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Exclusive electrodisintegration of 3He at high Q2. I. Generalized eikonal approximation
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We develop a theoretical framework for calculation of high-Q2 exclusive electrodisintegration of A = 3
systems. The main result of this work is the calculation of the final state interaction of the struck energetic
nucleon with recoil nucleons within the generalized eikonal approximation (GEA), which allows us to account
for the finite and relatively large momenta of the bound nucleons in the nucleus. This approach makes it possible
to study in a self-consistent way the short-range correlations in nuclei. This is because the GEA does not require a
stationary condition for recoil nucleons as does the conventional Glauber approximation. As a result GEA treats
explicitly the Fermi motion of recoil nucleons in the nucleus.
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I. INTRODUCTION

Advances in experimental studies of high-energy exclusive
electro-disintegration reactions of few-nucleon systems [1–4]
as well as the multitude of the planned experiments at Jefferson
Lab with the upgraded energies of CEBAF [5,6] emphasize
strongly the need for systematic theoretical studies of these
reactions. Recently, there have been several theoretical works
addressing many of the outstanding issues related to the
physics of high-energy exclusive breakup of few-nucleon
systems [7–16].

The heightened interest in these reactions is based on
expectations that the high-resolution power of the energetic
probe (virtual photon) and the relative simplicity of the target
(consisting of two or three nucleons) will boost considerably
our ability to probe the dynamics of bound systems at
small space-time separations and allow systematic studies of
transition from hadronic to quark-gluon degrees of freedom
in nuclear interactions. In many instances, these studies can
take advantage of recent progresses in developing the realistic
wave functions of few-nucleon systems [17,18].

In this work we are interested particularly in high-Q2

(4 >∼ Q2 >∼ 1 GeV2) exclusive 3He(e, e′NN)N reactions in
which one nucleon in the final state can be clearly iden-
tified as a knocked-out nucleon that carries practically all
of the momentum of the virtual photon. We calculate the
scattering amplitude of this reaction within the generalized
eikonal approximation (GEA) [7,19,20] in which one starts
by expressing the scattering amplitude through the sum of
the diagrams corresponding to the nth order rescattering of
the knocked-out nucleon with the residual nucleons in the
nucleus. Then we evaluate each diagram based on the effective
Feynman diagram rules derived within the GEA [19,20].
The advantage of this approach is that the number of the
diagrams contributing to the scattering amplitude is defined

by the finite number of NN rescatterings that can be evaluated
within the eikonal approximation. The manifestly covariant
nature of Feynman diagrams allows us to preserve both the
relativistic dynamics and the kinematics of the rescattering
while identifying the low-momentum nuclear part of the
amplitude with the nonrelativistic nuclear wave function. Such
an approach allows us to account for the internal motion of
residual target nucleons in the rescattering amplitude. (For
recent developments see also Ref. [15].) Additionally, the GEA
accounts for the transferred longitudinal momentum in the
rescattering amplitude, which is important for describing the
inelastic processes (or processes with large excitation energies)
in which the final state is strongly energy dependent. All these
constitute a generalization of the conventional eikonal approxi-
mation [21] in which the nucleons in the nucleus are considered
as stationary scatterers and only the transverse momentum is
transferred in the reinteractions. These features of the GEA
are crucial in describing electro-production reactions aimed
at the study of short-range nuclear configurations since they
are characterized by non-negligible values of bound nucleon
momenta and excitation energies. The study of short-range
nucleon correlations is the main goal of Part II of this
work.

In the present paper we work in the virtual nucleon
framework in describing the dynamics of the reaction. In
this framework one describes the reaction in the lab frame
relating all non-nucleonic degrees of freedom effectively to
the off-shellness of the knocked–out (virtual) nucleon in the
nucleus. This justifies the use of only nucleonic degrees of
freedom in the ground-state wave function of the nucleus. If the
probed internal momenta are sufficiently small, p2/m2

N � 1,
one can use the nonrelativistic ground-state nuclear wave func-
tions, which are calculated based on realistic NN interaction
potentials. Furthermore, considering only the kinematics of
quasi-elastic reactions we neglect the isobar current and meson
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exchange contributions. All these impose specific restrictions
on the kinematics of the reaction that will be discussed in detail
in the present paper.1

The paper is organized as follows: In Sec. II the specifics
of the considered electro-nuclear reaction and its kinematical
requirements are discussed. In Sec. III we derive the scattering
amplitude within the GEA by calculating the contributions
from single and double rescattering of the knocked-out nucleon
off recoil nucleons in the reaction. We also calculate the
pair distortion effects due to the interaction of slow residual
nucleons in the final state of the reaction. In the last part of
Sec. III we discuss the general form of the differential cross
section. Section IV summarizes the results of the derivations.
The effective Feynman diagram rules of the GEA are given in
the Appendix.

II. REACTION AND KINEMATICS

We are considering the electrodisintegration of 3He in the
reaction

e + 3He → e′ + Nf + Nr2 + Nr3, (1)

where e and e′ are the initial and scattered electrons with
four-momenta ke and k′

e, respectively. The 3He nucleus has a
four-momentum pA. Nf ,Nr2, and Nr3 correspond to knocked-
out and two recoil nucleons with four-momenta pf , pr2, and
pr3, respectively. We define also the four-momentum of the
virtual photon q = (q0, |q|, 0⊥) ≡ ke − ke′ with Q2 = −q2.
Hereafter the z direction is chosen parallel to q and the
scattering plane is the plane of the q and ke′ vectors.

We will investigate the reaction of Eq. (1) in the kinematic
region defined as follows:

(a) 4 � Q2 �1 GeV2; (b) pf ≈ q;
(2)

(c) |pm|, |pr2|, |pr3| � 400–500 MeV/c,

where one defines a missing momentum pm = pf − q. The
lower limit of Eq. (2a) is what provides a high-momentum
transfer in the electrodisintegration. This condition together
with Eqs. (2b) and (2c) allows us to identify Nf as a knocked-
out nucleon, whereas Nr2 and Nr3 could be considered as
recoil nucleons that do not interact directly with the virtual
photon. The upper limit of Eq. (2a) comes from the condition
that the color coherence effects are small and the produced
hadronic state represents a single state (i.e., nucleon) rather
than a superposition of different hadronic states in the form of
the wave packet (see, e.g., Ref. [22]).

Additionally, the condition of Eq. (2c) allows us to consider
the nucleons as the basic degrees of freedom in describing
the interacting nuclear system. From the technical point of
view, this means that in the set of noncovariant diagrams
comprising the covariant scattering amplitude, one can neglect

1The relativistic effects can be incorporated self-consistently in
GEA using the light-cone formalism (see appendix in Ref. [19]).
These and studies of isobar contributions in the reaction dynamics
will be addressed in subsequent papers.

the noncovariant diagrams containing non-nucleonic degrees
of freedom (e.g., negative energy projections of the bound
nucleon spinors contributing to the vacuum fluctuations in
the scattering amplitude). Within this approximation one can
reduce the nuclear vertices to the nonrelativistic nuclear wave
functions of nuclei [see, e.g., Eq. (A4)]. Note that on several
occasions in Ref. [23] we will extend our calculations to the
region of missing and recoil momenta �500 MeV/c. We justify
such an extension by the expectation that the onset of the
relativistic effects in the nuclear wave function should happen
rather smoothly. However, in all these cases our results should
be considered as qualitative.

III. SCATTERING AMPLITUDE

Within the one-photon exchange approximation, the ampli-
tude Mf i of reaction (1) can be written as follows (see, e.g.,
[24]):

Mf i = −4πα
1

q2
je
µ · 〈f |Jµ

A (Q2)|i〉. (3)

Here α is the fine structure constant, je
µ = ū(k′

e)γµu(ke) is the
electromagnetic current of the electron, and J

µ

A (Q2) is the
operator of the nuclear electromagnetic current. The initial
state |i〉 is the totally antisymmetric state of 3He. The final
state |f 〉 also has to be antisymmetric. However, because
of the kinematical constraints of Eqs. (2) one can neglect
the antisymmetrization between the outgoing fast and slow
recoil nucleons. Such an approximation is justified because
the diagrams in which an energetic photon will produce the
slow hadrons are strongly suppressed.

Here we need to calculate the electromagnetic transition
amplitude Aµ, defined as

Aµ ≡ 〈f |Jµ

A (Q2)|i〉. (4)

We will perform the calculation within the generalized
eikonal approximation [19,20]. In this approach, the inter-
action of the fast knocked-out nucleon with slow spectator
nucleons is calculated based on the eikonal approximation
for the corresponding covariant diagrams. The reduction
theorem [20] derived for this approximation allows us to
reduce an infinite sum of rescattering diagrams to a finite
set of covariant Feynman diagrams. In these diagrams, soft
NN reinteractions are described through phenomenological
NN interaction vertices, which can be parameterized using
experimental data on the small-angle NN scattering ampli-
tudes. In its final form this approximation can be formulated
through a set of effective Feynman diagram rules (summarized
in the Appendix) for calculating the scattering amplitude of
the e + A → e′ + N + (A − 1)′ reaction in the given order of
the rescattering of the fast knocked-out nucleon off spectator
nucleons (for review on GEA, see Ref. [20]). Based on the
kinematic constraints of Eq. (2c) we will neglect non-nucleonic
degrees of freedom in the ground-state wave function of 3He.
This allows us, in the limit of p2

m/m2 � 1, to reduce the
covariant nuclear vertices to the nonrelativistic wave function
of initial and final nuclear states with nucleonic constituents
only. Note that we still account for effects of the order of
magnitude pm/m. One such term is the flux factor, which is
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FIG. 1. (Color online) Impulse approximation contribution to the
scattering amplitude of the 3He(e, e′Nf Nr2)Nr3 reaction.

proportional to 1 − pz
m/m and which should be taken into

account to preserve the baryon number conservation in the
reaction (see, e.g., Ref. [25]). In addition to the flux-factor
effects, in the present approach, the initial off-shellness of
the struck nucleon renders ambiguity in choosing the proper
form of the electromagnetic current of the eN interaction. This
problem is addressed usually by imposing an electromagnetic
current conservation relation that allows us to express the
off-shell component through the on-shell component of the
electromagnetic current (see, e.g., [26]). Note, however, that
the ambiguity resulting from the off-shellness is proportional
to p2

m/Q2, and for the kinematic range of Eqs. (2), it is a small
correction, the discussion of which lies outside the scope of
the present paper.

A. Impulse approximation

The contribution to the electromagnetic transition ampli-
tude Aµ, in which the knocked-out nucleon does not interact
with other nucleons, corresponds to the impulse approximation
(IA). In this case the wave function of the knocked-out nucleon
is a plane wave.

The IA term of the scattering amplitude, Aµ

0 , is described by
the Feynman diagram of Fig. 1. Using the diagrammatic rules
summarized in the Appendix and identifying knocked-out and
two recoil nucleons in the initial state by indexes 1, 2, and 3,
respectively, one obtains

A
µ

0 = −
∫

d4p2

i(2π )4
ū(pr2)ū(pr3)ū(pf ) · �+

NN (p2, p3) · �
µ

γ ∗N

· p̂3 + m

p2
3 − m2 + iε

p̂2 + m

p2
2 − m2 + iε

· p̂1 + m

p2
1 − m2 + iε

· �3HeNNN(p1, p2, p3) χA, (5)

where p1 = pm ≡ pf − q and p3 = pA − p1 − p2. For the
kinematic range of Eq. (2c) one can integrate over dp0

2,
estimating it through the residue at the positive energy pole
of the propagator of nucleon 2. This corresponds to a positive
energy projection of the virtual nucleon state. Such integration
effectively corresponds to the replacement∫

dp0
2

p2
2 − m2 + iε

= − i2π

2E2
≈ − i2π

2m
. (6)

The condition that the internal momenta of the nucleons remain
small (p2

m,2,3 � m2) also allows one to use the closure relation
for on-mass shell nucleons to express the numerator of the

bound nucleon propagator as follows:

p̂ + m =
∑

s

u(p, s)ū(p, s). (7)

Using Eqs. (6) and (7) in Eq. (5) one obtains

A
µ

0 =
∑
s1s2s3

∫
d3p2

2m(2π )3

× ū(pr2, sr2)ū(pr3, sr3)�+
NN (p2, p3)u(p3, s3)u(p2, s2)

p2
3 − m2 + iε

× ū(pf , sf )�µ

γ ∗Nu(p1, s1)

× ū(p1, s1)ū(p2, s2)ū(p3, s3)�3HeNNN (p1, p2, p3) χA

p2
1 − m2 + iε

.

(8)

Using Eq. (A4) and introducing the electromagnetic nucleon
current

jµ(pf , sf ; pm, s1) = ū(pf , sf )�µ

γ ∗Nu(pm, s1), (9)

for A
µ

0 , one arrives at

A
µ

0 =
√

2Er22Er3(2π )3
∑

s1,s2,s3,t2,t3

∫
d3p2

×�
†pr2,sr2,tr2;pr3,sr3,tr3
NN (p2, s2, t2; p3, s3, t3)

× j
µ

t1(pm + q, sf ; pm, s1)

×�
sA

A (pm, s1, t1; p2, s2, t2; p3, s3, t3), (10)

where sA, s1, s2, s3, sf , sr2, sr3 describe the spin projections of
the 3He nucleus, the initial nucleons, and the final nucleons,
respectively. We represent the isospin projections of nucleons
by t1, t2, t3, tf , tr2, tr3 and use these indexes to identify the
protons and neutrons. In Eq. (10), �sA

A is the ground-state wave
function of the 3He nucleus with polarization vector sA, and
�NN represents the bound or continuum NN wave function.
One can simplify Eq. (10) further using the fact that �NN

is a function only of the relative three-momenta of spectator
nucleons and the spins. This allows us to replace the d3p2

integration by d3p23, which yields2

A
µ

0 =
√

2Er22Er3(2π )3
∑

s1,s2,s3,t2,t3

∫
d3p23

×�
†pr23,sr2,tr2;sr3,tr3
NN (p23, s2, t2; s3, t3)

× j
µ

t1(pm + q, sf ; pm, s1)

×�
sA

A

(
pm, s1, t1; −pm

2
+p23, s2, t2; −pm

2
− p23, s3, t3

)
.

(11)

For the case of the reaction of Eq. (1), �NN is a continuum NN
wave function, which can be represented through the solution

2To do this one can introduce d3p3δ
3(pr2 + pr3 − p2 − p3) in

Eq. (10), then replace d3p2d
3p3 by d3p23d

3Pcm23, with p23 = p2−p3
2

and Pcm23 = p2 + p3, and integrate out the δ function through
d3Pcm23.
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FIG. 2. (Color online) Single rescattering contribution to the
scattering amplitude of the 3He(e, e′Nf Nr2)Nr3 reaction.

of Lippmann-Schwinger equation as follows:

�
†pr23,sr2,tr2;sr3,tr3
NN (p23, s2, t2; s3, t3) = δ3(p23 − pr23)

+ 1

2π2

〈sr2, tr2; sr3, tr3|f off shell
NN (pr23, p23)|s2, t2; s3, t3〉

p23
2 − pr23

2 − iε
,

(12)

where p23 = p2−p3
2 , pr23 = pr2−pr3

2 , and f off shell
NN is a half-off-

shell nonrelativistic amplitude of NN scattering (see, e.g.,
Ref. [27]). Terms on the right-hand side of Eq. (12) charac-
terize two distinctive dynamics of production of the recoil NN
state. If only the first term of Eq. (12) is kept in Eq. (11), this
will correspond to the approximation in which all three final
nucleons propagate as plane waves. Hereafter we will refer

to this approximation as a plane wave impulse approximation
(PWIA). The second term in Eq. (12) describes a reinteraction
between the pair of slow nucleons, which distorts the plane
wave of the outgoing recoil nucleons. Following Ref. [28] we
will refer to this term as a pair distortion contribution.

B. Single rescattering amplitude

The diagrams in Fig. 2 describe the process in which the
knocked-out (fast) nucleon rescatters off one of the spectator
nucleons. Using the diagrammatic rules from the Appendix
for the amplitude corresponding to the diagram of Fig. 2(a)
one obtains

A
µ

1a = −
∫

d4p2

i(2π )4

d4p3

i(2π )4
ū(pr3)ū(pr2)ū(pf )

× �+
NN (p′

2, p3)(p̂′
2 + m)

p′2
2 − m2 + iε

F a
NN (p′

2 − p2)(p̂1 + q̂ + m)

(p1 + q)2 − m2 + iε

·�µ

γ ∗N · p̂3 + m

p2
3 − m2 + iε

p̂2 + m

p2
2 − m2 + iε

· p̂1 + m

p2
1 − m2 + iε

·�3HeNNN (p1, p2, p3)χA. (13)

Using the same arguments as in the previous subsection we
evaluate the d0p2 and d0p3 integrals through the residues at
positive energy poles in the recoil nucleon propagators. This
yields a replacement of

∫
[d0

2,3/(p2
2,3 − m2 + iε)] ≈ −i 2π

2m
and

reduces the covariant Feynman diagram of Eq. (13) to the
time-ordered noncovariant diagram in which nucleon 1 is first
struck by a virtual photon and then rescatters off the spectator
nucleon, 2. The rescattered nucleon 2 subsequently combines
with nucleon 3 into the NN continuum (or bound) state. Now,
we can use Eq. (7) for the intermediate nucleons. Furthermore,
relating the nuclear vertex functions to the nuclear wave
functions according to Eq. (A4) and the NN rescattering vertex
functions to the NN scattering amplitude according to Eq. (A1),
one obtains

A
µ

1a = −F
∑

s1′ ,s2′ ,s1,s2,s3

∑
t1,t2′ ,t2,t3

1

2m

∫
d3p2

(2π )3
d3p3�

†pr2,sr2,tr2;pr3,sr3,tr3
NN (p′

2, s2′ , t2′ ; p3, s3, t3)

×
√

sNN
2

(
sNN

2 − 4m2
)
fNN (p′

2, s2′ , t2′ , pf , sf , tf ; |p2, s2, t2, p1 + q, s1′ , t1)

(p1 + q)2 − m2 + iε

× j
µ

t1(p1 + q, s1′ ; p1, s1) · �
sA

A (p1, s1, t1; p2, s2, t2; p3, s3, t3), (14)

where F = √
2Er22Er3(2π )3, p1 = pA − p2 − p3, p

′
2 =

pr2 + pr3 − p3, and sNN
2 = (p1 + q + p2)2.

Now we analyze the propagator of the knocked-out nucleon:

(q + p1)2 − m2 + iε = 2q

[
2mq0 − Q2

2q
− p1z + iε

]
.

(15)
The factor (2mq0 − Q2)/2q is fixed by external (measurable)
kinematical variables such us Q2, q0, pf , and pr2. Using
the condition of the quasi-elastic scattering for reaction (1),

(q + pA − (pr2 + pr3))2 = m2, one obtains

2mq0 − Q2

2q
= pmz + q0

q
(Tr2 + Tr3 + |εA|) + m2 − m̃2

2q

≈ pmz + 
0 , (16)

where pmz = pf z − q, Tr2 and Tr3 are the kinetic energies of
recoil nucleons, |εA| is the modulus of the binding energy of
the target, and m̃2 = [pA − (pr2 + pr3)]2. In the last step in
Eq. (16) we neglected the (m2 − m̃2)/(2q) term, since for the
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fixed decay kinematics it vanishes with an increase of q. We
have also denoted


0 = q0

q
(Tr2 + Tr3 + |εA|), (17)

which defines the effective longitudinal momentum transfered
in the NN rescattering. Note that 
0, which is absent in
the conventional eikonal approximation, is important at large
values of recoil nucleon energies Tr2, Tr2 ∼ m. As will be
shown in Part II of this paper [23] the kinematics with the
large values of recoil nucleon energies are most relevant for
accessing the short-range correlations in nuclei. Substituting
Eqs. (15) and (16) into Eq. (14) for the scattering amplitude
described by Fig. 2, one obtains

A
µ

1a = −F

2

∑
s1′ ,s2′ ,s1,s2,s3

∑
t1,t2′ ,t2,t3

∫
d3p2

(2π )3
d3p3

×�
†pr2,sr2,tr2;pr3,sr3,tr3
NN (p′

2, s2′ , t2′ ; p3, s3, t3)

×
√

sNN
2

(
sNN

2 − 4m2
)

2qm

× fNN (p′
2, s2′ , t2′ ; pf , sf , tf |p2, s2, t2; p1 + q, s1′ , t1)

pmz + 
0 − p1z + iε

× j
µ
t1 (p1 + q, s1′ ; p1, s1)

×�
sA

A (p1, s1, t1; p2, s2, t2; p3, s3, t3). (18)

Two important features of soft NN scattering allow us to
simplify Eq. (18). One is that in the high-energy regime
the soft, low-t NN amplitude, which dominates Eq. (18),
conserves the helicities of nucleons. Starting at Q2 � 1 GeV2

the approximation of helicity conservation is accurate on
the level of 2–3% [29] (for recent analysis see Ref. [30]).
It is an even smaller factor for the observables of reaction
(1) in which no polarization degrees of freedom are fixed.
The second feature is that the soft amplitude is a function
of the transverse component of the transfered momentum,
(p′

2 − p2)⊥, only. Since ẑ||q, the helicity-conserving argument
implies the conservation of the polarization projections of the
interacting nucleons in the z direction. These simplifications
yield the equation

fNN (p′
2, s2′ , t2′ , pf , sf , tf ; |p2, s2, t2, p1 + q, s1′ , t1)

= f
t2′ ,tf |t2,t1
NN (p′

2⊥ − p2⊥)δsf ,s1′ δs2′ ,s2 . (19)

Using this relation and defining the transfered momentum in
fNN as k ≡ p′

2 − p2 = p1 − pm we can rewrite Eq. (18) as
follows:

A
µ

1a = −F

2

∑
s1,s2,s3

∑
t1,t2′ ,t2,t3

∫
d3k

(2π )3
d3p3

×�
†pr2,sr2,tr2;pr3,sr3,tr3
NN (p′

2, s2, t2′ ; p3, s3, t3)

× χ1
(
sNN

2

)
f

t2′ ,tf |t2,t1
NN (k⊥)


0 − kz + iε

· jµ
t1 (p1 + q, sf ; p1, s1)

·�sA

A (pm + k, s1, t1; p2, s2, t2; p3, s3, t3), (20)

where χ1(sNN
2 ) =

√
sNN

2 (sNN
2 − 4m2)/2qm.
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FIG. 3. (Color online) Double rescattering contribution to the
scattering amplitude of the 3He(e, e′Nf Nr2)Nr3 reaction.

The contribution of the second diagram in Fig. 2 can be
calculated by interchanging the momenta of 2 and 3 nucleons
in Eq. (20). Doing this and changing the integration variables
d3p3 to d3p23 (similar to what was done in Sec. IIIA) for
complete single rescattering amplitude one obtains

A
µ

1 = A
µ

1a + A
µ

1b = −F

2

∑
s1,s2,s3

∑
t2′,t3′

∑
t1,t2,t3

×
∫

d3kd3p23

(2π )3
�

†pr23,sr2,tr2;sr3,tr3
NN (p23, s2, t2′ ; s3, t3′)

·jµ
t1 (p1 + q, sf ; p1, s1)

[
χ1

(
sNN

2

)
f

tf ,t2′ |t1,t2
NN (k⊥)δt3′ ,t3


0 − kz + iε

×�
sA

A

(
pm + k, s1, t1; −pm

2
+ p23 − k, s2, t2; −pm

2

−p23; s3, t3

)
+ χ1

(
sNN

3

)
f

tf ,t3′ |t1,t3
NN (k⊥)δt2′ ,t2


0 − kz + iε

×�
sA

A

(
pm + k, s1, t1; −pm

2
+ p23, s2, t2; −pm

2

−p23 − k; s3, t3

)]
. (21)

C. Double rescattering amplitude

Next we discuss the double rescattering contribution, in
which the knocked-out nucleon rescatters off both spectator
nucleons in the nucleus (Fig. 3). Using the diagram rules
summarized in the Appendix, one obtains

A
µ

2a = −
∫

d4p′
3

i(2π )4

d4p2

i(2π )4

d4p3

i(2π )4
ū(pr3)ū(pr2)ū(pf )

× �+
NN (p′

2, p
′
3)(p̂′

2 + m)(p̂′
3 + m)(

p′2
2 − m2 + iε

)(
p′2

3 − m2 + iε
)
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× F b
NN (p′

3 − p3)(p̂1 + q̂ + p̂2 − p̂′
2 + m)

(p1 + q + p2 − p′
2)2 − m2 + iε

× F a
NN (p′

2 − p2)(p̂1 + q̂ + m)

(p1 + q)2 − m2 + iε
· �

µ

γ ∗N · p̂3 + m

p2
3 − m2 + iε

× p̂2+m

p2
2 −m2+iε

· p̂1+m

p2
1 − m2 + iε

·�3He NNN(p1, p2, p3)χA,

(22)

where p2 and p3 are the momenta of the spectator nucleons
before rescattering; p1 = pA − p2 − p3.

Using the same approximation we used for the IA and single
rescattering amplitudes we estimate the integrals over d0p3′,3,2

through the positive energy poles of the nucleon propagators
with momenta p′

3, p3 and p2, respectively. These integrations
result in the replacement of∫

d0pj

2πi
(
p2

j − m2 + iε
) → − 1

2Ej

≈ − 1

2m
, (j = 2, 3, 3′).

Applying the closure condition of Eq. (7) and using the
reduction [Eq. (A4)] of nuclear vertices to the nonrelativistic
nuclear wave functions (both in the ground state and in the
continuum) as well as applying the relations of Eqs. (9) and
(A1), for A

µ

2a one obtains

A
µ

2a = F

(2m)2

∑
s1,s2,s3

∑
t1,t2,t3,t1′ ,t2′ ,t3′

∫
d3p′

3

(2π )3

d3p2

(2π )3
d3p3

×�
†pr2,sr2,tr2;pr3,sr3,tr3
NN (p′

2, s2, t2′ ; p′
3, s3, t3′ )

×
√

sNN
b3

(
sNN
b3 − 4m2

)
f

t3′ ,tf |t3,t1′
NN (p′

3⊥ − p3⊥)

(p1 + q + p2 − p′
2)2 − m2 + iε

×
√

sNN
a2

(
sNN
a2 − 4m2

)
f

t2′ ,t1′ |t2,t1
NN (p′

2⊥ − p2⊥)

(p1 + q)2 − m2 + iε

× j
µ

t1(p1 + q, sf ; p1, s1)

· �
sA

A (p1, s1, t1; p2, s2, t2; p3, s3, t3), (23)

where sNN
b3 and sNN

a2 are total invariant energies of nucleons
coupling at the vertices F b

NN and F a
NN respectively.

Let us now consider the denominators of the knocked-out
nucleon in the intermediate states. For (p1 + q)2 − m2 + iε,
similar to the case of single rescattering, one obtains

(p1 + q)2 − m2 = 2q(
0 + pmz − p1z + iε) , (24)

where 
0 is defined according to Eq. (17).
For the denominator, (p1 + q + p2 − p′

2)2 − m2 + iε in
Eq. (23), using energy-momentum conservation in the reaction
(1) we obtain

(p1 + q + p2 − p′
2)2 −m2 + iε= (pf + p′

3 − p3)2 − m2 + iε

=2pf z

[
Ef

pf z

(E′
3 − E3) − (p′

3z − p3z) − pf ⊥
pf z

(p′
3⊥ − p3⊥) + iε

]

=2pf z[
3 − (p′
3z − p3z) + iε]. (25)

where 
3 = Ef

pf z
(E′

3 − E3) − pf ⊥
pf z

(p′
3⊥ − p3⊥). Substituting

Eqs. (24) and (25) into Eq. (22) for A
µ

2a one obtains

A
µ

2a = F

4

∑
s1,s2,s3

∑
t1,t2,t3,t1′ ,t2′ ,t3′

∫
d3p′

3

(2π )3

d3p2

(2π )3
d3p3

×�
†pr2,sr2,tr2;pr3,sr3,tr3
NN (p′

2, s2, t2′ ; p′
3, s3, t3′ )

× χ2
(
sNN
b3

)
f

t3′ ,tf |t3,t1′
NN (p′

3⊥ − p3⊥)


3 + p′
3z − p3z + iε

× χ1
(
sNN
a2

)
f

t2′ ,t1′ |t2,t1
NN (p′

2⊥ − p2⊥)


0 + pmz − p1z + iε

× j
µ

t1(p1+q, sf ; p1, s1)

· �
sA

A (p1, s1, t1; p2, s2, t2; p3, s3, t3), (26)

where χ1(sNN
a2 ) =

√
sNN
a2 (sNN

a2 − 4m2)/2qm with sNN
a2 =

(p1 + q + p2)2 and χ2(sNN
b3 ) =

√
sNN
b3 (sNN

b3 − 4m2) /2pf zm

with sNN
b3 = (p1 + q + p2 − p′

2 + p3)2.
To complete the calculation of the double rescattering am-

plitude one should also calculate the amplitude corresponding
to the diagram of Fig. 3(b). This amplitude is obtained by
interchanging momenta of nucleons 2 and 3 in Eq. (26).
Furthermore, it is more convenient to express the integrand
of the double rescattering amplitude through the momentum
transfers in the NN rescattering amplitude k2 = p′

2 − p2 and
k3 = p′

3 − p3. Using these variables, and changing the d3p′
3

integration to d3p′
23 (similar to what was done in Sec. III A,

one obtains for the complete double rescattering amplitude

A
µ

2 = A
µ

2a + A
µ

2b = F

4

∑
s1,s2,s3

∑
t1,t2,t3,t1′ ,t2′ ,t3′

×
∫

d3p′
23

d3k3

(2π )3

d3k2

(2π )3
�

†pr23,sr2,tr2;sr3,tr3
NN (p′

23, s2, t2′ ; s3,t3′)

×
[

χ2
(
sNN
b3

)
f

t3′ ,tf |t3,t1′
NN (k3⊥)


3 − k3z + iε

χ1
(
sNN
a2

)
f

t2′ ,t1′ |t2,t1
NN (k2⊥)


0 − k2z − k3z + iε

+ χ2
(
sNN
b2

)
f

t2′ ,tf |t2,t1′
NN (k2⊥)


2 − k2z + iε

χ1
(
sNN
a3

)
f

t3′ ,t1′ |t3,t1
NN (k3⊥)


0 − k2z − k3z + iε

]

× j
µ

t1(pm + k2 + k3 + q, sf ; pm + k2 + k3, s1)

×�
sA

A

(
pm + k3 + k2, s1, t1; −pm

2
− k2 + p′

23, s2, t2;

− pm

2
− k3 − p′

23, s3, t3

)
. (27)

D. Differential Cross Section

The calculated amplitudes in Sec. III allow us to evaluate
numerous observables (both polarized and unpolarized) for
high-Q2 quasi-elastic electroproduction from a 3He target. The
differential cross section of reaction (1) is given by
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d12σ = 1

4jA

(2π )4δ4(ke + PA − k′
e − pf − pr2 − pr3)

×
∑

nucleons

|Mf i |2 d3k′
e

(2π )32E′
e

d3pf

(2π )32Ef

× d3pr2

(2π )32Er2

d3pr3

(2π )32Er3
, (28)

where jA =
√

(kePA)2 − m2
eM

2
A. Here we sum over the nucle-

ons knocked out by the virtual photon.
The factor 1/4 comes from the averaging over the initial

polarizations of the electron and 3He. Since one of the recoil
nucleons is not observed, one eliminates this degree of freedom
by integrating over d3pr3. Thus the integrated differential cross
section is

d9σ = 1

4jA

(2π )4δ(Ee + MA − E′
e − Ef − Er2 − Er3)

×
∑

nucleons

|Mf i |2 d3k′
e

(2π )32E′
e

d3pf

(2π )32Ef

× d3pr2

(2π )32Er2

1

(2π )32Er3
, (29)

where pr3 = ke − ke′ − pf − pr2. In Eqs. (28) and (29) the
transition matrix, Mf i , represents the convolution of the
electron and nuclear currents, in which the nuclear current
represents the sum of the IA and single and double rescattering
amplitudes,

Mf i = −4πα
1

q2
je
µ · (

A
µ

0 + A
µ

1 + A
µ

2

)
, (30)

where A0, A1, and A2 are defined in Eqs. (11), (21), and (27),
respectively.

IV. SUMMARY

We developed a theoretical framework for calculation of
high-Q2 exclusive electro-disintegration of the A = 3 system.
The main feature of our approach is the calculation of final
state interactions of the struck energetic nucleon with the
recoil nucleons within the generalized eikonal approximation,
which allows us to account for the finite and relatively large
momenta of the recoil nucleons. An important advantage of
this approach is that we can now self-consistently study short-
range correlations in nuclei since the GEA does not require
the recoil nucleons to be stationary as does the conventional
Glauber approximation.

To describe the residual interaction between two recoil
nucleons, we use a scattering representation of the two-nucleon
continuum state wave function. This allows us to evaluate the
latter through the NN scattering amplitudes in the low- to
intermediate-energy region.

In the second part of our work [23] we discuss the numerical
calculations based on the formulas derived in this paper. In
numerical calculations, as an input we use the calculation
of ground-state wave functions of 3He based on realistic NN
interaction potentials as well as including models that account
for the three-nucleon forces [18]. The numerical estimates
of the interaction between recoil nucleons—referred to as

pair distortion—is implemented through the parameteriza-
tions of low- to medium-energy NN scattering amplitudes
provided by the SAID group [30]. For high-energy small-angle
NN scattering we use the parameterization of the form of
Eq. (A2). In numerical calculations [23] we are interested
mainly in studies of short-range two- and three nucleon
correlations for which GEA provides an appropriate theoretical
framework.
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APPENDIX: FEYNMAN DIAGRAM RULES FOR THE
SCATTERING AMPLITUDE IN GEA

Within the GEA the general eA scattering amplitude of
Fig. 4 can be calculated based on effective Feynman diagram
rules formulated as follows [19,20]:
� We assign the vertex functions �A(p1, . . . , pA) to describe

the transition of “nucleus A” to “A nucleons” with momenta
{pn}. The vertex function �

†
A−1(p′

2, . . . , pA) describes the
transition of “(A − 1) nucleons” with momenta {p′

n} to
“(A − 1) nucleon final state”.

� For the γ ∗N interaction we assign the vertex �h
γ ∗N .

� For each NN interaction we assign the vertex function
FNN

k (pk+1, p
′
k+1). This vertex function is related to the

amplitude of NN scattering as follows:

ū(p3)ū(p4)F NNu(p1)u(p2) =
√

s(s − 4m2)f NN(p3, p1),
(A1)

where s is the total invariant energy of two interacting
nucleons with momenta p1 and p2 and

f NN = σNN
tot (i + αNN )e− BNN

2 (p3−p1)2
⊥ , (A2)

where σNN
tot , αNN , and BNN are known experimentally from

NN scattering data. The vertex functions are accompanied
by a δ-function of energy-momentum conservation.

PA PA−1

p +q p

p

p

p’
p

p

F F F F...

1

2
p

n+2 2

p’

k+1

n+1

n+1

k11

A

n
f

q

FIG. 4. (Color online) n-fold A(e, e′N )A − 1 scattering diagram.
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� For each intermediate nucleon with four momentum p we
assign propagator D(p)−1 = −(p̂ − m + iε)−1. Following
Ref. [31] we choose the minus sign for the nucleon
propagators to simplify the calculation of the overall sign
of the scattering amplitude.

� The factor n!(A − n − 1)! accounts for the combinatorics
of n rescatterings and (A − n − 1) spectator nucleons.

� For each closed contour one gets the factor 1
i(2π)4 with no

additional sign.
Using the defined rules for the scattering amplitude of

Fig. 4 one obtains

A
(n)
A,A−1(q, pf ) =

∑
h

1

n!(A − n − 1)!

A∏
i=1

A∏
j=2

×
∫

d4pid
4p′

j

1

[i(2π )4]A−2+n
δ4

(
A∑

i=1

pi − PA

)

× δ4


 A∑

j=2

p′
j − PA−1


 A∏

m=n+2

δ4(pm − p′
m)

× ū(pf )χ †
A−1�

†
A−1(p′

2, . . . , p
′
n+1, pn+2, . . . , pA)

D(p′
2) . . . D(p′

n+1)

× f NN
n (pn+2, p

′
n+2) . . . f NN

1 (p2, p
′
2)

D(l1) . . . D(lk) . . . D(ln−1)

×�h
γ ∗N (Q2)

D(p1+q)

�A(p1, . . . , pA)χA

D(p1)D(p2) . . . D(pn+1)D(pn+2) . . . D(pA)
,

(A3)

where, for the sake of simplicity, we neglect the spin-dependent
indexes. Here, PA and PA−1 are the four-momenta of the
target nucleus and final (A − 1) system, pi and p′

i are nucleon
momenta in the nucleus A and residual (A − 1) system, respec-
tively, and lk = q + p1 + ∑k

i=2(pi − p′
i). The intermediate

spectator states in the diagram of Fig. 4 are expressed in
terms of nucleons but not nuclear fragments because, in the

high-energy limit, the closure over various nuclear excitations
in the intermediate state is used [19,20]. The sum of

∑
h in

Eq. (A3) goes over virtual photon interactions with different
nucleons, in which �h

γ ∗N (Q2) describes the electromagnetic
interaction.

The vertex function �A describes a transition of nucleus A
to the A-nucleon state, whereas the function �

†
A−1 describes

the transition of the A − 1 intermediate nucleons to a final
continuum or bound A − 1 nucleon state. Functions χA and
χA−1 describe the spin state of the A and A − 1 systems
respectively.

If one considers the kinematic conditions [similar to
Eqs. (2)] in which the internal momenta of nucleons are
restricted and the only relevant degrees of freedom are
nucleons, one can evaluate the intermediate-state nucleon
propagators through the poles corresponding to the positive
energy solutions. As a result the covariant amplitude will be
reduced to a set of time-ordered noncovariant diagrams that
allows us to establish the correspondence between the nuclear
vertex functions and the nuclear wave functions. In this limit
the momentum-space wave function is defined through the
vertex function as follows [31,32]:

ψA(p1, p2, . . . , pA) = 1

(
√

(2π )32m)A−1

× ū(p1)ū(p2) . . . ū(pA)�A(p1, p2, . . . , pA)

p2
1 − m2

χA, (A4)

normalized as∫
|ψA(p1, p2, . . . , pA)|2δ3

( ∑
pi − pA

) A∏
i=1

d3pi = N,

(A5)

where N = A for bound states and N = ∏A
i=1 δ3(pi − p′

i) for
A body continuum sate. Note that to apply the relativistic

normalization for the spinors (ūu = 2m) the
√

(2π )32m
−1

factor should be associated with the plane-wave single-nucleon
wave function.
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