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Deuteron Compton scattering in effective field theory: Spin-dependent cross sections
and asymmetries

Jiunn-Wei Chen,1,∗ Xiangdong Ji,2,† and Yingchuan Li2,‡
1Department of Physics, National Taiwan University, Taipei, Taiwan 10617

2Department of Physics, University of Maryland, College Park, Maryland 20742, USA
(Received 23 October 2004; published 29 April 2005)

Polarized Compton scattering on the deuteron is studied in nuclear effective field theory. A set of tensor
structures is introduced to define 12 independent Compton amplitudes. The scalar and vector amplitudes are
calculated up to next-to-next-to-leading order in low-energy power counting. Significant contribution to the
vector amplitudes is found to come from the spin-orbit type of relativistic corrections. A double-helicity-dependent
cross section �1dσ/d� = (dσ+1−1 − dσ+1+1)/2d� is calculated to the same order, and the effect of the nucleon
isoscalar spin-dependent polarizabilities is found to be smaller than the effect of isoscalar spin-independent ones.
Contributions of spin-independent polarizabilities are investigated in various asymmetries, one of which has an
effect as large as 12% (26%) at the center-of-mass photon energy 30 (50) MeV.
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I. INTRODUCTION

Compton scattering is an important tool for probing the
internal structure of a composite system, such as atomic nuclei.
As quantum electrodynamics involved in the process is well
understood, the remaining uncertainty is associated with the
strong interactions among nucleons in nuclei. Thus, Compton
scattering data enable physicists to extract information about
the nuclear structure from the underlying strong interaction
dynamics. Recent progress in high-energy, high-intensity
photon beams has made Compton scattering a practical tool
for nuclear physicists [1]. In particular, a polarized photon
beam is capable of studying spin aspects of strong interaction
physics. This paper focuses on polarized Compton scattering
on the deuteron, the double-helicity-dependent cross section,
and various asymmetries in particular, in the framework of
nuclear effective field theory (EFT).

The deuteron, as the simplest nuclear system, is of great
importance to understanding the nucleon-nucleon interactions
and the properties of individual nucleons. Polarized Compton
scattering on the deuteron presents a new opportunity to probe
spin physics. Indeed, because the deuteron is a loosely bound
system, one might expect to learn a host of spin-dependent
properties of the neutron and proton as free particles. This
possibility is especially important to studying the structure of
the neutron because there is no free-neutron target in nature.

It has been realized for some time that nuclear physics at low
energy might be understood by EFT, which works according to
the same principles as the standard model [2] in the sense that
they both involve low-energy expansion of some underlying
fundamental theories. However, constructing a workable EFT
scheme for specific systems is not straightforward. In the
past few years, considerable progress has been made in the
two-nucleon sector (see [3] for a recent review). It began with
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the pioneering work of Weinberg, who proposed to encode
the short-distance physics in a derivative expansion of local
operators [2]. The problem associated with the unusually
small binding energy of the deuteron was solved by Kaplan,
Savage, and Wise by exploiting the freedom of choosing a
renormalization substraction scheme [4], which was quickly
followed by the pionless version [5] (see also [6–8]). Because
it required reproducing the residue of the deuteron pole
at next-to-leading order (NLO), a version with accelerated
convergence was suggested in [9]. The use of dibaryon fields
as auxiliary fields, first introduced in [10], was taken seriously
in [11], which simplified the calculation significantly.

From the viewpoint of nuclear EFT, Compton scattering on
the deuteron at low energy can be divided into two regions
according to the photon energy ω. Region I is where the
photon energy is far below the binding energy of deuteron
B = 2.2 MeV and, hence, ω/B is a small parameter. Region II
is where the photon energy is above the binding energy, but
significantly below the mass of the pion, for example, ω ∼
50 MeV. In region I, one makes the low-energy expansion of
Compton amplitudes and studies various polarizabilities of
the deuteron defined through the expansion [12]. Studies in
this ultra-low-energy region, where the binding effect plays
a dominant role, provide insight into the internal structure
of the deuteron as a bound state. In region II, the probing
photon is more sensitive to the responses from individual
nucleons. Therefore, Compton scattering there may serve as
an alternative tool for studying free-nucleon properties, such
as spin-independent and -dependent polarizabilities. In this
paper, we are mostly interested in the second region.

Extracting the isoscalar spin-independent polarizabilities
α0 and β0 from unpolarized Compton scattering has attracted
considerable attention in the past two decades. Although three
types of amplitudes (scalar, vector, and tensor) contribute to
the cross section, only the scalar amplitudes have so far been
included in some of the calculations of the unpolarized cross
section. Nuclear EFT seems to provide a justification for this.
However, a recent work [13] showed that vector amplitudes
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contribute significantly (15% or more) to the unpolarized
cross section, because of the enhancement from a factor of
the square of the isovector magnetic moment µ2

1. It turns out
that this enhancement has its effect not only on unpolarized
but also on polarized scattering, leading to, for instance, a
bigger helicity-dependent cross section. Although this makes it
easier to measure it experimentally, the effect also diminishes
the contribution from the isoscalar nucleon spin-dependent
polarizabilities and hence makes it harder to access them from
the future Compton data.

To demonstrate the above point, we calculate a double-
helicity-dependent (vector-polarized) cross section up to the
order at which the spin polarizabilities contribute, and compare
the results with and without their contribution. The photon-
nucleon interactions considered in this calculation include the
electric current and magnetic couplings, and the spin-orbit
terms from the nonrelativistic reduction of the relativistic in-
teractions. Studies have demonstrated that the relativistic cor-
rections are surprisingly large in potential model calculations
[14–18]. In EFT, the spin-orbit interactions were taken into
account in the studies of the deuteron forward spin-dependent
polarizabilities [12] and the Drell-Hearn-Gerasimov sum rule
[19]. They were neglected in other EFT calculations because
they are nominally suppressed in power counting by 1/MN

relative to the other two couplings. However, for certain
spin-dependent observables, their contributions can be of
leading order, as we shall see.

The paper is organized as follows. Section II is devoted to
kinematics, where we write 12 basis structures for scattering
amplitudes using parity and time-reversal symmetries. The
scalar and vector structures are the same as those in Compton
scattering on a spin-1/2 particle such as the proton. The
tensor structures are new and useful for general discussions of
polarized deuteron Compton scattering. Section III explains
a calculation of the vector Compton amplitudes using the
dibaryon formulation of EFT. Power counting in both regions I
and II is explained to show the significant contribution of
the spin-orbit interactions. The result of individual diagrams
is listed in App. B. In Sec. IV, a double-helicity-dependent
(vector-polarized) cross section is defined, and the numerical
result is presented with and without the contribution from
the nucleon spin-dependent polarizabilities. The feasibility of
using polarized Compton data to extract these polarizabilities
is discussed. In Sec. V, we investigate the effect of the spin-
independent polarizabilities on a number of spin asymmetries.
Section VI presents our conclusions.

II. REAL PHOTON-DEUTERON COMPTON
SCATTERING AMPLITUDES

In this section, the general tensor structure of the amplitudes
for real photon Compton scattering on a deuteron is considered.
Through helicity counting, it is easy to see that there are a total
of 12 independent amplitudes. We choose these amplitudes on
a basis convenient for subsequent calculations. We comment
on the frame dependence of the tensor structures associated
with the amplitudes.

The real photon has two independent helicities, ±1; the
deuteron has three, ±1 and 0. Therefore, the total number of
helicity amplitudes is 2 × 3 × 2 × 3 = 36. Parity invariance
of strong and electromagnetic interactions restricts the number
of independent ones to 36/2 = 18. Among those, time-reversal
symmetry relates six to the others with initial and final
state exchanged. This reduces the number of independent
amplitudes to 18 − 6 = 12. Moreover, the general result of
helicity counting can be derived, and it is 2(J + 1)(2J + 1)
for a spin-J target.

In the low-energy region, it is convenient to use the
nonrelativistic notation for tensor structures associated with
the amplitudes. If the spins of the initial and final deuterons
are coupled, the sum is 0, 1, or 2. The amplitudes classified
in this way are called scalar, vector, and tensor, respectively.
Clearly, the number of scalar amplitudes must be the same
as that of Compton scattering amplitudes on a spin-0 target,
namely, 2; and the number of vector amplitudes is the same as
that on a spin-1/2 target, 4. Thus the number of independent
tensor amplitudes is 12 − 2 − 4 = 6.

In the remainder of this section, we construct a set of 12
linearly independent structures, using the three-momenta of
the photon and deuteron, and their polarization vectors. Among
four three-momenta, only three are independent because of
the momentum conservation. By choosing a specific frame,
one more constraint follows, and hence only initial and final
3-momenta of photon, �k and �k′, are needed for the construction.
The initial and final three-momenta of the deuteron, �p and �p′,
can be expressed in terms of these of the photon. For example,
the laboratory frame is defined by �p = 0 and �p′ = �k − �k′, the
center-of-mass (c.m.) frame by �p = −�k and �p′ = −�k′, and the
so-called Breit frame by �p = 1

2 (�k′ − �k) and �p′ = − 1
2 (�k′ − �k)

and so �p + �p′ = 0. The constraints among momenta associ-
ated with a frame are generally not invariant under symmetries
such as time reversal, which exchanges the initial and final
momenta and reverses their directions, and photon crossing
symmetry, which exchanges the initial and final photon with
the sign of energy and three-momenta flipped. For instance, the
momentum constraint in the laboratory frame is not invariant
under either time-reversal or crossing symmetry, while the
momentum constraint in the c.m. frame violates crossing
symmetry.

According to the above, in the c.m. and Breit frames where
parity and time-reversal invariance are manifest, there are 12
independent tensor structures for the Compton amplitudes.
These structures are constructed out of initial and final photon
polarization vectors (ε̂′∗ and ε̂), deuteron polarization vectors
(ξ̂ ′∗ and ξ̂ ), and the initial and final photon momentum vectors
k̂ = �k/|�k| and k̂′ = �k′/|�k′|. One can couple (ξ̂ ′∗ and ξ̂ ) into
scalar, vector, and tensor to obtain scalar, vector, and tensor
amplitudes. Alternatively, these structures can be obtained
by the matrix element of a unit matrix I, spin matrices Ji ,
or tensor (JiJj + JjJi − trace) between the initial and final
deuteron polarization vectors. Under parity transformation,
all momentum and polarization vectors change sign, whereas
the spin matrices do not. Under time-reversal transformation,
these quantities transform according to ε̂ ⇔ ε̂′∗; k̂ ⇔ −k̂′; and
�J ⇒ − �J .
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Requiring symmetry under both parity and time reversal,
we choose the 12 basis structures for Compton scattering on
the deuteron to be

ρ1 = ε̂′∗ · ε̂I = ε′∗ · ε̂ξ̂ ′∗ · ξ̂ ,

ρ2 = ŝ ′∗ · ŝI = ŝ ′∗ · ŝξ̂ ′∗ · ξ̂ ,

ρ3 = iJ · ε̂′∗ × ε̂ = (ξ̂ ′∗ × ξ̂ ) · (ε̂′∗ × ε̂),

ρ4 = iJ · ŝ ′∗ × ŝ = (ξ̂ ′∗ × ξ̂ ) · (ŝ ′∗ × ŝ),

ρ5 = i(J · k̂ŝ ′∗ · ε̂ − J · k̂′ε̂′∗ · ŝ)

= [(ξ̂ ′∗ × ξ̂ ) · k̂ŝ ′∗ · ε̂ − (ξ̂ ′∗ × ξ̂ ) · k̂′ε̂′∗ · ŝ],

ρ6 = i(J · k̂′ŝ ′∗ · ε̂ − J · k̂ε̂′∗ · ŝ)

= [(ξ̂ ′∗ × ξ̂ ) · k̂′ŝ ′∗ · ε̂ − (ξ̂ ′∗ × ξ̂ ) · k̂ε̂′∗ · ŝ],

ρ7 = −
(

J · ε̂J · ε̂′∗ + J · ε̂′∗J · ε̂ − 4

3
ε̂′∗ · ε̂I

)

= ξ̂ ′∗ · ε̂′∗ξ̂ · ε̂ + ξ̂ ′∗ · ε̂ξ̂ · ε̂′∗ − 2

3
ξ̂ ′∗ · ξ̂ ε̂′∗ · ε̂,

ρ8 = −
(

J · ŝJ · ŝ ′∗ + J · ŝ ′∗J · ŝ − 4

3
ŝ ′∗ · ŝI

)

= ξ̂ ′∗ · ŝ ′∗ξ̂ · ŝ + ξ̂ ′∗ · ŝξ̂ · ŝ ′∗ − 2

3
ξ̂ ′∗ · ξ̂ ŝ ′∗ · ŝ,

ρ9 = −ε̂′∗ · k̂(J · ε̂J · k̂′ + J · k̂′J · ε̂) − ε̂ · k̂′(J · ε̂′∗J · k̂

+ J · k̂J · ε̂′∗) + 8

3
ε̂′∗ · k̂ε̂ · k̂′I

= ε̂′∗ · k̂(ξ̂ ′∗ · k̂′ξ̂ · ε̂ + ξ̂ ′∗ · ε̂ξ̂ · k̂′) + ε̂ · k̂′(ξ̂ ′∗ · k̂ξ̂ · ε̂′∗

+ ξ̂ ′∗ · ε̂′∗ξ̂ · k̂) − 4

3
ξ̂ ′∗ · ξ̂ ε̂′∗ · k̂ε̂ · k̂′,

ρ10 = −ŝ ′∗ · k̂(J · ŝJ · k̂′ + J · k̂′J · ŝ) − ŝ · k̂′(J · ŝ ′∗J · k̂

+ J · k̂J · ŝ ′∗) + 8

3
ŝ ′∗ · k̂ŝ · k̂′I

= ŝ ′∗ · k̂(ξ̂ ′∗ · k̂′ξ̂ · ŝ + ξ̂ ′∗ · ŝξ̂ · k̂′) + ŝ · k̂′(ξ̂ ′∗ · k̂ξ̂ · ŝ ′∗

+ ξ̂ ′∗ · ŝ ′∗ξ̂ · k̂) − 4

3
ξ̂ ′∗ · ξ̂ ŝ ′∗ · k̂ŝ · k̂′,

ρ11 = −ε̂′∗ · ε̂

(
J · k̂J · k̂ + J · k̂′J · k̂′ − 4

3
I

)

= ε̂′∗ · ε̂

(
ξ̂ ′∗ · k̂ξ̂ · k̂ + ξ̂ ′∗ · k̂′ξ̂ · k̂′ − 2

3
ξ̂ ′∗ · ξ̂

)
,

ρ12 = −ŝ ′∗ · ŝ

(
J · k̂J · k̂ + J · k̂′J · k̂′ − 4

3
I

)

= ŝ ′∗ · ŝ

(
ξ̂ ′∗ · k̂ξ̂ · k̂ + ξ̂ ′∗ · k̂′ξ̂ · k̂′ − 2

3
ξ̂ ′∗ · ξ̂

)
, (1)

where the ŝ and ŝ ′∗ are defined as ŝ = k̂ × ε̂ and ŝ ′∗ = k̂′ × ε̂′∗.
When writing in terms of matrix I and J, one should understand
these structures as being sandwiched between the ξ̂ ′ and ξ̂ .
These structures are constructed in such a way that duality
between the electric and magnetic fields is manifest. Under the
dual transformation, ε̂ ⇒ ŝ, ŝ ⇒ −ε̂, which is a π/2 rotation
in the photon polarization, the above structures transform as
ρ2i−1 ⇔ ρ2i with i = 1, . . . , 6. The structures with the unit
matrix and spin operators (ρ1 to ρ6) are the same as those
for a spin-1/2 target [20]. Appendix A explains why these 12
structures are complete and independent.

The most general Compton scattering amplitude on the
deuteron can be expressed as

f =
12∑
i=1

fiρi, (2)

where fi defines the spin-dependent amplitudes. The first
two (i = 1, 2) are scalar amplitudes; the following four
(i = 3, . . . , 6) are vector amplitudes; and the last six (i =
7, . . . , 12) are tensor amplitudes.

III. VECTOR COMPTON AMPLITUDES TO
O( Q/�)4 FROM EFT

In this section, the vector Compton amplitudes are cal-
culated in a low-energy expansion in nuclear EFT. The
expansion parameter here is generically denoted as Q/�, with
Q indicating the low-momentum scale to be specified later. A
central concept in EFT is power counting in Q/� or, if without
confusion, Q. As it will be clear soon, the leading-order vector
amplitudes start at O[(Q/�)2], and we calculate them here
up to next-to-next-to leading order, namely, O[(Q/�)4]. The
calculation is based on the dibaryon approach in the pionless
theory, which has been referred to as dEFT( �π ) [11].

EFT is designed to describe physics at one scale—low-
energy scale in this case—using an effective Lagrangian,
and the physics at other scales is accounted for through the
couplings. Power counting allows a systematic way to take into
account corrections from other energy scales. For Compton
scattering on the deuteron, the natural momentum scale is√

MNB (MN is the nucleon mass) which will be generically
referred to as Q. The deuteron binding energy B is then counted
as order of Q2. The energy and momentum of the external
photon probe, ω = |�k|, is counted as
� Q2 in region I, where ω 	 B, and as
� Q in region II, where ω ∼ √

MNB.

The high-energy scales include the nucleon mass MN , the
pion mass mπ , and similar scales describing the structure of
the nucleon, like the charge radius, and parameters in nucleon-
nucleon interactions. Because mπ and MN are very different,
we use � to denote scales at around mπ and identify mπ/MN

as Q/�. Therefore, ratio Q/MN can actually be treated as
(Q/�)2. Although this is not fully consistent in the EFT sense,
it is a way to phenomenologically organize numerically close
ratios [21].

In dEFT(�π ), the nucleon rescattering in both singlet 1S0

and triplet 3S1 channels is represented by the propagation of
the dibaryon fields tj and sa , respectively. The Lagrangian
density for the triplet channel is [11]

L = N †
[
i∂0 + D2

2MN

]
N − t

†
j

[
i∂0 + D2

4MN

− �

]
t j

− y
[
t
†
j N

T P jN + h.c.
]
, (3)

where N is the two-component nucleon field with an implicit
isospin index. The time and spatial derivatives with electro-
magnetic gauge symmetry are D0 and D, respectively. P j =

1√
8
τ2σ2σj is the projection operator of the triplet channel, and
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y is the coupling between nucleons in the triplet channel
and the triplet dibaryon. Requiring the production of the
nucleon-nucleon scattering amplitude, one has

y2 = 8π

M2
Nr (3S1)

, � = 2

MNr (3S1)

(
1

a(3S1)
− µ

)
, (4)

with µ being the renormalization scale introduced in the power
divergent subtraction scheme [4]. The parameters a and r are
the scattering length and effective range, respectively. In the
present formulation, these two are counted as order Q−1 in
both singlet and triplet channels. Thus, the scaling property of
y and � is y ∼ √

Q and � ∼ Q2, respectively. Dressing the
dibaryon propagator with nucleon bubbles does not change
the counting of the propagator. Therefore, the bubbles must be
summed to all orders; the dibaryon propagator dressed with
nucleon bubbles is

D(3S1)(E) = 4π

MNy2

i

µ + 4π
MN y2 (� − E) + i

√
MNE

, (5)

with E the center-of-mass energy. The wave function renor-
malization constant is the residue at pole E = −B, and a
simple calculation yields [11] zd = γ r (3S1)/(1 − γ r (3S1)).

We remark that it is straightforward to convert the nuclear
EFT Lagrangian with the nucleon field into that in dEFT
( �π ). Following the prescription in [11], one converts a pair
of nucleon fields in the singlet and triplet channels to dibaryon
fields,

NT P jN → 1√
MNr (3S1)

t j , NT P
a
N → 1√

MNr (1S0)
sa,

(6)
where P

a = 1√
8
σ2τ2τa is the projection operator for the singlet

channel.
Nuclear EFT systematically describes the interactions

between the nucleons and external electromagnetic probes.
Besides the coupling generated in the covariant derivatives in
the above Lagrangian density, D = �∇ − ieA, there is also the
magnetic coupling to the nucleon,

LB = e

2MN

N †(µ0 + µ1τ3)σ · BN, (7)

where µ0 and µ1 are the nucleon’s isoscalar and isovector
magnetic moments, respectively. An associated term is the
spin-orbit-type relativistic correction

LSO = i
e

8M2
N

((
2µ0 − 1

2

)
+

(
2µ1 − 1

2

)
τ3

)

×N † �σ · (D × E − E × D)N, (8)

which is generated from the reduction of a relevant relativistic
interaction.

There are also interaction terms involving the dibaryon
fields themselves. One term accounts for the transition between
the 3S1 and 1S0 channels through a magnetic field,

Lem,1 = e
L1

MN

√
r (1S0)r (3S1)

t
†
j s3Bj + h.c. (9)

The coupling constant L1 has been determined by the rate
of n + p → d + γ . The measured cross section σ = 334.2 ±

0.5 mb with an incident neutron speed of 2200 m/s fixes L1 =
−4.42 fm. Another term involves the elastic scattering of the
deuteron in the magnetic field,

Lem,2 = −i
e

MN

(
µ0 − L2

r (3S1)

)
εijkt

†
i Bj tk, (10)

with the value of L2 fixed to be −0.03 fm from the magnetic
moment of the deuteron. The nucleon isoscalar magnetic
moment µ0 is introduced to reproduce the magnetic moment
at leading order [22,23]. There is also an associated relativistic
correction,

LSO
em,2 = e

2M2
N

(
µ0 − L2

r (3S1)
− 1

4

)
εijkt

†
i (D × E − E × D)j tk,

(11)
which generates a seagull interaction of the dibaryon and
electromagnetic fields. Lastly, there are nucleon polarizability
interactions,

Lpol = 2πN †(α0 + α1τ3)E2N + 2πN †(β0 + β1τ3)B2N

+ 2πN †(γ (s)
E1 + γ

(v)
E1 τ3

)
σ · E × ĖN

+ 2πN †(γ (s)
M1 + γ

(v)
M1τ3

)
σ · B × ḂN

− 2πN †(γ (s)
E2 + γ

(v)
E2 τ3

)
EijσiBjN

+ 2πN †(γ (s)
M2 + γ

(v)
M2τ3

)
BijσiEjN, (12)

where Eij = 1/2(∇iEj + ∇j Ei) and Bij = 1/2(∇iBj +
∇j Bi) are the electric and magnetic field gradients.
The nucleon isoscalar (α0,β0,γ

(s)
E1,M1,E2,M2) and isovector

(α1,β1,γ
(v)
E1,M1,E2,M2) polarizabilities are defined as, for exam-

ple, α0 = 1/2(αp + αn) and α1 = 1/2(αp − αn), with similar
relations for others. The isoscalar ones are what can be probed
in deuteron Compton scattering. Chiral perturbation theory
calculations yield [24]

α0 = 10β0 = 12 × 10−4 fm3,

γ
(s)
E1 = −3.1 × 10−4 fm4, γ

(s)
M1 = 0.4 × 10−4 fm4, (13)

γ
(s)
E2 = 2.1 × 10−4 fm4, γ

(s)
M2 = 0.6 × 10−4 fm4.

Feynman diagrams that contribute to the deuteron Compton
scattering to (Q/�)4 in power counting are shown in Figs. 1–4.
Figure 1 contains diagrams with direct photon-dibaryon
interactions. Figure 2 contains the seagull interactions with the
nucleon. Figure 2(c) actually corresponds to the contribution
from electromagnetic polarizabilities of the nucleon. Figure 3
includes diagrams without intermediate dibaryon fields. Fi-
nally, diagrams in Fig. 4 have intermediate singlet and triplet
dibaryon propagations.

FIG. 1. Compton scattering with photons directly coupled to the
dibaryon field. The open circle denotes the electric photon-dibaryon
coupling from the gauged derivative. The solid dot denotes the seagull
term in Eq. (11).
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(a) ∼ Q0 (b) ∼ Q (c) ∼ Q,Q2

FIG. 2. Diagrams with seagull interactions on the nucleon lines. The small open circle denotes the coupling from the gauged derivative in
the first term in Eq. (3), the small solid circle represents the coupling from spin-orbit interaction defined in Eq. (8), while the small open box
represents the point interactions associated with polarizabilities of the nucleon in Eq. (12). Power counting of the leading contribution of each
diagram is listed below the diagram. In (c), the two countings, Q and Q2, are for spin-independent and spin-dependent nucleon polarizability
contributions, respectively.

To estimate the importance of a particular diagram in
our power-counting scheme, we need to study the dominant
regions of a loop momentum in the integral. Let us use (q0, �q)
to generically denote the loop momentum. The size of the
loop momentum is determined by poles of the propagators.
Typical nucleon propagators in the loop integration are
i/(−B − q0 − �q2

2M
+ iε) when the photon momentum does

not pass through the nucleon line, and i/(q0 + ω − �q2

2M
+ iε)

when the photon momentum does. Because q0 scales as |�q|2,
the former has a momentum pole at |�q| ∼ √

B and the latter a

pole at |�q| ∼ √
ω =

√
|�k|. In region I, these two poles have the

same order of magnitude and have power counting |�q| ∼ Q. In
region II, the pole (|�q| ∼ √

B) has counting |�q| ∼ Q, and the
other pole (|�q| ∼ √

ω) has |�q| ∼ √
Q. A Feynman integral

can be approximated by the pole that produces a leading
contribution.

For example, let us count the power of diagram (b)
in Fig. 3. The Feynman integral has a momentum power
Qω2|�q|5/(|�q|6ω), where Q is from the wave function renor-
malization, ω2 is from two magnetic couplings, the ω in the
denominator is from the propagator i/(q0 + ω − �q2

2M
+ iε),

and |�q| is the loop momentum, with d4q counted as |�q|5 and
three other propagators in the denominator as |�q|6. At the
pole |�q| ∼ Q, it is of order Q; at the other pole |�q| ∼ √

Q, it is
Q3/2. Thus the leading contribution is of order Q, shown below
the diagram. Note that the Q counting here is dimensionally
balanced by the nucleon mass MN in the denominator.

Because there are multiple leading regions in a Feynman
diagram, power counting can be rather tricky sometimes.
For example, the nominally higher-order, spin-orbit couplings
can produce leading contributions in a certain momentum
region. To see this, let us compare the power counting
for diagrams (f) and (h) in Fig. 3. The counting of (f) is
Q|�q|5(�q + �k)ω/(|�q|4ω2), where in the denominator |�q|4 is
from the two propagators that do not depend on the photon
momentum and ω2 is from two propagators that do; in the
numerator, (�q + �k) and ω factors are from the derivative
and magnetic couplings, respectively. Since only the �k term
in (�q + �k) survives the symmetrical momentum integration,
diagram (f) is of order Q3/2. On the other hand, counting
of diagram (h) is Q|�q|5(�q + �k)2ω/(|�q|4ω2) which, compared
to diagram (f), has an extra power of (�k + �q)/MN , because
it is a relativistic correction. However, the dominant term
contributing to the integral is �q2 in the (�q + �k)2 factor, which
is of order Q at the leading pole. Therefore, diagram (h) is
also of order Q3/2. Thus the spin-orbit coupling contributes as
significantly as the magnetic coupling in these diagrams.

Power counting allows us to determine the leading con-
tribution of every Feynman diagram. The result is indicated
below each diagram in Figs. 1–4. Again, all countings so
far are in terms of powers of Q/MN , including that for the
nucleon polarizability in diagram 2(c). In the following, we
will treat each power of Q/MN as (Q/�)2, as discussed in
the beginning of this section. According to chiral perturbation
theory, the spin-independent polarizabilities contribute to the

(a) ∼ Q1/2 (b) ∼ Q (c) ∼ Q (d) ∼ Q3/2

(e) ∼ Q2 (f) ∼ Q3/2 (g) ∼ Q3/2 (h) ∼ Q3/2

FIG. 3. Diagrams without intermediate dibaryons. The small open circles denote the electric photon-nucleon coupling from the gauged
derivative in the first term in Eq. (3), the small shaded circles denote the magnetic photon-nucleon coupling in Eq. (7), while the small solid
circles represent the spin-orbit interaction between photon and nucleon in Eq. (8).
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FIG. 4. Diagrams with intermediate dibaryon states. The small open circles denote the electric coupling in Eq. (3), and the small shaded
circles denote the magnetic coupling in Eq. (7). The intermediate thick lines with one arrow represent both the spin singlet and triplet channels.
The solid box denotes the L1 and L2 couplings in Eqs. (9) and (10).

scalar amplitudes at order (Q/�)2 [21]; the spin-dependent
ones contribute to the vector amplitudes at order (Q/�)4.
An explanation of the counting of the nucleon polarizability
contributions from diagram 2(c) is in order. Compared with the
leading-order contribution T2a in App. B, the result of T2c is
suppressed by 2MN (α0ω

2, β0ω
2, γ

(s)
E1,M1,E2,M2ω

3)/αem, which
is numerically (Q/�)2 for scalar polarizabilties and (Q/�)4

for vector ones.
According to the above, the scalar amplitudes start at

O(Q/�)0, vector amplitudes at O(Q/�)2, and tensor am-
plitudes at O(Q/�)3. Note, however, that the leading-order
vector amplitudes are actually proportional to the square of
the isovector magnetic moment µ2

1 = 5.5, which brings in
a numerical enhancement. [In principle, one could consider
the leading-order vector amplitudes as O(Q/�) in power
counting. However, we choose to recognize µ2

1 as an en-
hancement factor.] Therefore, the vector-vector contribution to
the unpolarized cross section could be quite significant [13].
On the other hand, the above enhancement diminishes the
contribution of nucleon spin-dependent polarizabilities.

From Figs. 1–4, the vector-polarized amplitudes can be
calculated to O(Q/�)4. Our explicit results are shown in
App. B. To have the result look more compact, integrations
over Feymann parameter x have not been completed. One must
exercise caution, however, when the power of an unintegrated
expression is counted. For example, the result of the diagram
in Fig. 3(b) seems to scale as γω2/(MNω)3/2 ∼ (Q/MN )3/2

before x integration. However, the final result actually scales
as Q/MN , consistent with the above power counting.

IV. A DOUBLE-HELICITY-DEPENDENT
(VECTOR-POLARIZED) CROSS SECTION

With the scalar and vector amplitudes presented in the
previous section and App. B, we can calculate spin-dependent
Compton scattering cross sections. Of course, any polarized

cross section can be constructed out of the complete 12 (scalar,
vector, and tensor) amplitudes once they are known. Because
the tensor amplitudes start at order (Q/�)3, we do not need to
know them to predict certain spin-dependent cross sections up
to some orders in Q.

As we have seen in the previous section, the vector
amplitudes receive contributions from the spin-dependent
polarizabilities of the nucleon. Therefore, we would like to find
a cross section that can be used to probe the vector amplitudes,
and hence possibly extract the spin polarizabilities.

A double-helicity-dependent cross section satisfies the
above condition. Suppose the helicities of the initial-state
photon and deuteron are λ1 and �1, respectively. The general
Compton scattering cross section with these polarized initial
states is σλ�. Define a vector-polarized cross section

�1
dσ

d�
= 1

2

(
dσ+1−1

d�
− dσ+1+1

d�

)
, (14)

where +1 (−1) is a right-handed (left-handed) polarization. If
the initial momentum of the photon is along the z direction,
the scattered photon momentum is taken along a direction
with a polar angle θ . Then the polarization vector of the
in-coming photon is e = − i√

2
(x̂ + iŷ). The deuteron, moving

in the negative z direction with a negative helicity, has the
same wave function. The deuteron with a positive helicity has a
wave function ξ = i√

2
(x̂ − iŷ). Note that the beam is circularly

polarized in the so-defined vector-polarized cross section.
Actually, investigations indicate that the vector amplitudes
cannot be probed as leading-order contributions if the beam is
parallel polarized.

According to the above definition, the vector-polarized
Compton cross section can be expressed in terms of the full
12 amplitudes as

�1
dσ

d�
= Re [S∗V + V ∗V + V ∗T + T ∗T ] (15)
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FIG. 5. (Color online) Vector-polarized cross sections for different c.m. frame photon energies ω. (See text for comments on the 70 and
90 MeV cases.) θ is the scattering angle in the c.m. frame. The dashed lines contain no contribution from spin-independent or spin-dependent
polarizabilities. The dotted lines have contributions from spin-independent polarizabilities of the nucleon, but without dependent ones of nucleon.
The solid lines have contributions from both. The values of nucleon polarizabilities are taken from chiral perturbation theory in Eq. (13).

= 2M2
N

3
(
ω +

√
ω2 + M2

D

)2
Re [[−6(1 + z2)(f ∗

1 f3+f ∗
2 f4)

− 12z(f ∗
1 f4 + f ∗

2 f3) − 6z(3 + z2)(f ∗
1 f5 + f ∗

2 f6)

− 6(1 + 3z2)(f ∗
1 f6 + f ∗

2 f5)] + [−3(1 − z2)

× (f ∗
3 f3 + f ∗

4 f4 + f ∗
3 f6 + f ∗

4 f5) − 3z(1 − z2)

× (f ∗
3 f5 + f ∗

4 f6)] + [−4(2 − z2)(f ∗
3 f7 + f ∗

4 f8)

− 4z(f ∗
3 f8 + f ∗

4 f7) − 5z(1 − z2)(f ∗
3 f9 + f ∗

4 f10)

− 5(1 − z2)(f ∗
3 f10 + f ∗

4 f9) + (1 + 7z2)(f ∗
3 f11

+ f ∗
4 f12) + z(5 + 3z2)(f ∗

3 f12 + f ∗
4 f11)−z(9 − z2)

× (f ∗
5 f7 + f ∗

6 f8) − (5 + 3z2)(f ∗
5 f8 + f ∗

6 f7)

− 2(1 − z4)(f ∗
5 f9 + f ∗

6 f10) − 4z(1 − z2)

× (f ∗
5 f10 + f ∗

6 f9) + 2z(3 + 5z2)(f ∗
5 f11 + f ∗

6 f12)

+ (1 + 12z2 + 3z4)(f ∗
5 f12+f ∗

6 f11)] + [−3(3 + z2)

× (f ∗
7 f7 + f ∗

8 f8) + 24zf ∗
7 f8 + 9z(1 − z2)

× (f ∗
7 f9 + f ∗

8 f10) − 15(1 − z2)(f ∗
7 f10 + f ∗

8 f9)

+ 3(1 − z2)(f ∗
7 f11 + f ∗

8 f12) + 3z(1 − z2)

× (f ∗
7 f12 + f ∗

8 f11) − 6(1 − z2)2(f ∗
9 f9 + f ∗

10f10)

+ 6z(1 − z2)(f ∗
9 f11 + f ∗

10f12) + 3(1 − z4)

× (f ∗
9 f12 + f ∗

10f11)]], (16)

where S∗V, V ∗V, V ∗T , and T ∗T denote combinations of
scalar-vector, vector-vector, vector-tensor, and tensor-tensor
amplitudes, respectively. According to power counting, the
dominant contribution in the cross section defined above
is from the scalar and vector interference and is of order

(Q/�)2. If calculating the cross section to order (Q/�)4,
which is the order where spin-independent and spin-dependent
polarizabilities contribute, we need the scalar amplitudes to
order (Q/�)2 and vector amplitudes to (Q/�)4, including
the nucleon polarizability term. The tensor amplitudes, whose
leading orders have no µ2

1 enhancement, do not contribute at
this order. Therefore, the vector-polarized cross section is a
useful observable for probing the vector amplitudes and hence
the spin polarizabilities.

We show in Fig. 5 the vector-polarized cross section to
(Q/�)4 in EFT at c.m. photon energy ω = 30, 50, 70, 90 MeV,
respectively. The contribution from polarizabilities of the
nucleon is more significant at higher energy. There is virtually
no difference between the cross sections with the polariz-
abilities turned on or off at the photon energy ω = 30 MeV.
However, there is a notable difference at 50 MeV, about
20% dependence on spin-independent polarizabilities and 8%
on spin-dependent ones at forward angle, and substantial
difference at 70 MeV and 90 MeV. [Note that our results for
70 and 90 MeV are just for exploratory study, because the pion
has to be included as a dynamical degree of freedom at such
high energies. However, we expect that the general features
will not change in a full analysis.] The effect of the nucleon
polarizabilities is more significant at forward and backward
angles (almost zero at θ = π/2). Moreover, the contribution
from spin-independent polarizabilities α0, β0 is of similar size
at forward and backward angles, while the spin-dependent
polarizabilities contribute mainly at forward angles.

According to power counting, both the scalar and spin
polarizabilities contribute to the vector-polarized cross section
at O(Q/�)4. However, the leading-order vector amplitude is
enhanced by a factor µ2

1. Therefore, the scalar polarizabilities
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FIG. 6. (Color online) Same as Fig. 5, but for the asymmetry �z for different c.m. frame photon energies ω.

contribute more significantly to the cross section and generate a
larger influence than the spin polarizabilities. As the result, one
cannot extract the vector polarizabilities without knowing the
scalar ones to a reasonable accuracy. From Fig. 5, the best way
to extract the spin polarizabilities is to measure �1σ at forward
angles and at relatively high energy (higher than 50 MeV),
where the pionless EFT expansion becomes less reliable. On
the other hand, as seen in the figure, �1σ—especially at the
forward and backward angles—is as sensitive as the unpolar-
ized cross section is to the scalar polarizabilities of the nucleon.

V. ASYMMETRIES SENSITIVE TO SPIN-INDEPENDENT
NUCLEON POLARIZABILITIES

As seen from the previous section, the spin-independent
nucleon polarizabilities have to be determined before the
extraction of spin-dependent ones becomes possible. In this
section, we investigate various asymmetries with the goal of
extracting spin-independent polarizabilities.

Asymmetries are generally easier to measure than cross
sections because of the cancellation of systematic errors. The
asymmetry associated with the vector-polarized cross section
in the previous section is

�z =
dσ+1−1

d�
− dσ+1+1

d�

dσ+1−1

d�
+ σ+1+1

d�

, (17)

where the indices ±1 have the same meaning as in Eq. (14).
The expression for the numerator has been shown in the
previous section. The expression for the denominator in terms
of scalar and vector amplitudes is

1

2

(
dσ+1−1

d�
+ dσ+1+1

d�

)

= 2M2
N(

ω +
√

ω2 + M2
D

)2
Re

[
(1 + z2)(f ∗

1 f1 + f ∗
2 f2)

+ 4z(f ∗
1 f2 + f ∗

3 f4) + 2(f ∗
3 f3 + f ∗

4 f4) + 1

2
(3 + 12z2

+ z4)(f ∗
5 f5 + f ∗

6 f6) + 2z(5 + 3z2)f ∗
5 f6 + (3 + 5z2)

× (f ∗
3 f6 + f ∗

4 f5) + z(7 + z2)(f ∗
3 f5 + f ∗

4 f6)

]
(18)

The result of �z for c.m. photon energies ω = 30 and 50 MeV is
shown in Fig. 6. Clearly, as the vector-polarized cross section,
the asymmetry at the backward angle has stronger dependence

on α0, β0 compared to other angles and shows almost no
sensitivity on spin-dependent polarizabilities. However, unlike
the cross section, the dependence on the α0, β0 in the
asymmetry is suppressed to about 8% at 50 MeV because of
the cancellation between the numerator and denominator.

In the following, we investigate other asymmetries in
search of a larger dependence on α0, β0. There are two new
asymmetries related to �z when the polarization axis of the
deuteron target is changed. If the xz plane is chosen as the
scattering plane, one can define an asymmetry with deuteron
polarized linearly in the x direction

�x =
dσ+1,Jx=+1

d�
− dσ+1,Jx=−1

d�

dσ+1,Jx=+1

d�
+ dσ+1,Jx=−1

d�

, (19)

with the first index +1 of σ indicating that the photon is right-
handed polarized, the second index indicating that the deuteron
target is polarized in the Jx = ±1 states. The expressions for
the numerator and denominator in terms of scalar and vector
amplitudes are

1

2

(
dσ+1,Jx=+1

d�
− dσ+1,Jx=−1

d�

)

= 2M2
N(

ω +
√

ω2 + M2
D

)2

√
1 − z2 Re [−2(zf ∗

1 f3 + f ∗
1 f4

+ (1 + z2)f ∗
1 f5 + 2zf ∗

1 f6 + f ∗
2 f3 + zf ∗

2 f4

+ 2zf ∗
2 f5 + (1 + z2)f ∗

2 f6) + z(f ∗
3 f3 + f ∗

4 f4)

+ 2f ∗
3 f4 + (1 + z2)f ∗

3 f5 + 2zf ∗
3 f6 + 2zf ∗

4 f5

+ (1 + z2)f ∗
4 f6],

1

2

(
dσ+1,Jx=+1

d�
+ dσ+1,Jx=−1

d�

)

= 2M2
N(

ω +
√

ω2 + M2
D

)2
Re [(1 + z2)(f ∗

1 f1 + f ∗
2 f2)

+ 4zf ∗
1 f2 + (2 − z2)(f ∗

3 f3 + f ∗
4 f4) + 2zf ∗

3 f4

+ (3 + z2)(f ∗
3 f6 + f ∗

4 f5) + z(5 − z2)(f ∗
3 f5 + f ∗

4 f6)

+ 1

2
(3 + 6z2 − z4)(f ∗

5 f5 + f ∗
6 f6) + 8zf ∗

5 f6] (20)

The result for �x at c.m. photon energies ω = 30 and 50 MeV
is shown in Fig. 7. The peak of this asymmetry is around the
scattering angle of 105◦, where the dependence on α0, β0 is
about 8% at 50 MeV.
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FIG. 7. (Color online) Same as Fig. 5, but for the asymmetry �x for different c.m. frame photon energies ω.

Similarly, one can define the asymmetry with the deuteron
polarized in the y direction, which is perpendicular to the
scattering plane. This asymmetry is actually a single-spin
asymmetry, independent of the polarization of the photon
beam, such that

�y =
dσJy=+1

d�
− dσJy=−1

d�

dσJy=+1

d�
+ dσJy=−1

d�

, (21)

where the photon beam is unpolarized and the deuteron target
is polarized in the Jy = ±1 states. The expressions for the
numerator and denominator in terms of scalar and vector
amplitudes are

1

2

(
dσJy=+1

d�
− dσJy=−1

d�

)

= 4M2
N

√
1 − z2(

ω +
√

ω2 + M2
D

)2
Im [f ∗

1 f4+f ∗
2 f3 + zf ∗

1 f3+ zf ∗
2 f4],

1

2

(
dσJy=+1

d�
+ σJy=−1

d�

)

= 4M2
N(

ω +
√

ω2 + M2
D

)2
Re

[
1

2
(1 + z2)(f ∗

1 f1 + f ∗
2 f2)

+ 1

2
(2 − z2)(f ∗

3 f3 + f ∗
4 f4) +1

2
(1 + 3z2)(f ∗

5 f5 + f ∗
6 f6)

+ (1 + z2)(f ∗
3 f6 + f ∗

4 f5) + 2z(f ∗
1 f2 + f ∗

3 f5 + f ∗
4 f6)

+ zf ∗
3 f4 + z(3 + z2)f ∗

5 f6

]
. (22)

The result for �y at c.m. photon energies ω = 30 and 50 MeV
is shown in Fig. 8. The peak of this asymmetry is around a
scattering angle of 90◦, where the dependence on α0, β0 is
about 12% at 30 MeV and 26%at 50 MeV, much larger than
the dependence in �x,z. Therefore, the single-spin asymmetry
should serve as a good observable for extracting nucleon
scalar-isoscalar polarizabilities. Note that the polarizations of
the deuteron in the above asymmetries are defined in the c.m.
frame, while in experiment the deuteron is prepared polarized
in the laboratory frame. The polarization in these two frames
are different in the case of �x,y . This is an error of size ω/MD ,
which can be safely neglected at low energy.

The tensor amplitude contributions are not taken into ac-
count in the results shown above. They are small contributions
from the analysis of power counting. But numerically, their
effect could be enhanced because of the large size of the
isovector nucleon magnetic moment, which also explains
that the vector amplitude effects are enhanced. While a
more complete calculation of asymmetries with all the tensor
amplitudes included is beyond the scope of this paper, we did,
however, study their effects on the asymmetries by using the
tensor amplitude f7 from a previous calculation in EFT with
pion [25]. We found that the dependence of �y on f7 is 30% of
the effect of α0 and β0 in �y , which is consistent with the size
of the higher order corrections that we didnot calculate. On the
other hand, asymmetries �x and �z have stronger dependence
70% of the size of the effect of α0 and β0 on them) on
the tensor amplitudes than expected from power counting,
which offers an additional reason why these asymmetries are
not as good as �y regarding the goal of extracting α0 and β0.

We also investigated the parallel-perpendicular single-spin
asymmetry, which is the ratio of the difference and sum of
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FIG. 8. (Color online) Same as Fig. 5, but for the asymmetry �y for different c.m. frame photon energies ω.
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two cross sections when the deuteron target is unpolarized
and the photon beam is linearly polarized either parallel or
perpendicular to the scattering plane. This asymmetry is found
to have a weaker dependence (about 3% at 50 MeV) on α0, β0

than �x,y,z and, therefore, is not presented here.

VI. CONCLUSION

We presented a convenient set of basis for Compton
scattering on the deuteron. We then calculated the scalar and
vector Compton amplitudes to O((Q/�)4) in a nuclear EFT
without the pion, to which the scalar and spin polarizabilities of
the nucleon contribute. The result was then used to calculate
a double-helicity-dependent cross section which is linearly
proportional to the vector amplitudes. We studied the effects
of the polarizabilities on the cross section, finding that the
influence of the scalar polarizabilities is more dominant than
that of the spin polarizabilities. Thus, an accurate measurement
of the cross section can help determine the former. However, if
the scalar polarizabilities are determined with good accuracy,
the cross section can provide a constraint on the spin-
dependent ones. Finally, we investigated various asymmetries
in search of large dependence on scalar polarizabilities and
found that �y has the best potential in that not only is the size
of dependence on α0, β0 in it strong (26% at 50 MeV) but also
the uncertainty from tensor amplitude contributions is small
(30%).
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APPENDIX A: TENSOR BASIS FOR DEUTERON
COMPTON AMPLITUDES

The 12 basis structures can be systematically obtained by
keeping track of the matrix structure sandwiched between the
initial and final deuteron polarization states. The structures
with unit matrix and single-spin matrix are the same as the
structures for the spin-1/2 target. There are six such structures
(ρ1 ∼ ρ6) [20]. Our goal is to find out the remaining six
structures, which should all be of tensor type with symmetrized
double-spin matrices.

First we notice that since there are double Js associated
with them, the parity invariance requires that there are an even
number of cross products among the vectors: ε̂, ε̂′∗, k̂, k̂′, and
two Js. Moreover, since any even number of cross products
can be transformed into dot products, we only need to include
structures with dot products. Since subtracting the trace is
straightforward, we choose to do it at the end. The structures
before subtracting the trace can be found systematically by
looking at which pair dot with the Js and what is left over.

First, if the pair is ε̂ and ε̂′∗, there is only one such structure:

τ1 = J · ε̂J · ε̂′∗ + J · ε̂′∗J · ε̂. (A1)

If the pair is k̂ and k̂′, there are two structures:

τ2 = ε̂′∗ · ε̂(J · k̂J · k̂′ + J · k̂′J · k̂),
(A2)

τ3 = k̂ · ε̂′∗k̂′ · ε̂(J · k̂J · k̂′ + J · k̂′J · k̂).

If the pair is k̂ and ε̂′∗, time-reversal invariance requires that
the other pair k̂′ and ε̂ appear in the same structure and in the
following combination:

τ4 = ε̂′∗ · k̂(J · ε̂J · k̂′ + J · k̂′J · ε̂)

+ ε̂ · k̂′(J · ε̂′∗J · k̂ + J · k̂J · ε̂′∗). (A3)

If the pair is k̂ and ε̂, time-reversal invariance requires that the
other pair, k̂′ and ε̂′∗, appear in the same structure and in the
following combination:

τ5 = ε̂′∗ · k̂(J · ε̂J · k̂ + J · k̂J · ε̂)

+ ε̂ · k̂′(J · ε̂′∗J · k̂′ + J · k̂′J · ε̂′∗). (A4)

If the pair is two k̂s, the time-reversal invariance requires that
the other pair, two k̂′s, appears in the same structure and in the
proper combination. There are two structures of this type:

τ6 = ε̂′∗ · ε̂(J · k̂J · k̂ + J · k̂′J · k̂′),
(A5)

τ7 = k̂ · ε̂′∗k̂′ · ε̂(J · k̂J · k̂ + J · k̂′J · k̂′).

This way of constructing structures with double Js exhausts
all possibilities. There is no problem about the completeness.
However, we get more structures than expected from helicity
counting. It is hard to find the relation among them directly, and
it turns out that we need to make use of the duality character
of the electric-magnetic field. Starting from the above seven
structures, we can obtain another set of structures which covers
the above set and has the duality correspondence among them,
just like the structures from ρ1 to ρ6. Without knowing the
dependence among the structures from τ1 to τ7, the minimal
number of such a set of structures is eight. They are chosen as

τ ′
1 = J · ε̂J · ε̂′∗ + J · ε̂′∗J · ε̂,

τ ′
2 = J · ŝJ · ŝ ′∗ + J · ŝ ′∗J · ŝ,

τ ′
3 = ε̂′∗ · ε̂(J · k̂J · k̂′ + J · k̂′J · k̂),

τ ′
4 = ŝ ′∗ · ŝ(J · k̂J · k̂′ + J · k̂′J · k̂),

τ ′
5 = ε̂′∗ · k̂(J · ε̂J · k̂′ + J · k̂′J · ε̂) (A6)

+ ε̂ · k̂′(J · ε̂′∗J · k̂ + J · k̂J · ε̂′∗),

τ ′
6 = ŝ ′∗ · k̂(J · ŝJ · k̂′ + J · k̂′J · ŝ)

+ ŝ · k̂′(J · ŝ ′∗J · k̂ + J · k̂J · ŝ ′∗),

τ ′
7 = ε̂′∗ · ε̂(J · k̂J · k̂ + J · k̂′J · k̂′),

τ ′
8 = ŝ ′∗ · ŝ(J · k̂J · k̂ + J · k̂′J · k̂′).

One notices that under duality transformation, these eight
structures transform as τ ′

2i−1 ⇔ τ ′
2i , with i = 1, 2, 3, 4. This

set with eight structures can be expressed in terms of seven
fis, and the expression is found to be

τ ′
1 = τ1, τ ′

2 = 4ρ2 + τ4 − zτ1 − τ2, τ ′
3 = τ2, τ ′

4 = zτ2 − τ3,

τ ′
5 = τ4, τ ′

6 = 2zτ2 + τ5−2τ3 − 2τ6, τ ′
7 = τ6, τ8 = zτ6 − τ7.

(A7)
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Since eight structures are expressed in terms of the other seven
structures, one relation among τ ′

i s must exist, and it is found
to be

zτ ′
1 + τ ′

2 + τ ′
3 − τ ′

5 = 4ρ2, (A8)

from which another relation can be found through duality
transformation of the above relation:

zτ ′
2 + τ ′

1 + τ ′
4 − τ ′

6 = 4ρ1. (A9)

Now, we have two constraints on eight structures and are
therefore left with six independent structures, as expected from
helicity counting. We choose τ ′

1,2,5,6,7,8 as the basis structures.
With trace subtracted explicitly, they are

ρ7 = −
(

J · ε̂J · ε̂′∗ + J · ε̂′∗J · ε̂ − 4

3
ε̂′∗ · ε̂I

)

= ξ̂ ′∗ · ε̂′∗ξ̂ · ε̂ + ξ̂ ′∗ · ε̂ξ̂ · ε̂′∗ − 2

3
ξ̂ ′∗ · ξ̂ ε̂′∗ · ε̂,

ρ8 = −
(

J · ŝJ · ŝ ′∗ + J · ŝ ′∗J · ŝ − 4

3
ŝ ′∗ · ŝI

)

= ξ̂ ′∗ · ŝ ′∗ξ̂ · ŝ + ξ̂ ′∗ · ŝξ̂ · ŝ ′∗ − 2

3
ξ̂ ′∗ · ξ̂ ŝ ′∗ · ŝ,

ρ9 = −ε̂′∗ · k̂(J · ε̂J · k̂′ + J · k̂′J · ε̂)

− ε̂ · k̂′(J · ε̂′∗J · k̂ + J · k̂J · ε̂′∗) + 8

3
ε̂′∗ · k̂ε̂ · k̂′I

= ε̂′∗ · k̂(ξ̂ ′∗ · k̂′ξ̂ · ε̂ + ξ̂ ′∗ · ε̂ξ̂ · k̂′) + ε̂ · k̂′(ξ̂ ′∗ · k̂ξ̂ · ε̂′∗

+ ξ̂ ′∗ · ε̂′∗ξ̂ · k̂) − 4

3
ξ̂ ′∗ · ξ̂ ε̂′∗ · k̂ε̂ · k̂′,

ρ10 = −ŝ ′∗ · k̂(J · ŝJ · k̂′ + J · k̂′J · ŝ) − ŝ · k̂′(J · ŝ ′∗J · k̂

+ J · k̂J · ŝ ′∗) + 8

3
ŝ ′∗ · k̂ŝ · k̂′I

= ŝ ′∗ · k̂(ξ̂ ′∗ · k̂′ξ̂ · ŝ + ξ̂ ′∗ · ŝξ̂ · k̂′) + ŝ · k̂′(ξ̂ ′∗ · k̂ξ̂ · ŝ ′∗

+ ξ̂ ′∗ · ŝ ′∗ξ̂ · k̂) − 4

3
ξ̂ ′∗ · ξ̂ ŝ ′∗ · k̂ŝ · k̂′,

ρ11 = −ε̂′∗ · ε̂

(
J · k̂J · k̂ + J · k̂′J · k̂′ − 4

3
I

)

= ε̂′∗ · ε̂
(

ξ̂ ′∗ · k̂ξ̂ · k̂ + ξ̂ ′∗ · k̂′ξ̂ · k̂′ − 2

3
ξ̂ ′∗ · ξ̂

)
,

ρ12 = −ŝ ′∗ · ŝ

(
J · k̂J · k̂ + J · k̂′J · k̂′ − 4

3
I

)

= ŝ ′∗ · ŝ

(
ξ̂ ′∗ · k̂ξ̂ · k̂ + ξ̂ ′∗ · k̂′ξ̂ · k̂′ − 2

3
ξ̂ ′∗ · ξ̂

)
.

(A10)

ρis (i = 1 ∼ 12) are the basis structures of deuteron Comp-
ton amplitudes in the frame where time-reversal invariance is
manifest such as the Breit frame and center-of-mass frame.
Note that the laboratory frame is not such a frame because it
lacks the symmetry between the initial and final deuteron.

There are other tensor structures that are often met in studies
of Compton scattering on the deuteron. Here we provide a list
and their relation to the basis set defined above:

ε̂′∗ · ε̂(ξ̂ ′∗ · k̂ξ̂ · k̂′+ξ̂ ′∗ · k̂′ξ̂ · k̂) = −zρ7 − ρ8 + ρ9 + 2

3
zρ1,

ε̂′∗ · k̂ε̂ · k̂′(ξ̂ ′∗ · k̂ξ̂ · k̂′ + ξ̂ ′∗ · k̂′ξ̂ · k̂)

= (1 − z2)ρ7 + zρ9 − ρ10 + 2

3
z2ρ1 − 2

3
zρ2,

ε̂′∗ · k̂ε̂ · k̂′(ξ̂ ′∗ · k̂ξ̂ · k̂ + ξ̂ ′∗ · k̂′ξ̂ · k̂′)

= zρ11 − ρ12 + 2

3
(zρ1 − ρ2),

ε̂′∗ · k̂(ξ̂ ′∗ · ε̂ξ̂ · k̂ + ξ̂ ′∗ · k̂ξ̂ · ε̂) + ε̂ · k̂′(ξ̂ ′∗ · ε̂′∗ξ̂ · k̂′

+ ξ̂ ′∗ · k̂′ξ̂ · ε̂′∗) = 2ρ7 + 2zρ8 − ρ10 + 2ρ11,

ε̂′∗ · ε̂(ξ̂ ′∗ × ξ̂ ) · (k̂′ × k̂) = zρ3 + ρ4 − ρ5,

(ξ̂ ′∗ × ξ̂ ) · (ε̂′∗ × k̂)ε̂ · k̂′ − (ξ̂ ′∗ × ξ̂ ) · (ε̂ × k̂′)ε̂′∗ · k̂

= 2zρ3 − ρ5,

(ξ̂ ′∗ × ξ̂ ) · ŝε̂′∗ · k̂ − (ξ̂ ′∗ × ξ̂ ) · ŝ ′∗ε̂ · k̂′ = 2ρ3 − ρ6,

(A11)

where z = cos θ = k̂ · k̂′, which is used throughout this paper.
The last three expressions for the vector-type structures
have appeared in the literature before [20]. Other useful
relations can be obtained from the above through the duality
transformation.

APPENDIX B: COMPTON AMPLITUDES TO
O( Q/�)4 IN EFT

In the following, we present our result for the Compton
amplitudes from Figs. 1–4. T-matrix element is related
to scattering amplitude f through f = T/4π . T matrix is
calculated using the normalization for the deuteron state
〈 �p| �p′〉 = (Ep/MD)(2π )3δ3( �p − �p′).

Diagrams with the photon directly coupled to the dibaryon
are shown in Fig. 1. The result is

T1a = e2

2MN

γ r (3S1)

1 − γ r (3S1)
ρ1,

(B1)

T1b = e2

4M2
N

γ r (3S1)

1 − γ r (3S1)
ωρ3

(
1 − 4µ0 + 4L2

r (3S1)

)
.

Diagrams with the seagull interaction on the nucleon line
are shown in Fig. 2, among which are contributions from
nucleon polarizabilities. The result for each diagram is

T2a = − 4e2

MN

γ

1 − γ r (3S1)

1

ω
√

2 − 2z
arctan

(
ω

√
2 − 2z

4γ

)
ρ1,

T2b = 2e2

M2
N

γ

1 − γ r (3S1)

[(
2µ0 − 1

2

)
+

(
2µ1 − 1

2

)]

× 1√
2 − 2z

arctan

(
ω

√
2 − 2z

4γ

)
ρ3,

T2c = 32π
γ

1 − γ r (3S1)

1√
2 − 2z

arctan

(
ω

√
2 − 2z

4γ

)

× [α0ωρ1 + β0ωρ2 − γE1ω
2ρ3 − γM1ω

2ρ4

+ γE2ω
2(−ρ4 + ρ5) + γM2ω

2(ρ3 − ρ6)],
(B2)

with T2c associated with the nucleon polarizabilities.
The contribution without the intermediate singlet or triplet

state is from the diagrams in Fig. 3. The result of each diagram
along with photon crossing and the diagram with interchange
of two photon coupling vertices, if different, is
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T3a = e2

2MN

γ

1 − γ r (3S1)

[
ρ1

(∫ 1

0
dx

1 − x√
γ 2 + MNωx − iε

+
∫ 1

0
dx

1 − x√
γ 2 − MNωx − iε

)

+ω2(zρ1 − ρ2)

(
1

4

∫ 1

0
dx

1
6 (1 − x)3 + (1 − x)(2 − x)

(γ 2 + MNωx − iε)3/2
+ 1

24

∫ 1

0
dx

(1 − x)3

(γ 2 − MNωx − iε)3/2

)]
,

T3b = − e2

4MN

γ

1 − γ r (3S1)

(
µ2

0 + µ2
1

)
ω2

[
(ρ4 − ρ2)

∫ 1

0
dx

1 − x

(γ 2 + MNωx − iε)3/2
− (ρ4 + ρ2)

∫ 1

0
dx

1 − x

(γ 2 − MNωx − iε)3/2

]
,

T3c = e2

16MN

γ

1 − γ r (3S1)
(µ0 + µ1) ω2(ρ6 − 2ρ3)

(∫ 1

0
dx

x2 − 4x + 3

(γ 2 + MNωx − iε)3/2
−

∫ 1

0
dx

(1 − x)2

(γ 2 − MNωx − iε)3/2

)
,

T3d = − e2

4M2
N

γ

1 − γ r (3S1)
(2µ0 + 2µ1 − 1) ωρ3

(∫ 1

0
dx

1 − x√
γ 2 + MNωx − iε

+
∫ 1

0
dx

1 − x√
γ 2 − MNωx − iε

)
,

T3e = e2

16M2
N

γ

1 − γ r (3S1)

[
µ0

(
2µ0 − 1

2

)
+ µ1

(
2µ1 − 1

2

)]
ω3

[
−1

2
(2ρ1 + ρ6)

∫ 1

0
dx

(1 − x)2

(γ 2 − MNωx − iε)3/2
+ (2ρ1 − ρ6)

×
∫ 1

0
dx

3
2 − 2x + 1

2x2

(γ 2 + MNωx − iε)3/2
+ (ρ2 + ρ4)

∫ 1

0
dx

1 − x2

(γ 2 − MNωx − iε)3/2
+ (ρ2 − ρ4)

∫ 1

0
dx

(1 − x)2

(γ 2 + MNωx − iε)3/2

]
,

T3f = − e2

4M2
N

γ

1 − γ r (3S1)
(µ0 − µ1) ω(−2ρ3 + ρ6)

(∫ 1

0
dx

x√
γ 2 + MNωx − iε

−
∫ 1

0
dx

1 − x√
γ 2 − MNωx − iε

)
,

T3g = − e2

2M2
N

γ

1 − γ r (3S1)

(
µ2

0 − µ2
1

)
ω

(
1

3
ρ2 − ρ8

) (∫ 1

0
dx

1√
γ 2 + MNωx − iε

−
∫ 1

0
dx

1√
γ 2 − MNωx − iε

)
,

T3h = e2

M3
N

γ

1 − γ r (3S1)
(µ0 − µ1)ρ3

(∫ 1

0
dx

√
γ 2 + MNωx − iε −

∫ 1

0
dx

√
γ 2 − MNωx − iε

)
.

(B3)

The diagrams with the intermediate triplet or singlet state are shown in Fig. 4. The result from each diagram along
with photon crossing and the diagram with interchange of two photon coupling vertices, if different, is

T4a = e2

8MN

γ

1 − γ r (3S1)
ω2(zρ1 − ρ2)

(∫ 1

0
dx

1√
γ 2 + MNωx − iε

− r (3S1)

)2
1

− 1
a(3S1)

− 1
2 r (3S1)(γ 2 + MNω) +

√
γ 2 + MNω − iε

,

T4b = e2

4MN

γ

1 − γ r (3S1)
µ0ω

2(−2ρ3 + ρ6)

(∫ 1

0
dx

1√
γ 2 + MNωx − iε

− r (3S1)

) (∫ 1

0
dx

1√
γ 2 + MNωx − iε

− r (3S1) + L2

µ0

)

× 1

− 1
a(3S1)

− 1
2 r (3S1)(γ 2 + MNω) +

√
γ 2 + MNω − iε

,

T4c = − e2

4MN

γ

1 − γ r (3S1)
µ2

0ω
2


(

−4

3
ρ2 + ρ4 + ρ8

) (∫ 1

0
dx

1√
γ 2 + MNωx − iε

− r (3S1) + L2

µ0

)2

× 1

− 1
a(3S1)

− 1
2 r (3S1)(γ 2 + MNω) +

√
γ 2 + MNω − iε

+
(
−4

3
ρ2 − ρ4 + ρ8

)(∫ 1

0
dx

1√
γ 2 − MNωx − iε

− r (3S1) + L2

µ0

)2

× 1

− 1
a(3S1)

− 1
2 r (3S1)(γ 2 − MNω) +

√
γ 2 − MNω − iε


 + e2

4MN

γ

1 − γ r (3S1)
µ2

1ω
2

×

(

2

3
ρ2 + ρ4 + ρ8

) (∫ 1

0
dx

1√
γ 2 − MNωx − iε

+ L1

µ1

)2
1

− 1
a(1S0)

− 1
2 r (1S0)(γ 2 − MNω) +

√
γ 2 − MNω − iε

+
(

2

3
ρ2 − ρ4 + ρ8

) (∫ 1

0
dx

1√
γ 2 + MNωx − iε

+ L1

µ1

)2
1

− 1
a(1S0)

− 1
2 r (1S0)(γ 2 + MNω) +

√
γ 2 + MNω − iε


 .

(B4)
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For some diagrams, we have made approximations in
obtaining the above result. The approximation is made

up to the next-to-next-to-leading order for the relevant
amplitudes.
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