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Collective modes in relativistic asymmetric nuclear matter

S. S. Avancini,1 L. Brito,2 D. P. Menezes,1 and C. Providência2

1Departamento de Fı́sica, CFM, Universidade Federal de Santa Catarina, Florianópolis, SC, CP. 476, CEP 88.040, 900, Brazil
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Isospin and density waves in asymmetric nuclear matter (ANM) are studied in the framework of relativistic
mean-field hadron models. A semiclassical relativistic approach based on the Vlasov equation is applied to the
study of infinite asymmetric nuclear matter. The isovector and isoscalar collective modes are determined for
a wide range of densities as a function of isospin asymmetry and momentum transfer. The condition for the
existence of each type of mode is referred. The instabilities of ANM, related to the liquid-gas phase transition,
are investigated.
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I. INTRODUCTION

Relativistic phenomenological models have been exten-
sively used in describing nuclei and nuclear matter nowadays.
Besides the good description of both stable and unstable
nuclei [1,2], these same models, with conveniently adjusted
parameters, are used to describe the properties of neutron stars
and supernovae [3,4]. Therefore, it is important to test these
models at finite temperature, different densities, and different
isospin asymmetries.

The instabilities and phase transitions appearing in asym-
metric nuclear matter (ANM) are important quantities in the
understanding of the physics underlying isospin distillation,
multifragmentation, and fractionation effects. At low nuclear
densities, mechanical and chemical modes are coupled in such
a way that the instability of the ANM system appears as a
mixture of baryon density and concentration fluctuations [5].
The region of instability, determined by the spinodal curve,
depends on the model used and shrinks considerably with the
increase of the temperature [6]. The study of metastable states,
very important from the technological point of view and the
appearance of nucleation processes close to the spinodal are
also related with the instabilities of the system [7].

The inclusion of the isovector channel is essential to study
both isoscalar and isovector colletive modes present in nuclear
matter [8,9]. The chemical effect may be detected in the relative
participation of protons and neutrons with respect to the initial
isospin asymmetry. Examples are the distillation effect at low
densities or the pure neutron waves proposed in Ref. [8].

Relevant quantities in the description of the gravitational
collapse of a massive star are the equation of state and
the description of neutrino transport phenomena, namely,
the neutrino mean free path in the medium. It has been
shown that the neutrino opacity is affected by nucleon-nucleon
interactions due to coherent scattering off density fluctuations
[10]. Both single particle and collective contribution have to be
taken into account. It is, therefore, important to have a thorough
understanding of the collective modes in asymmetric nuclear
matter in order to predict the behavior of neutrinos.

In previous works the nuclear and mesonic collective
modes have been already studied with the help of different
formalisms. In Ref. [11] isospin and density waves in

asymmetric nuclear matter have been studied in a nonrela-
tivistic approach and using the Landau-Fermi liquid theory
with an effective quasiparticle interaction. In Refs. [12,13]
a semiclassical approach to the quantum hadrodynamical
model (QHD) was used with the relativistic Vlasov equation,
which may be regarded as the semiclassical limit of the
mean field theory (MFT). The relativistic Vlasov equation
based on QHD was also used to study heavy-ion collisions
[14,15], and its predictions are similar to the more involved
calculations based on the time-dependent Dirac equations [14].
This means that the use of the relativistic Vlasov equation
appears as an alternative way to study relativistic systems. In
Ref. [9] a relativistic Hartree calculation was performed and
the zero sound, the longitudinal, and the transverse modes
were obtained, but only symmetric matter was investigated.
In Ref. [8] the asymmetry was also considered and the
calculations were done via the linear response equations.
The collective modes were considered in a Landau-Fermi
liquid formalism within a relativistic mean field theory in
Ref. [16], but the nonlinear terms were not included and
only symmetric matter and neutron matter were discussed. In
Ref. [17] the Landau parameters were calculated in relativistic
nonlinear models with different parameter sets. All possible
meson self-interactions were taken into account but only the
symmetric nuclear matter was considered. Stable and unstable
modes were calculated and discussed.

In the present work we are interested in studying the
collective modes corresponding to small amplitude oscillations
around a stationary state in nuclear matter, extending the
formalism used in Ref. [12] in order to consider asymmetric
nuclear matter as well. We shall restrict ourselves to the
longitudinal modes. Besides the nuclear collective modes we
shall also investigate the mesonic modes. For the sake of
comparison with the Vlasov formalism, we also show the
corresponding Landau parameters obtained in the Landau-
Fermi liquid theory, which is an extension for ANM of the
calculations performed in Refs. [16,17].

In Sec. II we formulate the Vlasov equation based on QHD.
The eigenmodes and the dispersion relation are given in
Sec. III. In Sec. IV the Fermi liquid theory is reviewed with
the introduction of the nonlinear terms and the ρ meson,
necessary for the description of ANM. The numerical results
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are presented in Sec. V and the conclusions are drawn in
Sec. VI.

II. THE VLASOV EQUATION FORMALISM

We consider a system of baryons, with mass M interacting
with and through a isoscalar-scalar field φ with mass ms ,
a isoscalar-vector field V µ with mass mv , and an isovector-
vector field bµ with mass mρ . The Lagrangian density reads

L = ψ̄
[
γµ

(
i∂µ − gvV

µ − gρ

2
τ · bµ

)
− (M − gsφ)

]
ψ

+ 1

2

(
∂µφ∂µφ − m2

s φ
2
) − 1

3!
κφ3 − 1

4!
λφ4 − 1

4
�µν�

µν

+ 1

2
m2

vVµV µ − 1

4
Bµν · Bµν + 1

2
m2

ρbµ · bµ,

(1)

where �µν = ∂µVν − ∂νVµ, Bµν = ∂µbν − ∂νbµ − gρ(bµ ×
bν). The model comprises the following parameters: three
coupling constants gs, gv , and gρ of the mesons to the nucleons,
the nucleon mass M, the masses of the mesons ms,mv,mρ , and
the self-interacting coupling constants κ and λ. We have used
the set of constants, identified as NL3 taken from Ref. [18].
For this case, the saturation density that we refer as ρ0 is
0.148 fm−3.

Denoting by

f (r, p, t) =
(

fp 0

0 fn

)

the one-body phase-space distribution function in isospin
space and by

h =
(√

(p − Vp)2 + (M − gsφ)2 + V0p 0
0

√
(p − Vn)2 + (M − gsφ)2 + V0n

)
(2)

the one-body Hamiltonian, where

V0i = gvV0 + gρ

2
τib0, Vi = gvV + gρ

2
τib, i = p, n,

τi = 1 (protons) or −1 (neutrons), the energy of the system is

E = 2
∫

d3rd3p

(2π )3
f (r, p, t) h(r, p, t)

+ 1

2

∫
d3r

(
�2

φ + ∇φ · ∇φ + m2
sφ

2+ 1

3!
κφ3 + 1

4!
λφ4

)

+ 1

2

∫
d3r

[
�2

Vi
− 2�Vi

∂iV0 + ∇Vi · ∇Vi − ∂jVi∂iVj

+ m2
v

(
V2 − V 2

0

)] + 1

2

∫
d3r

[
�2

bi
− 2�bi

∂ib0

+ ∇bi · ∇bi − ∂jbi∂ibj + m2
ρ

(
b2 − b2

0

)]
, (3)

where �φ (�Vi
,�bi

) is the field canonically conjugated to
φ (Vi, bi). The ρ-meson self-interacting terms have not been
included.

The time evolution of the distribution function is described
by the Vlasov equation

∂fi

∂t
+ {fi, hi} = 0, i = p, n, (4)

where { , } denote the Poisson brackets. It has been argued in
Refs. [19,20] that Eq. (4) expresses the conservation of the
number of particles in phase space and is, therefore, covariant.
Antiparticles should certainly be taken into account at finite
temperature. However, at a given temperature, the dynamics
described by the Vlasov equation does not change the number
of particles or antiparticles in this semiclassical approach.

From Hamilton’s equations we derive the equations de-
scribing the time evolution of the fields φ, V µ and the third
component of the ρ-field b

µ

3 = (b0, b):

∂2φ

∂t2
− ∇2φ + m2

sφ + κ

2
φ2 + λ

6
φ3 = gsρs(r, t), (5)

∂2V0

∂t2
− ∇2V0 + m2

vV0 = gvj0(r, t) + ∂

∂t

(
∂V0

∂t
+ ∇ · V

)
,

(6)

∂2Vi

∂t2
− ∇2Vi + m2

vVi = gvji(r, t) + ∂

∂xi

(
∂V0

∂t
+ ∇ · V

)
,

(7)

∂2b0

∂t2
− ∇2b0 + m2

ρb0 = gρ

2
j3,0(r, t) + ∂

∂t

(
∂b0

∂t
+ ∇ · b

)
,

(8)

∂2bi

∂t2
− ∇2bi + m2

ρbi = gρ

2
j3,i(r, t) + ∂

∂xi

(
∂b0

∂t
+ ∇ · b

)
,

(9)
where the scalar density is

ρs(r, t) = 2
∑
i=p,n

∫
d3p

(2π )3
fi(r, p, t)

M∗

εi

, (10)

with M∗ denoting the effective baryon mass, M∗ = M − gsφ.

The components of the baryonic four-current density are

j0(r, t) = 2
∑
i=p,n

∫
d3p

(2π )3
fi(r, p, t) = ρp + ρn, (11)

j(r, t) = 2
∑
i=p,n

∫
d3p

(2π )3
fi(r, p, t)

p − V i

εi

, (12)

where ρp, ρn are the proton and neutron densities, and the
components of the isovector four-current density are

j3,0(r, t) = 2
∑
i=p,n

∫
d3p

(2π )3
fi(r, p, t)τi = ρp − ρn, (13)
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j3(r, t) = 2
∑
i=p,n

∫
d3p

(2π )3
fi(r, p, t)

p − V i

εi

τi, (14)

with εi =
√

(p − V i)2 + M∗2.

It can be easily seen that the four-current satisfies the
continuity equation. From Eq. (2) we can write

j(r, t) = 2
∑
i=p,n

∫
d3p

(2π )3
fi(r, p, t)

∂hi

∂p

and therefore it is straightforward to show that

∂j0

∂t
+ ∇ · j = 2

∑
i=p,n

∫
d3p

(2π )3

(
∂fi

∂t
+ {fi, hi}

)
.

Using Eq. (4) it follows that ∂µjµ = 0. This continuity equa-
tion also gives [from Eqs. (6) and (7)] the following relation
between the components of the vector field: (∂V0)/(∂t) +
∇ · V = 0. In a similar way we have

∂j3,0

∂t
+ ∇ · j3 = 2

∑
i=p,n

∫
d3p

(2π )3
τi

(
∂fi

∂t
+ {fi, hi}

)
.

Using Eq. (4) it follows that ∂µj
µ

3 = 0 or ∂b0
∂t

+ ∇ · b = 0.

At zero temperature and for particles obeying Fermi-Dirac
statistics, the value of the distribution function is either 1 or 0,
since the single particle state is either occupied by one particle
or empty. The state which minimizes the energy of asymmetric
nuclear matter is characterized by the Fermi momenta PFi, i =
p, n, and is described by the distribution function

f0(r, p) =
(

�
(
P 2

Fp − p2
)

0

0 �
(
P 2

Fn − p2
)
)

(15)

and by the constant mesonic fields which obey the following
equations: m2

sφ0 + (κ/2)φ2
0 + (λ/6)φ3

0 = gsρ
(0)
s , m2

vV
(0)

0 =
gvj

(0)
0 , V

(0)
i = 0,m2

ρb
(0)
0 = (gρ/2)j (0)

3,0, b
(0)
i = 0.

Collective modes in the present approach correspond to
small oscillations around the equilibrium state. These small
deviations are described by the linearized equations of motion
and, therefore, collective modes are given as solutions of the
linearized equations of motion. To construct these equations
let

f = f0 + δf, φ = φ0 + δφ, V0 = V
(0)

0 + δV0,

Vi = δVi, b0 = b
(0)
0 + δb0, bi = δbi .

(16)

As in Ref. [12] we introduce a generating function

S(r, p, t) =
(

Sp 0

0 Sn

)

defined in isospin space such that the variation of the
distribution function is

δfi = {Si, f0i} = −{Si, p
2}δ(P 2

Fi − p2
)
. (17)

In terms of this generating function, the linearized Vlasov
equations for δfi are equivalent to the following time evolution
equations:

∂Si

∂t
+ {Si, h0i} = δhi = −gsδφ

M∗

ε0
+ δV0i − p · δV i

ε0
,

i = p, n. (18)

where δV0i = gvδV0 + τi(gρ/2)δb0 and δV i = gvδV +
τi(gρ/2)δb, which has to be satisfied only for p = PFi . In
Eq. (18)

h0i =
√

p2 + M∗2 + V (0)
0i = ε0 + V (0)

0i . (19)

The linearized equations of the fields read

∂2δφ

∂t2
− ∇2δφ +

(
m2

s + κφ0 + λ

2
φ2

0

)
δφ = gsδρs, (20)

∂2δV0

∂t2
− ∇2δV0 + m2

vδV0 = gvδj0, (21)

∂2δVi

∂t2
− ∇2δVi + m2

vδVi = gvδji, (22)

∂2δb0

∂t2
− ∇2δb0 + m2

ρδb0 = gρ

2
δj3,0, (23)

∂2δbi

∂t2
− ∇2δbi + m2

ρδbi = gρ

2
δj3,i , (24)

with

δρs = 2
∑
i=p,n

∫
d3p

(2π )3
δfi

M∗

ε0
− gsδφ

dρ0
s

dM∗ ,

M∗ = M − gsφ0,

δj0 = 2
∑
i=p,n

∫
d3p

(2π )3
δfi,

δj = 2
∑
i=p,n

∫
d3p

(2π )3
δfi

p
ε0

− 2
∑
i=p,n

∫
d3p

(2π )3
f0i

(
δV
ε0

− p
p · δV

ε3
0

)
,

δj3,0 = 2
∑
i=p,n

∫
d3p

(2π )3
τiδfi,

δj3 = 2
∑
i=p,n

∫
d3p

(2π )3
τiδfi

p
ε0

− 2
∑
i=p,n

∫
d3p

(2π )3
τif0i

(
δV
ε0

− p
p · δV

ε3
0

)
.

Of particular interest on account of their physical rele-
vance are the longitudinal modes, with momentum k and
frequency ω, described by the ansatz



Sp(r, p, t)
Sn(r, p, t)

δφ

δV0

δVi

δb0

δbi




=




Sp
ω (cos θ )

Sn
ω(cos θ )
δφω

δV 0
ω

δV i
ω

δb0
ω

δbi
ω




ei(ωt−k · r),
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where θ is the angle between p and k. For these modes,
we get δV x

ω = δV
y
ω = δbx

ω = δb
y
ω = 0. Calling δV z

ω = δVω and
δbz

ω = δbω, the equations of motion become

i(ω − ω0ix)S i
ω(x) = −gs

M∗

εFi

δφω + δV0i
ω − PFi

εF i

xδV i
ω ,

i = p, n, (25)

(
ω2 − k2 − m2

s,eff

)
δφω = − 2igs

(2π )2

∑
i=p,n

ω0iPF iM
∗

×
∫ 1

−1
dx xS i

ω(x), (26)

(
ω2 − k2 − m2

v

)
δV 0

ω = − 2igv

(2π )2

∑
i=p,n

ω0iPF iεF i

∫ 1

−1
dx xS i

ω(x),

(27)

(ω2 − k2 − m2
v − g2

v

(
�2

p + �2
n

)
) δVω − gv

gρ

2

(
�2

p − �2
n

)
δbω

= − 2igv

(2π )2

∑
i=p,n

ω0iP
2
Fi

∫ 1

−1
dx x2S i

ω(x), (28)

(
ω2 − k2 − m2

ρ

)
δb0

ω = − 2igρ

2(2π )2

∑
i=p,n

τiω0iPF iεF i

×
∫ 1

−1
dx xS i

ω(x), (29)

((
ω2 − k2 − m2

ρ −
(gρ

2

)2 (
�2

p + �2
n

)))
δbω

− gv

gρ

2

(
�2

p − �2
n

)
δVω = − 2igρ

2(2π )2

∑
i=p,n

τiω0iP
2
Fi

×
∫ 1

−1
dxx2S i

ω(x), (30)

where ω0i = kPFi/εF i, εF i =
√

P 2
Fi + M∗2,

m2
s,eff = m2

s + κφ0 + λ

2
φ2

0 + g2
s

dρ0
s

dM∗ , (31)

and

�2
i = 2

(2π )3

∫
d3pf0i

(
1

ε0
− p2 cos2 θ

ε3
0

)
= ρi

εF i

.

If we integrate x times Eq. (25) from −1 to 1 we get

ω

∫ 1

−1
dx xS i

ω(x) − ω0i

∫ 1

−1
dx x2S i

ω(x) = i
2

3

PFi

εF i

δV i .

Using the above relations in Eqs. (27), (28) and (29), (30) we
obtain

ωδV 0
ω = kδVω; ωδb0

ω = kδbω, (32)

which are equivalent to the continuity equations. Substituting
the relations obtained in Eq. (32) into Eqs. (28) and (30), they
become respectively identical to Eqs. (27) and (29).

III. SOLUTIONS FOR THE EIGENMODES AND THE
DISPERSION RELATION

The solutions of Eqs. (25)–(30) form a complete set of
eigenmodes which may be used to construct a general solution
for an arbitrary longitudinal perturbation [21–23]. Substituting
the set of equations (26), (27), (29), (32) into Eq. (25) we get

Aωp

[
1 − (−Cpp

s + Cpp
v + Cpp

ρ

)
L(sp)

]
−Aωn

(−Cpn
s + Cpn

v − Cpn
ρ

)
L(sp) = 0, (33)

−Aωp

(−Cnp
s + Cnp

v − Cnp
ρ

)
L(sn)

+Aωn

[
1 − (−Cnn

s + Cnn
v + Cnn

ρ

)
L(sn)

] = 0, (34)

with Aωi = ∫ 1
−1 xSωi(x) dx and L(si), si = ω/ωoi , related

with the Lindhard function � defined in

L(si) = 2�(si) = 2 − si ln

(
si + 1

si − 1

)
. (35)

We also have

Cij
s = 1

2π2

M∗2g2
s

ω2 − ω2
s

1

PFi

PFjVFj ,

Cij
v = 1

2π2

g2
v

ω2 − ω2
v

(
1 − ω2

k2

)
P 2

Fj

VFi

,

Cij
ρ = 1

2π2

g2
ρ

4
(
ω2 − ω2

ρ

) (
1 − ω2

k2

)
P 2

Fj

VFi

,

where

VFi
= PFi

εFi

= ω0i/k (36)

is the nucleon Fermi velocity and

ω2
s = k2 + m2

s,eff, ω2
v = k2 + m2

v, ω2
ρ = k2 + m2

ρ. (37)

From Eqs. (33) and (34) we get the following dispersion
relation:

1 + L(sp)F pp + L(sn)F nn + L(sp)L(sn)

× (F ppF nn − F pnF np) = 0 (38)

with F ij = (Cij
s − C

ij
v − τiτjC

ij
ρ ). The density fluctuations

are given by

δρi = 3

2

k

PFi

ρ0iAωi.

Is it important to stress that the inclusion of the ρ mesons is
necessary to study isovector modes even for symmetric nuclear
matter.

As mentioned in the introduction, the instabilities of the
system are a subject of interest. At low densities, corresponding
to a negative value of the compressibility, the system presents
unstable modes characterized by an imaginary frequency. In
order to obtain these modes, one has to replace s by iβ in
Eq. (35). In this case, the Lindhard functions become

L(iβ) = 1 − β tan−1(1/β). (39)
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IV. THE LANDAU-FERMI LIQUID THEORY

Next we outline the main expressions for the calculation
of the collective modes within a Landau-Fermi liquid theory.
In this approximation the meson fields are kept constant and
equal to their values in equilibrium, i.e., a variation of the
source will not give rise to a fluctuation of the meson fields.
This is a good approximation for small momentum transfers.
The following expressions differ from Ref. [16] in some cases
because we have introduced the nonlinear terms in the QHD
Lagrangian density. For the nonlinear Walecka model the only
Landau parameters which are different from zero are

f ii ′
0 = g2

v

m2
v

+ g2
ρ

4m2
ρ

τiτi ′ − g2
s

m2
s,eff

M∗2

εFi
εFi′

,

f ii ′
1 = − g2

v

m2
v

PFi

εFi

PFi′

εFi′


1 −

g2
ρ

4m2
ρ
τi′B

1 + g2
ρ

4m2
ρ
A




×

1 + g2

v

m2
v

A −
g2

v

m2
v

g2
ρ

4m2
ρ
B2

1 + g2
ρ

4m2
ρ
A




−1

− g2
ρ

4m2
ρ

τiτi ′
PFi

εFi

PFi′

εFi′


1 −

g2
v

m2
v
τi′B

1 + g2
v

m2
v
A




×

1 + g2

ρ

4m2
ρ

A −
g2

v

m2
v

g2
ρ

4m2
ρ
B2

1 + g2
v

m2
v
A




−1

, (40)

where we have defined A = �2
p + �2

n and B = �2
p − �2

n.
As in Sec. II, the collective modes are obtained when small

perturbations around the equilibrium density are introduced.
Let ni(r, t) be the distribution function at time t:

ni(r, t) = n
(0)
i + δni(r, t), i = p, n,

where n
(0)
i = f0i(r, p), Eq. (15), and

δni(r, t) = δnpi
(r, t) = δnpi

(k, ω) ei(k·r−ωt).

Assuming that

δnpi
(k, ω) = ui(θ )δ

(
PFi

− pi

)
,

with

ui(θ ) =
∑

l

u
(i)
l Pl(cos θ ), (41)

and θ the angle between p and k one can show that the
collective modes come from the solution of a system formed
by four equations, i.e.,

u
(i)
l

2l + 1
= −

∑
i ′,l′

F ii ′
l′

2l′ + 1
Dll′(si)u

(i ′)
l′ , (42)

where

F ii′
l =

(
PFi′

PFi

)2

NFi
f ii ′

l .

As usual, the density of states in the Fermi surface is given by
NFi

= PFi
εFi

/π2.
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FIG. 1. Nuclear collective modes sn = vs/VFn for k = 10 MeV
and (a) yp = 0.5 (b) yp = 0.1. Solid lines represent isoscalar modes,
dashed lines stand for isovector modes, and dot-dashed lines modes
with mixed character.

We introduce the D functions, related with L(si) given in
Eq. (35), defined as

�(si) ≡ D00(si) = L(si)

2
,

D01(si) = D10(si) = si�(si),

D11(si) = s2
i �(si) + 1

3
.

Once the above equations are substituted into Eq. (42), the
system of equations for the nucleon i reads

u
(p)
0 = 1

3sp

(
1 + 1

3
F

pp
1

)
u

(p)
1 + 1

9sp

F
pn
1 u

(n)
1

= Gppu
(p)
1 + Gpnu

(n)
1

(43)

u
(n)
0 = 1

9sn

F
np
1 u

(p)
1 + 1

3sn

(
1 + 1

3
F nn

1

)
u

(n)
1

= Gnpu
(p)
1 + Gnnu

(n)
1 ,

and after being rearranged, the following system is obtained:

Cppu
(p)
1 + Cpnu

(n)
1 = 0,

(44)
Cnpu

(p)
1 + Cnnu

(n)
1 = 0,
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FIG. 2. (a) Collective modes and (b) ratio between the proton and neutron amplitudes obtained for k = 200 MeV in terms of the baryonic
density for symmetric nuclear matter (top figure) with proton fraction decreasing up to very large asymmetric matter (bottom figure). Solid
lines represent isovector modes and dashed lines stand for isoscalar modes.

where

Cpp = 1

3sp

[(
1 + 1

3
F

pp
1

)
+

((
F

pp
0

(
1 + 1

3
F

pp
1

)

+ 1

3

sp

sn

F
pn
0 F

np
1 + s2

pF
pp
1

))
�p

]
,

Cpn = 1

3sp

[
F

pn
1

3
+

((
sp

sn

F
pn
0

(
1 + 1

3
F nn

1

)

+ 1

3
F

pp
0 F

pn
1 + s2

pF
pn
1

))
�p

]
,

Cnp = 1

3sn

[
F

np
1

3
+

((
sn

sp

F
np
0

(
1 + 1

3
F

pp
1

)

+ 1

3
F nn

0 F
np
1 + s2

nF
np
1

))
�n

]
,
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FIG. 3. Density dependence of the crossing of isoscalar and
isovector modes as function of yp for different values of k.

Cnn = 1

3sn

[(
1 + 1

3
F nn

1

)
+

((
F nn

0

(
1 + 1

3
F nn

1

)

+ 1

3

sn

sp

F
np
0 F

pn
1 + s2

nF
nn
1

))
�n

]
.

(45)

The solutions of the system (44) are obtained imposing the
condition:

CppCnn − CpnCnp = 0,

the only variables being si, (i = p, n), which are related to the
zero sound velocity, si = vs/VFi , usually defined as vs = ω/k.

In order to distinguish between the isoscalar and isovector
collective modes, we calculate the ratio between the angle
integrated proton (up) and neutron (un) amplitudes from
Eqs. (41), (43), (44), (45): these quantities are referred to as
δρp/δρn in Ref. [8].

In the sequel we consider that, when up/un is positive
(δρp/δρn > 0), the corresponding modes are isoscalar while
when this ratio is negative (δρp/δρn < 0 ), isovector modes
arise [24]. These definitions coincide with the fact that when

protons and neutrons move in phase the modes are isoscalar.
When they move out of phase, the modes are isovector.

V. NUMERICAL RESULTS AND DISCUSSIONS

From the solutions of the dispersion relation given in
Eq. (38), we have obtained nuclear and mesonic collective
modes which we plot and discuss in this section. At low
momenta transfer k the two sectors have quite different energy
scales. From Eqs. (26)–(30) it is seen that the coupling of the
mesonic sector to the nucleonic is suppressed by a factor k/mi ,
(being mi the mass of meson i = σ, ω, ρ). We first discuss the
nucleonic sector.

In Fig. 1 we show the longitudinal isoscalar and isovector
modes for (a) symmetric nuclear matter, yp = ρp/ρ = 0.5,
and (b) yp = 0.1 for the momentum transfer equal to k =
10 MeV. Only the modes which lie above the Fermi velocity
of neutrons are collective modes which do not suffer Landau
damping. In Fig. 1(a) there are a couple of isovector modes
between 0 and 0.35 fm−3, one above the neutron Fermi velocity
and one Landau damped below this velocity. In a similar way
there are a couple of isoscalar modes above 0.3 fm−3: only the
one that lies above the neutron Fermi velocity is not damped.
There is a fifth isoscalar mode at low densities and below the
neutron Fermi velocity which comes alone. This is a sign of
instability. In fact this mode appears in the region of spinodal
instability. This same mode is also present in Fig. 1(b) at low
densities and only disappears for almost pure neutron matter.
In Fig. 1(b) we also represent the Fermi velocity of neutrons
(solid thin line at sn = 1) and protons (solid thin line). Above
and below each of these two lines there are two modes. From
these four modes the only one that is not Landau damped lies
above the neutron Fermi velocity. In the sequel we discuss the
stable (not damped) collective modes, the mesonic modes, and
comment the appearance of unstable modes in the region of
spinodal instability.

In order to study the dependence of the collective modes
on the isospin asymmetry, we show in Fig. 2, for k =
200 MeV and decreasing proton fractions, the sound velocity
of the collective modes and their corresponding ratio of proton

ρ
00.5

ρ
0

ρ
05

ρ
02

ρ
03

py

(a)

s
n

 1

 1.01

 1.02

 1.04

 0 0.1 0.2 0.3 0.4 0.5

 1.03

ρ0

ρ
05 ρ

03

ρ
0

2

ρ
0

0.5

py

(b)

-1

-0.5

 0

 0.5

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

  /
δρ

p
n

δρ

FIG. 4. (a) Collective modes in function of the isospin asymmetry for different densities and (b) corresponding proton to neutron transition
density ratio. In this case k = 200 MeV. The diamonds represent ±ρp/ρn.
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FIG. 5. (a) Collective modes in function of density for yp = 0.3 and different k values and (b) their corresponding proton to neutron
transition density ratios. The dotted lines stand for k = 500 MeV, the dashed lines stand for k = 200 MeV, and the solid lines for k = 1 MeV.
The thin lines represent the corresponding static quantities.

to neutron transition densities. Comparing both sides of the
figure one sees that for symmetric matter the isoscalar and
isovector modes are completely separated. For yp < 0.5 only
one mode exists and it changes character from isovector to
isoscalar at the crossing density, already referred to in Ref. [8].
The crossing density increases with decreasing proton fraction
as can be clearly seen in Fig. 3.

In order to understand this behavior, we use Eqs. (33) and
(34) to write the ratio δρp/δρn as

δρp/δρn = −PFn
ρp

PFp
ρn

· F pnL(sp)

1 + F ppL(sp)
. (46)

Since in the above expression the denominator is always
positive and the Lindhard function L(s) is negative for
s > 1, we immediately conclude that the crossing density
is obtained by calculating the baryon density for which F pn

vanishes. For low momentum transfer (k < 100 MeV), F pn is
given by

F pn = − 1

2π2

PFn
VFn

PFp

[
M∗2g2

s

m2
s,eff

−
(

g2
v

m2
v

− g2
ρ

4m2
ρ

)

×
(

1 − ω2

k2

) (
PFn

PFp

VFn
VFp

)]
. (47)

The character of the collective mode is determined by the
signal of F pn, i.e., if F pn is positive (negative) the mode has
an isoscalar-(isovector)like character. So, the behavior of the
collective mode depends on the balance between the scalar
and the vector terms. For low baryon density the scalar term
is dominant, and therefore F pn is negative, hence the corre-
sponding collective mode has an isovector like character. For
densities larger than the crossing density, the nucleon effective
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FIG. 6. (a) Isovector modes in function of the proton fraction for different k values and (b) their corresponding proton to neutron transition
density ratio. From right top to bottom in figure (a) and from bottom to top in figure (b), the curves are drawn for k = 1 MeV (solid line),
k = 200 MeV (dashed line), k = 300 MeV (dotted line), and k = 500 MeV (short-dashed line). The diamonds represent ρp/ρn.
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FIG. 7. Mesonic effective masses versus the density for symmet-
ric nuclear matter (short-dashed line) and a system with high isospin
asymmetry, i.e., yp = 0.1 (solid line).

mass M� goes to zero and the effective scalar meson mass
ms,eff increases (see Fig. 7 and discussion below). This makes
the second term of Eq. (47) dominant, F pn becomes positive,
and the corresponding mode becomes isoscalar. The isospin
asymmetry dependence of the modes can be understood
noticing that, for fixed baryon density, the nucleon (M�) and
meson (ms,eff) effective masses have opposite behavior with in-
creasing asymmetry (decreasing yp). While M� increases with
the isospin asymmetry conversely ms,eff decreases, so the ratio
M�2/ms,eff

2 becomes always larger if the isospin asymmetry
increases. Then for large isospin asymmetries, it is necessary
for a larger baryon density to compensate the scalar term and
make F pn change sign. Therefore, we conclude that the larger
the isospin asymmetry the larger the crossing density as seen in
Fig. 3.

From Fig. 2 we also notice that as isospin asymmetry
increases the collective modes start to appear at higher
and higher densities and the sound velocity of the mode
at lower densities decreases with the increase of isospin
asymmetry and disappears for yp < 0.3. The appearance of
the collective mode at higher and higher densities can be

understood from the dispersion relation given in Eq. (38).
Using similar arguments as above, one can easily show that all
coefficients F ij have a similar behavior, i.e., they are negative
for low density and for larger isospin asymmetries they change
sign at higher densities. The numerical analysis of the term,
F ppF nn − F pnF np, appearing in Eq. (38), shows that this term
is negative at low densities, with a modulus smaller than
0.5, which decreases when the density grows and is almost
independent of the isospin asymmetry. So, for low density
the dispersion relation has no solution since the last term is
greater than 1 and the other terms are positive. Its behavior
is essentially determined by the linear terms in the Lindhard
function, namely by F pp and F nn. We conclude that for larger
isospin asymmetries the dispersion relation has solution only
for larger densities as seen in Fig. 2.

In Fig. 4 we display the collective modes in function of
the isospin asymmetry for different densities and correspond-
ing ratio of proton to neutron density fluctuations for k =
200 MeV. These figures summarize Fig. 2: for the two lower
densities, 0.5ρ0 and ρ0, the mode, with an isovector character,
disappears at yp ∼ 0.3; the higher values of the density, 3ρ0

and 5ρ0 belong to the second branch of the collective mode
represented in Fig. 2, mainly with isoscalar character; the value
2ρ0 is at the borderline of the two branchs of the collective
mode, still with an isovector like character but with a very small
value for the ratio of proton to neutron transition densities. A
similar behavior was discussed in Ref. [8].

In Fig. 5 we study the momentum transfer dependence
of the collective modes and retardation effects. The lower
density branch with isovector character is more sensitive to
the wavelength of the excitation. This effect is also seen from
Fig. 5(b): as the momentum transfer increases the proton to
neutron transition density ratio decreases in magnitude for
the isovector modes and remains almost unaffected for the
isoscalar ones. Notice also that the maxima decrease with the
increase of the momentum transfer, in the isoscalar branch
and the opposite occurs in the isovector branch. Within the
Landau-Fermi liquid approximation [8] the longitudinal waves
do not depend on the k and ω separately, but just on their
ratio. The Landau-Fermi liquid theory results coincide with
the curves obtained at low momentum transfers (k = 1 MeV
in Fig. 5).
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FIG. 8. (a) Mesonic modes for yp = 0.1 and k = 500 MeV and (b) their corresponding proton to neutron transition density ratios.
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FIG. 9. Unstable sound modes: (a) growth rate � as a function of the wave number k for yp = 0.5 and ρ = 0.4ρ0 obtained with the
Landau (diamonds) and the Vlasov (solid line) theories. (b) Spinodal curves for k = 10 MeV (solid line), k = 100 MeV (dotted line), and k =
200 MeV (dashed line).

In order to evaluate the importance of the retardation effects
in the Vlasov formalism we have included in Figs. 5(a) and
(b) the corresponding curves in the static limit. For k =
1 MeV there is essentially no effect. For k = 200 and 500 MeV
there are finite effects on the sound velocity but smaller than
1%. More important effects are felt on the lowest density at
which the collective mode occurs, namely at ρ = 0.066, 0.047,
0.011 fm−3, respectively, for k = 1, 200, 500 MeV/c, or on
the crossing density. At k = 500 MeV, the crossing density is
reduced by 5% and at larger momentum the effects are larger
as can be seen in Fig. 3.

In Fig. 6 we analyze in greater detail the momentum
dependence of the collective modes. In particular we show both
the sound velocity and the proton-neutron transition density
ratio for the isovectorlike branch at the saturation density
versus proton fraction, and for different momentum transfers.
For small asymmetries, yp > 0.4, the sound velocity reduces
with an increase of k and a decrease of yp. For yp < 0.4
the behavior is similar for all cases with k < 300 MeV, the
sound velocity approaches the neutron Fermi velocity. The
only exception to this behavior is the k = 500 MeV curve,
where the sound velocity approaches the value 1.003 vFn.
However, although the dependence of vs/vFn with k is small,
the dependence of δρp/δρn is not negligible. In Fig. 6(b) it is
seen that these isovector modes exist as k increases at larger
asymmetries and a higher k value implies a smaller proton to
neutron density transition ratio, that is the fraction of neutrons
participating in the mode is larger.

In Fig. 7 we plot, for yp = 0.5 and 0.1, the effective
masses of the mesons given by Eq. (31) and the following
equations:

m±
vρ,eff =

√
λ±,

(48)

λ± = 1

2

[
Tr (Mvρ) ±

√
Tr (Mvρ)2 − 4 Det (Mvρ)

]
,

with

Mvρ =
[
m2

v + g2
v

(
�2

p + �2
n

)
gv

gρ

2

(
�2

p − �2
n

)
gv

gρ

2

(
�2

p − �2
n

)
m2

ρ + ( gρ

2

)2 (
�2

p + �2
n

)
]

,

In the parametrization we have used ms = 508.194 MeV, mv =
782.501 MeV, and mρ = 763.501 MeV, which are the values
of the modes for zero density. The increase of the mesonic
modes with density has already been predicted in Ref. [25]
and is common to all approaches which only take into account
the Fermi sea effects. Effects coming from the polarization of
the Dirac sea were shown to be more important than Fermi
sea effects, and to affect the meson masses in the opposite
way, namely, giving rise to a reduction of the meson masses
in the medium [26]. This behavior is related to the chiral
symmetry restoration and will be measured in experiments
with the spectrometer HADES at GSI.
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FIG. 10. Density transition ratio as a function of the isospin
asymmetry for different densities. The dashed line represents the
ratio ρp/ρn.
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FIG. 11. Unstable modes for ρ = ρ0/2: (a) the modulus of the sound velocity, |vs |, and (b) the proton to neutron transition density ratio as
a function of the proton fraction for k = 1 MeV (solid line), k = 100 MeV (dotted line), k = 150 MeV (short-dashed line), and k = 180 MeV
(long spaced dotted line). In figure(b) the diamonds show the ratio ρp/ρn.

The dependence of mesonic modes on the isospin asymme-
try of the system is small. The solutions of the dispersion rela-
tion (38) corresponding to the mesonic modes are essentially
given by

√
k2 + m2

i,eff where i = s, vρ+, vρ−. However, it is
clear from Fig. 8(a) that at the crossing of the σ - and ρ-meson
masses there is a level repulsion and the modes exchange
character. This behavior is clearly seen in Fig. 8(b) where we
have plotted the ratio of the density fluctuations corresponding
to these modes, for k = 500 MeV.

The unstable modes are discussed next. The growth rate
� = Im(ω) is plotted in Fig. 9(a) for ρ = 0.4ρ0 as a function of
the wave number k. The maximum growth rate, corresponding
to the most amplified modes, occurs ∼ 0.6 kmax. For compar-
ison, the growth rate in the framework of the Landau-Fermi
theory is also shown. In this case the behavior is linear and not
realistic. It coincides with the results obtained from the Vlasov
equation formalism for small wave numbers, as expected.
For higher k values the Vlasov formalism yields a reasonable
growth rate which results from the inclusion of the mesonic
fluctuations.

An important point with respect to the unstable modes is
that the finite range interaction effects are automatically taken

into account within the present formalism. In the framework
of nonrelativistic effective models finite range forces have to
be considered [5].

In Fig. 9(b) we plot the spinodal curves for different wave
numbers k. A larger k reduces the spinodal region, a fact also
observed with the increase of the temperature in Ref. [6]. In
fact the collective mode is characterized by a wavelength which
gives rise to density distortions with the same wavelength.
This originates higher and lower densities that take the nuclear
matter away from the density unstable region.

In Fig. 10 we plot the ratio δρp/δρn as a function of isospin
asymmetry for different densities. We also show the ratio
ρp/ρn. It is clear that the fluctuations involve a larger fraction
of protons than the fraction present in the unperturbed nuclear
matter. This is the distillation effect discussed in Ref. [8]. In the
region of validity of the Landau-Fermi theory, it was shown
in Ref. [8] that the proton oscillations are relatively larger
than neutron oscillations and this behavior leads to a more
symmetric liquid phase and consequently a more neutron rich
gas phase. From Fig. 10 it is seen that the smaller the density,
the greater the distillation effect, which is also more efficient
at intermediate isospin asymmetries.
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Figures 11(a) and (b) show the isospin asymmetry depen-
dence of |vs |, the modulus of the sound velocity, for ρ = 0.5ρ0

and different values of the wave number. An increase of
the wave number reduces |vs |, and, in particular, for larger
values of k, this quantity goes to zero at larger values of yp,
smaller isospin asymmetries, as expected from the discussion
of Fig. 9(b). It is interesting to see in Fig. 11(b) that an
increasing wave number k corresponds to a proton-neutron
transition density ratio which increases with respect to the
ρp/ρn ratio for a given yp. For larger values of k the fluctuations
tend to restore faster the proton-neutron symmetry of the liquid
phase leaving a more neutron rich gas phase, i.e., a larger k
value will increase the distillation effect in fragmentation.

Before we conclude, and in order to better understand the
momentum dependence of nucleonic and mesonic modes,
we plot in Figs. 12(a) and (b), for ρ = ρ0 and yp = 0.3,
respectively, the nucleonic mode with sn > 1 in a plot ω versus
k and the mesonic modes in a plot ω2 versus k2. The insert in
Fig. 12(a) shows the ratio ω/k versus k, and that the relation
between ω and k is pratically linear. In Fig. 12(b) the insert
is a plot of (ω2 − m2

i,eff)/k2 as a function of k. The mesonic
modes are essentially described by a dispersion relation of the
form ω2 = m2

i,eff + ai k
2, where ai is a constant close to 1,

different for each mode. Similar results have been discussed
in Ref. [12].

VI. CONCLUSIONS

In the present work we have applied the formalism of
the relativistic Vlasov equation, which is an extension of
the Landau-Fermi liquid theory, in the sense that mesonic
fluctuations are also taken into account. Collective modes are
then calculated. The main consequence of using the Vlasov
formalism is the appearance of mesonic collective modes in
addition to the usual nuclear modes. Moreover, we could
also observe the dependence of the collective modes on the
momentum transfer while in the Landau-Fermi liquid theory
only very low momentum transfers are possible.

We have concluded that for symmetric nuclear matter
isoscalar and isovector modes come out completely separated
but, as asymmetry arises, only one mode appears and it changes
character from isovector to isoscalar at the crossing density,
which increases with decreasing proton fraction, i.e., the
larger the isospin asymmetry, the larger the crossing density.
This effect is due to the competitive contributions of the
scalar meson and the vector mesons. For smaller densities
the contribution of the scalar meson is larger giving rise to an
isovectorlike mode. On the other hand at high densities this
contribution is smaller due to the reduction of the nucleon
effective mass and an increase of the scalar meson effective
mass. We have shown that the behavior of the dispersion
relation, Eq. (38), is essentially determined by the linear terms
in the Lindhard function, namely by the quantities F pp and
F nn, and for large isospin asymmetries it has a solution only
for large densities. It was shown that the larger the density and
the momentum transfer, the smaller the fraction of protons that
participate in the isovector fluctuations. On the other hand, the
isoscalar fluctuations at high density do not depend on the
momentum transfer.

We have also studied the arising mesonic modes. In the
medium the mesons increase their masses due to Fermi sea
effects. However, it is expected that Dirac sea polarization
will act in the opposite way, giving rise to a net reduction
of the meson masses. In the present approach these effects
have not been taken into account. However, using the model
proposed in Ref. [27] where the meson masses decrease as
the density increases, this effect could be included within
the same formalism. The dependence of the mesonic modes
on the isospin asymmetry of the system is small. We
have noticed that at the crossing of the σ - and ρ-meson
masses there is a level repulsion and the modes exchange
character.

We have studied the unstable modes appearing at low
densities associated with the liquid-gas phase transition.
It was shown that the fluctuations tend to restore the
isospin symmetry. This effect, known as the distillation
effect is more efficient the larger the momentum transfer,
the smaller the density, and at intermediate isospin asym-
metry. For these modes, the dependence of the growth rate
on the momentum transfer within the framework of the
Landau-Fermi theory, although unrealistic, coincides for low
momentum transfer with the results obtained within the
Vlasov formalism. The reasonable behavior obtained from
the Vlasov formalism is due to the inclusion of the mesonic
fluctuations.

The use of different parametrizations of the nonlinear
Walecka model and of relativistic models with density de-
pendent couplings on the calculation of the collective modes
may provide different results. This work is under investigation.
In the future we also intend to include temperature effects and
verify their importance on the collective stable and unstable
modes.
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APPENDIX A: USEFUL INTEGRALS∫ 1

−1

x

x0 − x
dx = −

(
2 + x0 log

x0 − 1

x0 + 1

)
= −L(x0), x0 > 1,∫ 1

−1

x2

x0 − x
dx = x0

(
2 + x0 log

x0 − 1

x0 + 1

)
= x0L(x0), x0 > 1,

S(x) = A + Bx
w
w0

− x
,

∫ 1

−1
xS(x) dx

= −
[
A + B

(
w

w0

)]
L

(
w

w0

)
, x0 > 1,

P

∫ 1

−1

x

x0 − x
dx = −

(
2 + x0 log

1 − x0

1 + x0

)
= −L(x0), x0 < 1.
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