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Isospin dependence of 6He+ p optical potential and the symmetry energy
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A consistent folding analysis of the elastic p(6He,6He)p scattering and charge exchange p(6He,6Li∗)n reaction
data measured at Elab = 41.6A MeV has been performed within the coupled channels formalism. We have
used the isovector coupling to link the isospin dependence of 6He+p optical potential to the cross section of
p(6He,6Li∗)n reaction exciting the 0+ isobaric analog state (IAS) at 3.563 MeV in 6Li. Based on these results
and the Hartree-Fock calculation of asymmetric nuclear matter using the same isospin-dependent effective
nucleon-nucleon interaction, we were able to confirm that the most realistic value of the symmetry energy Esym

is around 31 MeV. Our analysis has also shown that the measured charge exchange p(6He,6Li∗)n data are quite
sensitive to the halo tail of the 6He density used in the folding calculation and the IAS of 6Li is likely to have a
halo structure similar to that established for the ground state of 6He.
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The knowledge about the symmetry part of the nuclear
equation-of-state (EOS) is vital for the understanding of
the dynamics of supernovae explosion and the formation of
neutron stars [1,2]. The symmetry part of the nuclear EOS
is actually determined by the nuclear matter (NM) symmetry
energy S(ρ) defined in terms of a Taylor series expansion of
the NM binding energy B(ρ, δ) as follows:

B(ρ, δ) = B(ρ, 0) + S(ρ)δ2 + O(δ4) + · · · (1)

where δ = (ρn − ρp)/ρ is the neutron-proton asymmetry
parameter. The contribution of O(δ4) and higher-order terms
in Eq. (1), that is, the deviation from the parabolic law was
proven to be negligible [3,4]. The NM symmetry energy
determined at the NM saturation density, Esym = S(ρ0)
with ρ0 ≈ 0.17 fm−3, is widely known in the literature as
the symmetry energy or symmetry coefficient. Although
numerous nuclear many-body calculations have predicted
Esym to be around 30 MeV (see, e.g., Refs. [3–6,10]), a
direct experimental determination of Esym still remains a
challenging task. One needs, therefore, to relate Esym to some
experimentally inferrable quantity such as the neutron skin
in neutron-rich nuclei [7–10] or the fragmentation data of
heavy-ion (HI) collisions involving N �= Z nuclei [11–13].
An accurate estimate of the Esym value is also very important
for nuclear astrophysics. For example, a small variation of
Esym, used as input for the hydrodynamic simulation of
supernovae, significantly affects the electron capture rate
in the “prompt” phase of type II supernovae [2]. Another
example is a calculation of NM and masses of finite nuclei
using Skyrme forces [6], which shows that the neutron-rich
NM does not collapse only if the corresponding Esym

value is within the range 28–31 MeV. Esym is also an
important input for the study of the density dependence S(ρ)
based on transport-model simulation of the HI collisions
(see Ref. [11] and references therein), and the most
recent transport-model results favor Esym ≈ 31–32 MeV [13].
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Within the frame of any microscopic model for asymmetric
NM, the symmetry energy depends strongly on the isospin
dependence of the nucleon-nucleon (NN ) interaction used
therein [3,4]. Therefore, the Esym value can be indirectly tested
in a charge exchange (isospin-flip) reaction, which has been
known for decades as a good probe of the isospin dependence
of the effective NN interaction [14]. Although the isospin
dependence of the optical potential (OP), known by now as
Lane potential [15], has been studied since a long time, there
has been a considerable interest recently in studying the isospin
dependence of the OP in the quasielastic scattering reactions
measured with unstable neutron-rich beams. Based on the
isospin symmetry, the nucleus-nucleus OP can be written in
terms of an isovector coupling [15] as follows:

U (R) = U0(R) + 4U1(R)
t·T
aA

, (2)

where t is the isospin of the projectile a and T is that
of the target A. For a proton-induced scattering reaction,
the second term of Eq. (2) contributes to both the elastic
(p, p) scattering and (p, n) charge exchange reaction [16].
Although the relative contribution by the Lane potential U1

to the elastic (p, p) cross section is small and amounts to
only a few percentages for a neutron-rich target [17,18], it
determines entirely the (Fermi-type) �Jπ = 0+ transition
strength of the (p, n) reaction, leading to an isobaric analog
state (IAS). Therefore, the (p, n) reaction so far has been
the main tool in studying the isospin dependence of the
proton-nucleus OP. Because this isospin dependence should
be better tested in the charge exchange reactions induced by
the neutron-rich beams, we consider in the present work the
p(6He,6Li∗)n reaction measured by Cortina-Gil et al. [19] with
the secondary 6He beam at Elab = 41.6A MeV. Given a large
neutron-proton asymmetry (δ = 1/3) of the unstable 6He
nucleus, the measured p(6He,6Li∗)n cross section for the
transition connecting the ground state (g.s.) of 6He (T = Tz =
1) and its isobaric analog partner (T = 1, Tz = 0, J π = 0+
excited state of 6Li at 3.563 MeV) is indeed a good probe of the
isovector coupling in the 6He+p system. In the two-channel
approximation, the elastic p(6He,6He)p scattering and charge
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exchange p(6He,6Li∗)n cross sections can be obtained from
the solutions of the following coupled channels (CC) equations
[16]:

[Kp + Up(R) − Ep]χp(R) = −
√

2

3
U1(R)χn(R), (3)

[Kn + Un(R) − En]χn(R) = −
√

2

3
U1(R)χp(R). (4)

Here Kp(n) and Ep(n) are the kinetic-energy operators and
center-of-mass energies of the 6He+p and 6Li∗ + n channels,
with the energy shift because of the Coulomb energy and Q
value of the p(6He,6Li∗)n reaction properly taken into account.
Up(R) is the OP in the 6He+p channel and Un(R) is that
in the 6Li∗ + n channel. In addition to the charge exchange
p(6He,6Li∗)n [19] and elastic p(6He,6He)p scattering [20]
data measured at 41.6A MeV, a total reaction cross section
σR = 409 ± 22 mb was also measured [21] for the 6He+p

system at a slightly lower energy of 36A MeV. Thus, these
data sets are the important constraints for the 6He+p OP at
the considered energy.

To link the Lane potential U1 to the isospin dependence
of the NN interaction, we have used the folding model
[17,18] to calculate U0 and U1 using the explicit proton and
neutron g.s. densities of 6He and the CDM3Y6 density- and
isospin-dependent NN interaction [22]. This interaction is
based on the M3Y interaction v0(1)(s) deduced from the
G-matrix calculation [23] using the Paris NN potential, with
the energy and density dependences included explicitly as
follows:

v0(1)(E, ρ, s) = (1 − 0.0026E)F0(1)(ρ)v0(1)(s), (5)

where E is the bombarding energy (per projectile nucleon),

F0(1)(ρ) = C0(1)[1 + α exp(−βρ) − γρ], (6)

and the explicit expression of the finite-range v0(1)(s) interac-
tions is given in Ref. [3]. Parameters of the isoscalar part
F0(ρ) of the density dependence (6) were chosen [22] to
reproduce saturation properties of the symmetric NM in the
Hartree-Fock (HF) approximation and tested in the folding
analyses [22,24] of the elastic refractive nucleus-nucleus and
α-nucleus scattering to infer realistic estimate for the nuclear
incompressibility [K(ρ0) ≈ 250 MeV]. In a similar manner,
we try now to probe the isovector part F1(ρ) in the CC analysis
of the charge exchange p(6He,6Li∗)n reaction and, using the
HF method of Ref. [3], to accurately estimate the symmetry
energy Esym. Because the CDM3Y6 interaction is real, the
folding model is used to calculate the real parts of the OP,
V0(1) = Re U0(1), which is further scaled by a complex factor
to obtained U0(1). By taking isospin coupling explicitly into
account, one obtains from Eq. (2) the following:

Up(R) =
[
V0(R) − V1(R)

3

]
(NR + iNI ), (7)

Un(R) = V0(R)(NR + iNI ). (8)

In the CC calculation, Up(n) are each added by a spin-orbital
potential whose parameters were fixed as taken from the
systematics by Becchetti and Greenless [25], and Up is added
further by a Coulomb potential between a point charge and a
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FIG. 1. (Color online) CC results for the charge exchange
p(6He,6Li∗)n cross section at Elab = 41.6A MeV in comparison with
the data measured by Cortina-Gil et al. [19].

uniform charge distribution of radius RC = 1.35A1/3 fm. The
form factor (FF) of the p(6He,6Li∗)n reaction, to be used in
the right-hand sides of Eqs. (3) and (4), is given by Eq. (2) as
follows:

Upn(R) = 2
√

N − Z

A
U1(R) =

√
2

3
V1(R)[1 + i(NI/NR)].

(9)
Thus, the scaling factors NR(I ) of the real and imaginary
parts of the OP are the main parameters to be determined
from the CC description of the charge exchange p(6He,6Li∗)n
and elastic scattering p(6He,6He)p data, which should also
be constrained by a total reaction cross section σR ≈ 400 mb
(an empirical value expected at the considered energy [21]). To
have as few free parameters as possible, we have used a simple
assumption (9) to scale the real folded (p, n) FF by the same
relative complex strength as that used in the elastic channel
[26]. Our only nuclear structure input is the 6Heg.s. density
and we have considered in this work two different choices: the
microscopic density given by the cluster-orbital shell model
approximation (COSMA) [27,28] and that obtained recently
[29] based on the independent particle model (IPM). The CC
calculation was done with the nonrelativistic code FRESCO [30]
using the inputs for mass numbers and incident energies given
by the relativistically corrected kinematics [31]. For a checking
purpose, the CC results plotted in Fig. 1 were also compared
with those given by the code ECIS97 [32] (which takes exactly
into account the relativistic kinematics) and the two sets of
calculated p(6He,6Li∗)n cross sections turned out to be nearly
identical.

We found that NR ≈ 0.85, and NI ≈ 0.55, which were
mainly determined by the fit to the elastic scattering data
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FIG. 2. (Color online) Density dependence of the NM symmetry
energy S(ρ) predicted by the HF formalism of Ref. [3] using the
same isovector strengths C1 as those used in Fig. 1, in comparison
with the empirical points deduced from the neutron-skin [9] and HI
fragmentation [12] data.

and by a constraint that the calculated σR is around 400 mb.
It is noteworthy that a continuum-discretized coupled channels
(CDCC) calculation of the elastic 6He+p scattering at about
the same energy by Mackintosh and Rusek [33] has shown that
the real dynamic polarization potential due to 6He breakup
is repulsive in the center and at the surface, so that a
renormalization factor NR < 1 of the real folded OP is well
expected. The relative strength NI/NR ≈ 0.65 [used further
to calculate FF for the p(6He,6Li∗)n reaction] also agrees
reasonably with the CDCC results [33], which give the ratio of
volume integrals of the imaginary and real parts of the 6He+p

OP around 0.6.
The p(6He,6Li∗)n cross section given by the COSMA

density [28] was found to have a shape very close to that
of the measured angular distribution (see Fig. 1). Because
the strength NI/NR was fixed at 0.65, the CC description
of the p(6He,6Li∗)n data could be improved only by fine tuning
the strength C1 of the isovector part of the density-dependence
(6) of the CDM3Y6 interaction. One can see that the best fit
is achieved when C1 is about 10% stronger than the isoscalar
strength C0. We have further performed the HF calculation of
asymmetric NM with the same isospin- and density-dependent
CDM3Y6 interaction using the method described in Ref. [3].
The density dependence of the NM symmetry energy S(ρ)
obtained with the same isovector strengths C1 as those used
in Fig. 1 is shown in Fig. 2, and one can deduce easily
Esym ≈ 31 ± 1 MeV from our HF results. This result should
be complementary to the nuclear structure studies that relate
the slope of the EOS of asymmetric NM and the associated
Esym value to the neutron skin, a method first suggested by
Alex Brown [7]. If one adopts, for example, a neutron-skin

�R ≈ 0.1–0.2 fm for 208Pb, then a systematics based on the
mean-field calculations (see Fig. 7 of Ref. [9]) gives Esym ≈
27–31 MeV (this value is compared with our HF result in
Fig. 2). The main methods to determine the neutron skin
are either the analyses of elastic (p, p) scattering on stable
N �= Z targets [34,35] or studies of asymmetric NM and
structure of finite nuclei [10,36]. However, the uncertainty
still remains rather high and �R for 208Pb nucleus was found
to range from 0.083–0.11 fm [35] to 0.13 ± 0.03 fm [10]
or around 0.17 fm [34] and up to about 0.22 fm [36]. A
more accurate determination of �R is expected from the
measurement of parity-violating electron scattering [37] and
it might be used for a more precise determination of Esym.
Our result is also complementary to the nuclear reaction
studies based on the transport-model simulations [11,12].
For example, a recent antisymmetrized molecular dynamics
(AMD) analysis of the HI fragmentation data [12] obtained
S(ρ ≈ 0.08 fm−3) ≈ 18−20 MeV (see Fig. 2), which gives
useful information on the low-density part of S(ρ). Because
the charge exchange p(6He,6Li∗)n cross section is peaked at
the most forward angles (see Fig. 1), our CC analysis has
probed mainly the surface part of the FF, which, in turn, is
determined by the low-density part of v1(E, ρ, s). The fact
that our HF calculation reproduces quite well the empirical
half-density point of S(ρ) [12] shows the reliability of the
isospin dependence of the CDM3Y6 interaction. Note that
the Gogny-AS effective NN interaction used in the AMD
calculation of Ref. [12] also gives Esym ≈ 31 MeV at ρ0

(see Fig. 1 of Ref. [38]), in a very close agreement with
our HF result. Thus, the HF result shown in Fig. 2 should
provide a realistic description of the EOS of asymmetric NM
for densities up to about 2 ρ0.

In addition to the conclusion on the symmetry energy,
we have found further that the measured p(6He,6Li∗)n data
are also sensitive to the halo tail of the 6He nucleus. Because
the IAS of 6Li is just an isobaric analog partner of 6Heg.s., the
isospin symmetry implies [39] that this IAS of 6Li should have
about the same halo structure as that of 6Heg.s., and the central
OP’s in the entrance and exit channels should be well described
by Eqs. (7) and (8). To study this effect, we have used in the
folding calculation two versions of the COSMA density [28]
that have RMS radii of 2.57 and 2.48 fm as well as the IPM
density [29], which has the RMS radius of 2.46 fm. Although
the IPM density was shown [29] to give a good description
of the interaction cross section measured with 6He beam at
high energies, it was calculated in the independent particle
model that does not account for the dineutron correlation in
6He. In this sense, the COSMA densities are more accurate
and should give a better description of the p(6He,6Li∗)n data
if the IAS of 6Li has the same halo structure as 6Heg.s..
The CC results obtained with three different choices of the
6Heg.s. density are shown in Fig. 3 and one can see that the
COSMA density is indeed more appropriate than the IPM
density and gives a consistently good description of both the
elastic scattering and charge exchange data. With the same
NR(I ) factors used throughout these calculations, the COSMA
densities with RMS = 2.57 and 2.48 fm give σR = 408 and
399 mb, respectively, quite close to the empirical value of
about 400 mb. The IPM density gives σR = 382 mb, which
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FIG. 3. (Color online) CC results for the elastic scattering
p(6He,6He)p and charge exchange p(6He,6Li∗)n cross sections at
Elab = 41.6A MeV, given by the OP and FF obtained with three
choices of the 6Heg.s. density (see text) in comparison with the data
measured by Cortina-Gil et al. [19,20].

is slightly smaller than 400 mb. The description of the elastic
scattering and charge exchange data by the IPM density can
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FIG. 4. (Color online) DWBA results for the inelastic
p(6He,6He∗)p′, scattering to the 1.87-MeV 2+ state of 6He at
Elab = 40.9A MeV, given by the OP and FF obtained with three
choices of the 6Heg.s. density (see text) in comparison with the data
measured by Lagoyannis et al. [41].

only be improved by further reducing the NI factor, but
then σR becomes significantly smaller than the empirical
value. One can see in Fig. 3 that from two versions of the
COSMA density the p(6He,6Li∗)n data seem to favor that with
RMS = 2.57 fm. Such a RMS radius agrees with that predicted
earlier by the three-body calculation of 6He, which takes
into account the dynamic correlation between the α-core and
dineutron [40].

In addition to the elastic p(6He,6He)p scattering and charge
exchange p(6He,6Li∗)n reaction, inelastic p(6He,6He∗)p′,
scattering to the 1.87-MeV 2+ state of 6He has also been
measured [41] at a nearby energy of 40.9A MeV. This
(unbound) excitation of 6He has been a subject of extensive
analyses of the elastic and inelastic 6He+p scattering either
in the distorted-wave Born approximation (DWBA) or CC
formalism. In particular, the halo effect has been shown to be
significant in the 2+ inelastic scattering channel (see Fig. 3
of Ref. [41]). Therefore, a folding analysis of the 2+ inelastic
scattering data using the same 6He+p OPs as those used in
Fig. 3 would be quite complementary to the results discussed
above for the charge exchange reaction. The real 2+ inelastic
FF was calculated by the folding model [17,18] using a simple
ansatz for the transition density, where the proton and neutron
parts of the (6Heg.s. →6He∗

2+ ) transition density are given by
deforming proton and neutron parts of the 6Heg.s. density with
the deformation lengths δ

(p)
2+ and δ

(n)
2+ determined recently in a

CC analysis of the 4He(6He,6He)4He reaction [42]. The folded
2+ inelastic FF was further scaled by the same complex factor
(1 + iNI /NR) as that used to obtain the charge exchange FF in
Eq. (9). The DWBA results obtained with three choices of the
6Heg.s. density are plotted in Fig. 4 and one can see that the best
description of the p(6He,6He∗)p′ data are again given by the
COSMA density. The deficiency of the IPM density is about
the same as that shown above in the calculated p(6He,6Li∗)n
cross sections.

Finally, we note that a folding analysis of the present
charge exchange p(6He,6Li∗)n data has been done earlier
[19,21] using the famous JLM (complex) G-matrix interaction.
Although the real, imaginary, and isovector strengths of the
JLM interaction were adjusted to the best fit of the elastic
scattering and charge exchange data, these analyses seem to
be unable to give a good description of the last data points
of the measured p(6He,6Li∗)n cross section no matter what
density distribution of 6He is used in the folding calculation
(see, e.g., Fig. 2 of Ref. [21]). Our CC results represent,
therefore, an accurate alternative description that also provides
important input for the description of the equation-of-state
of asymmetric NM. The future measurements of the charge
exchange reactions induced by the neutron-rich beams would
be very valuable in studying the isospin dependence of
the nucleus-nucleus interaction and making a more reliable
conclusion on the symmetry energy.

The authors thank Nicolas Alamanos and Valerie Lapoux
for making the measured cross sections available in tabulated
form. The research was supported, in part, by the Natural
Science Council of Vietnam and Vietnam Atomic Energy
Commission.

044601-4



ISOSPIN DEPENDENCE OF 6He+p OPTICAL . . . PHYSICAL REVIEW C 71, 044601 (2005)

[1] H. A. Bethe, Rev. Mod. Phys. 62, 801 (1990).
[2] F. D. Swesty, J. M. Lattimer, and E. S. Myra, Astrophys. J. 425,

195 (1994).
[3] D. T. Khoa, W. von Oertzen, and A. A. Ogloblin, Nucl. Phys.

A602, 98 (1996).
[4] W. Zuo, I. Bombaci, and U. Lombardo, Phys. Rev. C 60, 024605

(1999).
[5] M. Brack, C. Guet, and H. B. Håkansson, Phys. Rep. 123, 276
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