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Surface diffuseness anomaly in heavy-ion potentials for large-angle quasielastic scattering
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Recent high precision experimental data for heavy-ion fusion reactions at sub-barrier energies systematically
show that a surprisingly large surface diffuseness parameter for a Woods-Saxon potential is required in order to
fit the data. We point out that experimental data for quasielastic scattering at backward angles also favor a similar
large value of the surface diffuseness parameter. Consequently, a double folding approach with a short-range
imaginary potential for the compound nucleus formation fails to reproduce the experimental excitation function of
quasielastic scattering for the 16O + 154Sm system at energies around the Coulomb barrier. We also show that the
deviation of the ratio of the quasielastic to the Rutherford cross sections from unity at deep sub-barrier energies
offers an unambiguous way to determine the value of the surface diffuseness parameter in the nucleus-nucleus
potential.
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The nucleus-nucleus potential is the primary ingredient in
nuclear reaction calculations. Its nuclear part has often been
parametrized as a Woods-Saxon form [1]. Elastic and inelastic
scattering are sensitive mainly to the surface region of the
nuclear potential, where the Woods-Saxon parametrization has
a simple exponential form. This fact has been exploited to study
the surface property of nuclear potential. Usually, the best fit to
experimental data for scattering is obtained with a diffuseness
of around 0.63 fm [1–5]. This value is consistent with a double
folding potential [6,7], and it seems to be well accepted [1,8].

In marked contrast, recent high precision experimental data
for heavy-ion fusion reactions at energies around the Coulomb
barrier suggest that a much larger value of diffuseness, ranging
from 0.75 to 1.5 fm, is required to fit the data [6,7,9–12] (see
Ref. [13] for a detailed systematic study). The Woods-Saxon
potential which fits elastic scattering overestimates fusion
cross sections at energies both above and below the Coulomb
barrier, having an inconsistent energy dependence with the
experimental fusion excitation function. When the height of
the Coulomb barrier is fixed, the larger diffuseness parameter
leads to the smaller barrier position and the smaller barrier
curvature (thus the larger tunneling region). The main effect
on the fusion cross sections comes from the barrier position and
the tunneling width of the barrier at energies above and
below the Coulomb barrier, respectively. A large diffuseness
parameter appears to be desirable in both these respects
[6]. The reason for the large discrepancies in diffuseness
parameters extracted from scattering and fusion analyses,
however, is not yet understood.

The purpose of this paper is to discuss the dependence of
a quasielastic excitation function at a large scattering angle
on the surface diffuseness parameter in a nucleus-nucleus
potential. The quasielastic cross section is defined as the
sum of the cross sections of elastic, inelastic, and transfer
reactions. Its excitation function at backward angles provides
complementary information to the fusion process [14–16]. It
therefore offers an ideal test ground for the large diffuseness
parameter suggested by recent fusion data. This is particularly
of interest in connection to the steep falloff phenomena of

fusion cross sections at deep sub-barrier energies observed
recently in several systems [11,17–19]. This is so because
the measurement of quasielastic scattering is experimentally
much easier than that of a fusion reaction, especially at deep
sub-barrier energies [16]. Contrary to what one might expect,
we demonstrate below that the surface diffuseness parameter
which fits the experimental data of quasielastic scattering is
consistent with the one for fusion, rather than the commonly
accepted value for scattering.

As a concrete example, let us consider the 16O + 154Sm
reaction. Neglecting the finite excitation energy of the ground
state rotational band in the target nucleus 154Sm, the cross
sections for fusion and quasielastic scattering are given by
[14,16,20,21]

σfus(E) =
∫ 1

0
d(cos θT )σfus(E; θT ) (1)

and

σqel(E, θ ) =
∫ 1

0
d(cos θT )σel(E, θ ; θT ), (2)

respectively, in the isocentrifugal approximation, where one
neglects the angular momentum transfer in the centrifugal
potential [16,22]. θ and θT are the scattering angle and the
orientation angle of the deformed target with respect to the
projectile direction, respectively. σfus(E; θT ) and σel(E, θ ; θT )
are the fusion and the elastic cross sections for the angle
dependent potential V (r, θT ) given by

V (r, θT ) = VN (r, θT ) + VC(r, θT ), (3)

VN (r, θT ) = −V0

1 + exp[(r − R − RT

∑
λ βλYλ0(θT ))/a]

, (4)

VC(r, θT ) = ZP ZT e2

r
+

∑
λ

(
βλ + 2

7

√
5

π
β2

2δλ,2

)

× 3ZP ZT e2

2λ + 1

Rλ
T

rλ+1
Yλ0(θT ). (5)
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FIG. 1. The ratio of the quasielastic to the Rutherford cross
sections at θlab = 170◦ (upper panel) and the fusion cross section
(lower panel) for the 16O + 154Sm reaction. The solid line is
obtained with the orientation-integrated formula with β2 = 0.306
and β4 = 0.05 by using the Woods-Saxon potential with the surface
diffuseness parameter a of 1.05 fm; the dashed line is obtained with
an a of 0.65 fm. The result of the double folding potential with the
density-dependent M3Y interaction is denoted by the thin solid line.
The experimental data are taken from Refs. [9,15].

Figure 1 compares the experimental data for the quasielastic
(given as the ratio to the Rutherford cross section; the upper
panel) and the fusion (the lower panel) cross sections with
calculated cross sections obtained with different values for the
surface diffuseness parameter in the Woods-Saxon potential.
The experimental data are taken from Refs. [9,15], where
the quasielastic cross sections were measured at 170◦ in the
laboratory frame. The solid and dashed lines are obtained
with a Woods-Saxon potential with a = 1.05 and 0.65 fm,
respectively. The depth and the radius parameters of the po-
tentials are V0 = 165 MeV and R = 0.95 × (A1/3

P + A
1/3
T ) fm

for the former, and V0 = 220 MeV and R = 1.1 × (A1/3
P +

A
1/3
T ) fm for the latter. The deformation parameters are taken

to be β2 = 0.306 and β4 = 0.05 with RT = 1.06 × A
1/3
T fm.

As is usually done, we use a short-range imaginary potential
with W = 50 MeV, aw = 0.4 fm, and rw = 1.0 fm in order
to simulate the compound nucleus formation, and we assume

that the potential parameters are independent of energy.1 The
absorption cross sections are thus identified with the fusion
cross sections in the present calculations. The calculated fusion
cross sections are insensitive to the parameters of the imaginary
part of the potential as long as it is strong enough and well
localized inside the Coulomb barrier.

Figure 1 clearly shows that the experimental data favor the
internuclear potential with the larger value of the diffuseness
parameter, a = 1.05 fm, both for fusion and quasielastic
scattering. We have checked that the fit to the experimental
data with the potential with a = 0.65 fm does not improve even
if we vary the depth and the radius parameters of the potential
as well as the deformation parameters. The discrepancy
between the experimental data and the theoretical curve
for the quasielastic excitation function around E = 65 MeV
is due to the transfer process [15], which is not included in the
present calculations.

For a single channel problem, the ratio of the elastic to
the Rutherford cross sections at backward angles is given by
[16,25]

dσel

dσR

(E, θ ) ∼ 1 + VN (rc)

ka

√
2aπkη

E
, (6)

at energies well below the Coulomb barrier, where the tunnel-
ing probability is exponentially small (see Ref. [16] for a more
general formula which is also valid at higher energies). This
formula is obtained with the semiclassical perturbation theory
by assuming that the nuclear potential VN (r) is proportional
to exp(−r/a) around the distance of closest approach, that is,
rc = (η +

√
η2 + λ2

c)/k, where η is the Sommerferd parameter
and λc = η cot(θ/2). The deviation of the ratio of the cross
sections at sub-barrier energies from unity is therefore sensitive
only to the surface property of nuclear potential, and it provides
a relatively model-independent way to study the effect of
the surface diffuseness parameter. In order to demonstrate
that the surface diffuseness is indeed more influential than
the channel coupling effect on quasielastic scattering at low
energies, Fig. 2 shows the effect of deformation of the target
nucleus on the quasielastic cross sections. We find that the
effect is negligible at deep sub-barrier energies, and the role
played by the surface diffuseness parameter is indeed identified
unambiguously. In the interpretation of the channel coupling
effects based on the barrier distribution picture [9,26,27], this is
a natural consequence of the fact that the reflection probability
is almost unity for all the distributed barriers at deep sub-barrier
energies. In terms of the dynamical polarization potential
(DPP), channel couplings induce both the real and imaginary

1In another model of fusion by Udagawa et al. [23,24], a relatively
long-range imaginary potential is assumed. To satisfy the dispersion
relation, the real part then has a strong energy dependence. Although
this approach has been as successful as the approach with a short-
range imaginary potential, we choose the latter approach, i.e., the
energy-independent approach in the present paper, assuming that the
imaginary potential around the barrier position has been taken into
account by explicitly considering the couplings to the rotational states
(or the deformation) of the target nucleus.
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FIG. 2. Effects of the deformation of the target nucleus on the
quasielastic scattering for the 16O + 154Sm reaction. The meaning of
the solid and dashed lines is the same as in Fig. 1. The dot-dashed
and the dotted lines are obtained by assuming a spherical target for
a Woods-Saxon potential with a surface diffuseness parameter a of
1.05 and 0.65 fm, respectively.

polarization potentials. These two effects cancel each other in
quasielastic cross sections at deep sub-barrier energies.

The strongest energy dependence of the cross section ratio
comes from the exponential factor, exp(−rc/a), in the nuclear
potential VN (rc). The larger value of diffuseness parameter
results in the stronger energy dependence, and thus the larger
deviation of the ratio from unity. The measured quasielastic
cross sections at energies between 35 and 55 MeV are
clearly inconsistent with a = 0.65 fm. As in sub-barrier fusion
reactions, a larger diffuseness parameter seems to be required
in order to fit the experimental data.

For completeness of our study, we next examine the
performance of a double folding potential [28–30] for the
sub-barrier reactions. In order to construct a nucleus-nucleus
potential with the double folding procedure, we assume a
deformed Fermi function for the (intrinsic) target density,

ρT (r) = ρ0

1 + exp
[
(r − R − R

∑
λ βλYλ0(r̂))/ad

] . (7)

We use the same parameters as in Ref. [31], including the
β2 and β4 deformations. We numerically expand Eq. (7)
into multipoles up to L = 6, and construct the double
folding potential for each multipole component, leading
to an orientation-dependent potential which corresponds to
Eq. (3). We use the same (spherical) density for 16O as
in Ref. [32]. For an effective nucleon-nucleon interaction,
we use the density-dependent Michigan three-range Yukawa
(DDM3Y) interaction [33], together with the zero-range
approximation for the exchange contribution (see Ref. [29] for
the parameters). We introduce an overall scaling factor to the
nuclear potential so that the barrier height is the same as that
of the Woods-Saxon potentials. The cross sections computed
with a double folding potential thus obtained are denoted by
the thin solid line in Fig. 1. Those are similar to the results

of the Woods-Saxon potential with a diffuseness parameter of
a = 0.65 fm. In particular, compared with the experimental
data, the double folding potential leads to a much weaker
falloff of quasielastic cross sections at energies well below the
Coulomb barrier. Evidently, the double folding model does
not provide a good representation for both the quasielastic
scattering and the fusion reaction at sub-barrier energies, at
least when it is used with a short-range imaginary potential.

In summary, we have studied the sensitivity of large-angle
quasielastic scattering to the surface diffuseness parameter
in the nucleus-nucleus potential. To this end, we assumed
that the imaginary potential is well localized inside the
Coulomb barrier in order to simulate the compound nucleus
formation. We have argued that the deviation of the ratio
of quasielastic to Rutherford cross sections from unity at
deep sub-barrier energies is sensitive mainly to the surface
property of nuclear potential, and thus it provides a useful way
to determine the value of the surface diffuseness parameter.
Using this fact, we have shown that the experimental excitation
function for quasielastic scattering at energies around the
Coulomb barrier can be reproduced only when a much larger
diffuseness parameter is used in a Woods-Saxon potential than
the commonly accepted value, that is, around 0.63 fm. This
finding is consistent with a recent observation in heavy-ion
sub-barrier fusion reactions. It would be helpful to perform
other quasielastic measurements at deep sub-barrier energies,
so that a systematic study of the diffuseness parameter for the
scattering process is possible.

We have also discussed the applicability of a double
folding potential in quasielastic scattering. We have shown
that the cross sections obtained with the double folding
potential are similar to the ones obtained with a Woods-
Saxon potential whose surface diffuseness parameter is around
0.65 fm. Consequently, the double folding potential with
a short-range imaginary potential does not reproduce the
experimental excitation function for large-angle quasielastic
scattering around the Coulomb barrier. This may appear rather
surprising, given that a double folding approach has enjoyed
success in reproducing an angular distribution for elastic and
inelastic scattering in many systems. In order to reconcile this
apparent contradiction, a more careful investigation, e.g., for
the energy dependence of a double folding potential due to
the exchange contribution, would be necessary. Detailed com-
parison between the approach with a short-range imaginary
potential employed in this paper and the one by Udagawa
et al. [23,24] with a long-range imaginary potential is also
important. We will report these in a separate paper.
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