terms of the functions a+ and a−,

cs = cs

[
T�

(
1

2
ln(a+a−)

)]
, (18)

and Eqs. (15) may be solved numerically.

III. TEMPERATURE DEPENDENT SOUND VELOCITY

In our numerical calculations we take into account the
temperature dependence of the sound velocity. In this way, we
generalize the approach of Ref. [12], where Eqs. (15)–(17)
were solved numerically only in the case c2

s = 1/3. The
results of different model calculations of the sound velocity,
which may serve as input for the hydrodynamic calcula-
tions, are presented in Fig. 1(a). The solid line (denoted as
“lattice I”) is a result of Mahonty and Alam [43], who
compiled the lattice results obtained by Karsch [44] to get
cs(T ) from the temperature dependence of the energy density.
The long-dashed line (denoted as “lattice II”) shows the result
of the lattice QCD calculations by Szabó and Tóth [45]. A
sudden but smooth change of the sound velocity in the small
temperature range around T = Tc, as observed in the lattice
calculations [see Fig. 1 (a)] indicates a rapid crossover from a
hadron gas to a quark-gluon plasma phase. Above the critical
temperature (T � Tc) the sound velocity approaches the limit
valid for massless particles, c2

s = 1/3, whereas below the phase
transition (T � Tc) the sound velocity is much smaller, being
close to the value obtained for the case of a noninteracting gas
of hadron resonances.

The hadron-gas result shown in Fig. 1(a) was obtained in
a calculation that uses recent fits to the meson and baryon
mass spectra [46–48] denoted in the following by ρM (m) and
ρB(m). One possible parametrization of the spectra [47], which
directly reveals their exponential growth, as suggested long ago
by Hagedorn [49], is as follows:
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FIG. 1. (Color online) (a) Temperature dependence of the sound velocity as obtained from different theoretical models described in the
text. (b) Sound velocity used in this calculation: The solid line describes the lattice result (i.e., the function “lattice I”) from (a) extrapolated to
low temperatures, whereas the dashed line describes the analytic model defined by Eq. (21).

ρM (m) = aM exp(m/TM ), aM = 4.41 GeV−1,

TM = 311 MeV, ρB(m) = aB exp(m/TB),
(19)

aB = 0.11 GeV−1, TB = 186 MeV.

With the help of the mass distributions (19), we calculate the
entropy density of the hadron gas as a sum over contributions
from all known hadronic states from the formula

σ (T ) = 1

2π2

∫ Mmax
mesons

mpion

ρM (m)m3K3

(m

T

)
dm

+ 2

2π2

∫ Mmax
baryons

mnucleon

ρB(m)m3K3

(m

T

)
dm. (20)

The sound velocity of the hadron gas then follows directly from
the use of Eq. (20) in (10). Equation (20) is valid in the case of
zero baryon chemical potential and the factor 2 in the second
term accounts for antibaryons. The effects of the quantum
statistics (Bose-Einstein or Fermi-Dirac) are neglected in
Eqs. (20), because they are known to be small, being of the
order of 20% or less for reasonable range of the temperatures
[8]. To match our hadron-gas calculation with the lattice data
we assumed that the critical temperature is 170 MeV. The
upper limits of the integrations in (20) are Mmax

mesons = 2.3 GeV
for mesons and Mmax

baryons = 1.8 GeV for baryons. These limits
are determined by the range where the fit (19) works well [48];
for higher masses, the spectra saturate owing to the lack of data.

For comparison, in Fig. 1(a) we show the speed of sound
obtained in a similar calculation where only the massive pions
are included. The speed of sound in a pion gas quickly reaches
the limiting value of 1/

√
3, which may be compared with

the nonmonotonic behavior of cs in the gas of resonances.
Similar behavior of the speed of sound in the gas of resonances
was also found in the case with nonzero baryon density [50].
It is interesting to note that the lattice data agree with the
hadron-gas calculation close to the phase transition region if
we assume Tc ∼ 170 MeV. Moreover, the speed of sound in the
hadron resonance gas below the critical temperature is found
to be significantly smaller than 1/

√
3, which is the limit of a

massless ideal relativistic gas used in the bag model type of
the equations of state. As the hydrodynamic equations describe
the properties of matter through the equation of state, or more

precisely through the speed of sound [8], such a decrease of
the speed of sound in the hadron gas stage, compared to the
massless pion gas limit, changes drastically the corresponding
time evolution of the hydrodynamic solutions.

Although the calculations of the speed of sound shown in
Fig. 1(a) are based on the observed hadron mass spectra below
Tc and on the lattice QCD above Tc, they are still somewhat
ambiguous and not completely satisfactory. For example,
lattice QCD calculations below the critical temperature still
yield pions that are too heavy, and we know that the value of the
speed of sound is rather sensitive to pion mass. Moreover, even
though the calculation based on the Hagedorn mass spectrum
in the hadronic phase is more realistic than the lattice results in
the low-temperature domain, it neglects the role of interactions
among hadrons.

In this situation, we decided to use as the main input the
equation of state (sound velocity) reported by Ref. [43], which
is shown as “lattice I” in Fig. 1(a). This calculation is based
on first principles and extends down to about 0.6 Tc (i.e., to
the low-temperature region of about 100 MeV relevant for the
discussions of kinetic freeze-out). In the actual calculation we
extrapolate this result to even lower temperatures as shown in
Fig. 1(b). We also use an analytic form of the function cs(T )
that exhibits the main features observed in Fig. 1(a) and, at the
same time, leads to the analytic expressions for the functions
�T (T ) and T�(�). This function is defined by the formula

cs(T ) = 1√
3

[
1 − 1

2

(
1

1 + (T/T̃ )2n

)]
. (21)

Using Eq. (21) one finds cs(T ) = 1/
√

3 for T � T̃ and
cs(T ) = 1/(2

√
3) for T � T̃ . A straightforward integration

of Eq. (13) gives in this case

�T (T ) =
√

3

2n
ln

(T/T̃ )4n

1 + 2(T/T̃ )2n
(22)

and

T�(�) = T̃

[
e

2n�√
3 +

√
e

2n�√
3 + e

4n�√
3

] 1
2n

. (23)

With the parameters T̃ = 1.08 Tc and n = 6 the function (21)
well approximates the lattice results I and II in the region
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FIG. 2. (Color online) (a) The potential � obtained by the integration of Eq. (13). (b) Temperature as a function of the potential �. In both
cases the solid lines show the results obtained with the lattice equation of state, whereas the dashed lines describe the analytic model defined
by Eq. (21).

slightly above Tc and falls between the lattice results I and
II at higher temperatures. At low temperatures, T < 0.6 Tc,
the function (21) behaves like a constant [see Fig. 1(b)]. The
functions �T (T ) and T�(�), defined by Eqs. (22) and (23)
with T̃ = 1.08 Tc and n = 6, are represented in Fig. 2 by the
dashed lines. The solid lines in Fig. 2 show the same functions
obtained for the lattice case. In the following, we shall refer
to the lattice calculations having in mind the lattice I case,
including a linear extrapolation at very low temperatures.

We note that our two choices of the sound velocity function
cs(T ) satisfy the condition for the stability of the solutions
against shock formation [12,51]:

1 − c2
s + csT

dcs

dT
= csT

2

σ

d

dT

(σcs

T

)
� 0. (24)

If the sound velocity decreases suddenly as a function of tem-
perature, as is the case during the first-order phase transition or
very rapid crossover transitions, the hydrodynamic solutions
develop a shock. In this situation our method of solving
the hydrodynamic equations no longer applies. Fortunately,
a decrease of the sound velocity with temperature shown in
the Fig. 1(a) in the resonance gas region 0.5Tc < T < Tc is
moderate and does not lead to shock instabilities. Moreover,
the relatively low value of cs in the region below the phase
transition satisfies the necessary condition for the development
of scaling solutions at large times during three-dimensional
expansion [10,22]:

c2
s �

1

5
. (25)

IV. INITIAL CONDITIONS

For symmetry reasons, the velocity field should vanish at
r = 0. This condition is achieved if the functions a+ and a−
are initially determined by a single function a(r) according to
the prescription [12]

a+(t = t0, r) = a(r), a−(t = t0, r) = a(−r). (26)

In the following we shall assume that the hydrodynamic
evolution starts at a typical time t = t0 = 1 fm. We shall also
assume that the initial temperature profile is connected with

the nucleon-nucleus thickness function TA(r),

T (t = t0, r) = (constant) T
1/3
A (r), (27)

where

TA(r) = 2
∫

dz ρ
(√

r2 + z2
)
. (28)

Here the function ρ(r) is the nuclear density profile
given by the Woods-Saxon function with a conventional
choice of the parameters [ρ0 = 0.17 fm−3, r0 = (1.12A1/3 −
0.86A−1/3) fm, a = 0.54 fm, A = 197]. The idea of using
Eq. (27) follows from the assumption that the initially
produced entropy density σ (r) is proportional to the number
of nucleons participating in the collision at a distance r from
the collision center [19], σ (r) ∼ TA(r). Since for massless
particles the entropy density is proportional to the third power
of the temperature, we arrive at Eq. (27).

We note that other choices for the initial temperature profile
are also conceivable. If we assume that the initially produced
energy density is proportional to the nuclear thickness func-
tion, instead of Eq. (27) we obtain

T (t = t0, r) = (constant) T
1/4
A (r). (29)

We checked, however, that the change of the power from 1/3
in Eq. (27) to 1/4 in Eq. (29) does not affect our results (this
point will be illustrated later). If we assume that the energy
deposition into the thermalization is driven by the collisions of
wounded nucleons, and every collision contributes with certain
probability distribution to a local increase in temperature, then
after many collisions the central limit theorem may describe
the form of the local temperature distribution and this is a
Gaussian. However, if there are substantial fluctuations in
the deposited energy, the generalized central limit theorems
apply and in this case the local temperature distribution may
have the generalized, Lévy stable form. As a special case, the
Lorentzian temperature profile can also be obtained.

The two initial conditions (6) and (27) may be included in
the initial form of the function a(r) if we define

a(t = t0, r) = aT (r)

√
1 + v 0

r√
1 − v 0

r

, (30)
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FIG. 3. (Color online) Hydrodynamic expansion of matter being initially at rest (i.e., in the case H0 = 0). The initial central temperature
T0 = 2Tc. (a) The transverse velocity as a function of the distance from the center for six different values of time, ti = 1, 4, 7, 10, 13, and
16 fm. The dashed thin lines describe the ideal Hubble-like profiles of the form r/ti (r < ti). (b) The transverse four-velocity as a function of r
for the same values of time. (c) The temperature profiles in r. (d) Isotherms in t–r space. In this case, the labels at the curves denote the values
of the temperature in units of the critical temperature.

where

aT (r) = exp
[
�T

(
(constant) T

1
3

A (|r|))] . (31)

V. RESULTS

It is important to observe that the Hubble law v = Hr is
satisfied in the r � t region after t = 7 fm in all the cases
we explored numerically in the present calculation, regardless
of the initial conditions. However, the value of the Hubble
constant typically deviates from the inverse of time, which
signals that the asymptotic form of the Hubble flow, Eq. (3),
is reached only after a longer time period. The onset of the
asymptotic scaling is determined by the initial conditions as
we shall detail in the following.

In Figs. 3 and 4 we show our results obtained for
two different initial conditions characterized by the two
different initial values of the parameter H0,H0 = 0 and
H0 = 0.25 (fm/c)−1, respectively. In both cases the lattice

equation of state is used and the initial temperature in the
center of the system is assumed to be twice the temperature of
the phase transition, T0 = T (t = t0, r = 0) = 2Tc. This means
that, for the commonly accepted value of Tc, which is about
170 MeV, the initial temperature in the center reaches about
340 MeV.

In the H0 = 0 case, the transverse flow is initially set to
zero but it builds up during the evolution of the system,
as shown in Fig. 3(a). The corresponding values of the
transverse four-velocity ur are plotted in the Fig. 3(b). To check
whether the flow approaches the asymptotic scaling solution,
we compare the velocity profiles calculated numerically at
different times ti = 1, 4, 7, 10, 13, and 16 fm (solid lines) with
the ideal Hubble-like velocities of the form r/ti (thin dashed
lines) in the regions r < ti . As expected, in the H0 = 0 case
the calculated profiles do not agree with the ideal curves in the
considered evolution times.

In Fig. 3(c) we observe that the central part of the
system cools down very quickly from T = 2Tc to the critical
temperature T = Tc and subsequent cooling is much slower.
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FIG. 4. (Color online) Hydrodynamic expansion of matter with initial pre-equilibrium flow characterized by the velocity profile (6) with
H0 = 0.25 fm−1. The initial central temperature T0 = 2Tc. Notation as in Fig. 3.

This behavior is caused by different values of the sound
velocity in the regions above and below Tc; larger values of cs

in the plasma phase imply its faster cooling. We note that for the
first-order phase transition the speed of sound drops to zero
at T = Tc and the system keeps on expanding at a constant
temperature of T = Tc. In the present case we deal with a
sudden crossover transition, hence the expansion in volume
is coupled to a small decrease in temperature. From Fig. 3(d)
showing the isotherms in the t–r space, we may conclude that
expansion of the system without noticeable cooling below Tc

takes longer than 15 fm.
The evolution of matter shown in Fig. 3 may be compared

with the situation where the nonzero pre-equilibrium flow is
included in the initial condition. In Fig. 4 we show our results
obtained in the H0 = 0.25 (fm/c)−1, case with the same initial
central temperature T0 = 2Tc. Since the transverse flow is
already present at the beginning of the evolution, the expansion
of the system is much faster than that discussed in the previous
case of H0 = 0. In Fig. 4(a) we show the velocity profiles in r,
again for six different values of time. By comparing these to
the ideal curves of the form r/ti (thin dashed lines) we observe
that the flow approaches the asymptotic scaling solution after
about 7 fm.

In Fig. 4(c) we can see similar behavior to that presented in
Fig. 3(c), namely, the initial fast cooling of the hot center,
which slows down when the system approaches Tc. We
observe, however, that in the H0 = 0.25 (fm/c)−1 case the
slowdown of the cooling process is not as effective as that
observed in the H0 = 0 case. Because of the larger transverse
flow, the energy from the interior is transported outside,
the temperature in the center continues to drop, and a very
interesting situation happens: Parts of the system away from
the center become hotter than the center, when different
positions are compared at the same time in the lab. However,
when different positions are compared at the same proper
time, the surface is a little bit colder than the center, as
shown in Fig. 4(d). We note that isotherms of similar shape
are used in the Cracow model where they are defined by
the condition of constant proper time τ [2]. The blast-wave
model assumes that freeze-out happens at a constant value
of the ordinary time t with a fixed temperature T, whereas
the Buda-Lund model assumes that the temperature profile
may eventually decrease to 0 at large transverse extensions,
hence capturing the feature that the temperature vanishes
for very large transverse coordinates in all of the presented
calculations.
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FIG. 5. (Color online) Velocity profiles in r (solid lines) calculated for different initial values of the Hubble constant H0 and different initial
values of the central temperature T0. The labels 1, 4, 7, 10, 13, and 16 denote the evolution time in fm. The thin dashed lines show the ideal
profiles of the form r/t obtained for the same values of time.

In Fig. 5 we show a collection of velocity profiles obtained
for four different initial values of the Hubble constant H0

and for three different initial values of the central temperature
T0. The four rows of smaller figures describe the results
obtained with H0 = 0.0, 0.10, 0.25, and 1.0 (fm/c)−1; the
three columns correspond to the central temperature T0 =
1.5Tc, T0 = 2Tc, and T0 = 3Tc.

The results presented in Fig. 5 are obtained with the
analytic model for the temperature dependence of the sound
velocity, hence, by comparison of Fig. 5 with the two previous
figures, the effects of the change of the function cs(T ) on
the time evolution of the system may be observed. For
example, comparing Fig. 5(c2) with Fig. 4(a) [both results
obtained with H0 = 0.25 (fm/c)−1 and T0 = 2Tc] we can see
that the flow obtained with the analytic model is closer to
the asymptotic scaling form than the flow obtained for the
lattice equation of state. We note that the main difference
between the two cases is that the sound velocity in the analytic
model is lower in the hadronic phase. The asymptotic scaling

solutions are more easily generated at the reduced values of
the sound velocity, as shown in Refs. [10,24,25]. This effect
explains the better agreement of the generated transverse flow
with the asymptotic scaling solution obtained in the analytic
model.

Let us now discuss the impact of the initial temperature
distribution on the formation of the transverse flow. Since the
spatial extension of the system is the same in all considered
cases (roughly the diameter of a gold nucleus), a higher initial
central temperature implies a larger pressure gradient, leading
directly to the formation of the stronger flow. This effect is
seen in Fig. 5 if the results obtained with the same initial
value of the flow parameter H0 but different initial values
of the central temperature T0 are compared. The presence
of the pre-equilibrium transverse flow helps to develop the
strong transverse flow, and this effect is added to the effects
of the pressure gradient. This is clearly seen in the case
H0 = 0.10 (fm/c)−1, depicted in Figs. 5(b1)–5(b3). At t =
16 fm the flow in the range r < 10 fm is close but below the
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FIG. 6. (Color online) Three examples of the velocity profiles in r obtained for the initial conditions specified by Eq. (29).

asymptotic scaling solution for T0 = 2Tc and close but above
the asymptotic scaling solution for T0 = 3Tc. For T0 = 1.5Tc

the flow is noticeably below the asymptotic scaling form. We
conclude that the asymptotic solution may be reached either
from above or from below (in the region r � t), depending
on the value of the initial temperature. For a fixed value of
T0, the asymtotic solution is approached from above, if the
pre-equilibrium flow is sufficiently strong. This behavior is
indicated by our results obtained for H0 = 0.25 (fm/c)−1 and
H0 = 1.0 (fm/c)−1 [Figs. 5(c1)–5(d3)]. Interestingly, in the
case H0 = 1/t0 = 1.0 (fm/c)−1 , where the initial flow agrees
with the scaling form already at the beginning of the time
evolution, the pressure gradient accelerates the matter and the
convergence to the scaling form is delayed, if T0 � 2Tc.

In any case, the existence of a nonzero pre-equilibrium
flow seems to be a necessary condition for the formation
of the accelerationless Hubble-like flows in the evolution
times of 10–15 fm. This is indicated by our results obtained
with H0 = 0 for different values of T0 [Figs. 5(a1)–5(a3)].
The amount of pre-equilibrium flow required to achieve
the fast convergence to the asymptotic solution depends
on the initial temperature (pressure gradient); smaller initial
values of the Hubble constant H0 may be compensated
by larger initial values of the central temperature T0. For
example, at t = 16 fm the flow profiles are very similar
in the following cases: H0 = 1 (fm/c)−1 and T = 1.5T0

[Fig. 5(d1)], H0 = 0.25 (fm/c)−1 and T = 2Tc [Fig. 5(c2)],
and H0 = 0.1 (fm/c)−1 and T = 3Tc [Fig. 5(b3)]. The asymp-
totic Hubble flow is reached by about 7–10 fm in Fig. 5(b3),
whereas the same form is reached by about 4–7 fm in Fig. 5(c2)
and 1–4 fm in Fig. 5(d1).

In Ref. [52] hydrodynamic calculations were done with
zero initial transverse flow but very large initial temperature,
T0 = 2 GeV. In this case the isotherms have similar features to
those shown in Fig. 4(d), suggesting formation of a very strong
(possibly scaling) transverse flow. It is quite remarkable that
the presence of the pre-equilibrium flow is required only to
set the value of the Hubble constant to H = 1/t , that is, to
reach the scaling solution within a short time period; however,
we find that the linear flow profiles, v = H0r , develop with
H0 �= 1/t in all the considered cases by about 7 fm, regardless
of the details of the initial conditions.

Finally, in Fig. 6 we show the flow profiles obtained for
the initial thermal distributions obtained from Eq. (29). By
comparison of the results presented in the three parts of Fig. 6
with the corresponding three parts of Fig. 5 (with the same
values of H0 and T0) we conclude that the change of the

power in the relation between the temperature and the thickness
function from 1/3 to 1/4 is insignificant for the outcome of
the numerical calculations.

VI. CONCLUSIONS

Our results show the dynamical development of scaling
solutions in relativistic hydrodynamics applied to relativistic
heavy-ion collisions. We considered realistic initial conditions
that connect the entropy density of the initial state with the
number of participating nucleons. If the initial values of the
Hubble constant H0 and the central temperature T0 are covaried
in a reasonable range, a Hubble-type, linear transverse flow
v = Hr develops after 7 fm. However, it is more difficult for
the transverse flow to achieve its asymptotic, accelerationless
scaling form, that is, to reach the time dependence of H (t) =
1/t , by the evolution time of about 7–15 fm.

The necessary conditions to reach the corresponding
asymptotic form of v = r/t are thus threefold: (1) The lattice
QCD equation of state has to be used, with the corresponding
temperature-dependent speed of sound. This generates very
strong transverse flows within the short time scales suggested
by the phenomenological analysis of the experimental data of
Au + Au collisions at RHIC. (2) Pre-equilibrium transverse
flow has to already be present at the beginning of the
hydrodynamic evolution, that is, at the initial time of about
1 fm. (3) The precise amount of the requisite pre-equilibrium
flow is anticorrelated with the initial value of the central
temperature, because for larger initial pressure gradients,
smaller initial flows are necessary.

Using such anticorrelated initial conditions and a lattice
QCD equation of state, the numerical solutions of relativistic
hydrodynamics are shown to reproduce qualitatively key
features of the blast-wave, Buda-Lund, and Cracow models.
More detailed investigations are necessary to explore these
relationships on the quantitative level.

ACKNOWLEDGMENTS

This work was supported in part by the Polish State
Committee of Scientific Research, Grant 2 P03B 05925, by the
Hungarian OTKA Grant T038406, by the MTA–OTKA–NSF
Grant INT0089462, and by the exchange program of the
Hungarian and Polish Academy of Sciences as well as by
the Polish KBN–Hungarian Ministry of Education Exchange
Programme in Science and Technology.

044902-9
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