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The neutrino-nucleus cross section and the muon-capture rate are discussed within a simple formalism that
facilitates nuclear structure calculations. The corresponding formulas depend on only four types of nuclear
matrix elements currently used in nuclear β decay. We have also considered nonlocality effects arising from
the velocity-dependent terms in the hadronic current. We show that for both observables in 12C the higher order
relativistic corrections are of the order of ∼5% only and therefore do not play a significant role. As a nuclear
model framework we use the projected quasiparticle random-phase approximation and show that the number
projection plays a crucial role in removing the degeneracy between the proton-neutron two-quasiparticle states
at the level of the mean field. Comparison is done with both the experimental data and the previous shell model
calculations. The possible consequences of the present study on the determination of the νµ → νe neutrino
oscillation probability are briefly addressed.
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I. INTRODUCTION

Semileptonic weak interactions with nuclei include a rich
variety of processes, such as neutrino (antineutrino) scattering,
charged lepton capture, and e± decays, and we have at our
disposal the results of more than a half-century of exceptional
experimental and theoretical work. At present the study of
semileptonic weak interactions mainly focuses on possible
exotic properties of the neutrino associated with its oscillations
and massiveness by means of exclusive and inclusive scattering
processes on nuclei, which are often used as neutrino detectors.
An example is given by the recent experiments performed by
both the LSND [1,2] and the KARMEN [3] Collaborations,
looking for νµ → νe and ν̃µ → ν̃e oscillations with neutrinos
produced by accelerators. When the νe’s come from decay
at rest (DAR) of µ+’s the flux contains neutrinos with a
maximum energy energy of 50 MeV and can be detected
through both exclusive and inclusive νe + 12C → 12N + e−
reactions [4]. For νµ’s coming from the decay in flight (DIF) of
π+’s, the neutrino flux extends over the range (0, 300) MeV,
and the νµ → νe appearance mode is sought experimentally
through the reaction νµ + 12C → 12N + µ−, which also has
been measured [5]. However, we do not have at our disposal
experimental information on the νe reaction in the DIF
energy range, which is necessary for evaluating the oscillation
probabilities. Therefore, it is imperative to develop nuclear
models, capable of reproducing the νe-DAR and νµ-DIF data,
to be used to predict reliable values for the νe + 12C →
12N + e− cross section in the DIF energy range and to calibrate
forthwith the νµ → νe appearance probability. Needless to say,
in addition and for consistence, the implemented model should
also describe properly the well-known 12N → 12C + νe +
e+ β+ decay and the µ− + 12C → νµ + 12B muon-capture
modes.

The weak interaction formalism most frequently employed
in the literature is that of Donnelly and Walecka [6,7], where

the nuclear form factors are classified as Coulomb (M),
longitudinal (L), transverse electric (T el), and transverse
magnetic (T mag), in close analogy with the electromagnetic
transitions. These factors, in turn, depend on seven nuclear
matrix elements, denoted MM

J ,�M
J ,�′M

J ,�M
J ,�′M

J ,�′′M
J ,

and �M
J . However, in studying neutrino-induced reactions

[8,9] it is sometimes preferred to employ the formulation
of Kuramoto et al. [10], mainly because of its simplicity.
The later formalism does not include the velocity-dependent
terms in the hadronic current, and therefore the reaction cross
section depends on only three nuclear form factors, denoted
|〈f |1̃|i〉|2, |〈f |σ̃ |i〉|2, and �. Moreover, the formalism of
Kuramoto et al. [10] does not include the muon-capture rates.
Therefore, to describe simultaneously the neutrino-nucleus
reactions and muon-capture processes it is necessary to resort
to additional theoretical developments, such as those of Luyten
et al. [11] and Auerbach and Klein [12], where one uses the
matrix elements M2

V ,M2
A, and M2

P , which are related to the
former ones in a nontrivial way.

Quite recently, we have carried out a multipole expansion of
the V − A hadronic current, similar to the one used by Barbero
et al. [13] for the neutrinoless double β decay, expressing all
aforementioned observables in terms of the vector (V ) and
axial vector (A) nuclear form factors MV and MM

A , with
M = −1, 0,+1 [14]. Such a classification is closely related to
the V − A structure of the weak current and to the currently
used nuclear β-decay formalisms, where the nuclear moments
are expressed in a way that the forbiddeness of the transitions
is easily recognized. This in no way means that we have
developed a new theoretical framework; the final results can
be found in one form or another in the literature. The main
difference stems from the fact that we use the Racah algebra
from the start, employing the spherical spatial coordinates
instead of the Cartesian ones. Concomitantly, we also express
the lepton trace in spherical coordinates, as done for instance
in the book of Supek [15]. Here we present a few more details
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F. KRMPOTIĆ, A. SAMANA, AND A. MARIANO PHYSICAL REVIEW C 71, 044319 (2005)

than in Ref. [14] on the procedure we have followed and also
consider first-order nonlocal corrections, which give rise to the
additional matrix elements MM

V ′ and MA′ .
In Ref. [14] we have analyzed the inconveniences that

appear in applying RPA-like models to describe the nuclear
structure of the {12B, 12C, 12N} triad. We have established
that the projected quasiparticle random-phase approximation
(PQRPA) was the proper approach to treat both the short-
range pairing and the long-range random-phase approximation
(RPA) correlations. More details are given in the present
work, putting special emphasis on the differences between
the projected and the usual quasiparticle random-phase ap-
proximations. We also compare our PQRPA cross sections
with recent shell model (SM) calculations [16,17] and analyze
the reliability of the calculated energy dependence of the
νe + 12C → 12N + e− cross section in the DIF energy region
to be used in the evaluation of the oscillation probabilities.

The work will be organized as follows. In Sec. II we explain
our multipole decomposition of the weak current and present
the corresponding formulas for the neutrino-nucleus cross
section and muon capture. In Sec. III we briefly overview the
projected BCS (PBCS) and the PQRPA equations. The main
reason for the latter is to emphasize the relationship with the
usual QRPA, which is difficult to find in the existing literature.
Finally, in Sec. IV we show the numerical results from the
PQRPA model and compare them with the most recent SM
calculations.

II. FORMALISM FOR THE WEAK
INTERACTING PROCESSES

The weak Hamiltonian is expressed in the form [6,7,13,18]

HW (r) = G√
2
Jαlαe−ir·k, (2.1)

where G = (3.04545 ± 0.00006) × 10−12 is the Fermi cou-
pling constant (in natural units),

Jα = iγ4

[
gV γα − gM

2M
σαβkβ + gAγαγ5 + i

gP

m�

kαγ5

]
≡ (J, iJ∅) (2.2)

is the hadronic current operator,1 and

lα = −ius�
(p, E�)γα(1 + γ5)usν

(q, Eν) ≡ (l, il∅) (2.3)

is the plane-wave approximation for the matrix element of
the leptonic current in the case of neutrino reactions. Here
α, β = 1, 2, 3, 4, and Walecka’s notation [7] with the Eu-
clidean metric for quadrivectors is employed (i.e., x =
{x, x4 = ix∅}). The only difference is that we substitute his
indices (0, 3) by our indices (∅, 0), which means that we use
the index ∅ for the temporal component and the index 0 for
the third spherical component. The quantity

k = Pi − Pf ≡ {k, ik∅} (2.4)

1To avoid confusion, we will be using roman fonts (M, m) for
masses and math italic fonts (M,m) for azimuthal quantum numbers.

is the momentum transfer, where Pi and Pf are momenta of
the initial and final nucleon (nucleus), M is the nucleon mass,
m� is the mass of the charged lepton, and gV , gA, gM , and gP

are, respectively, the vector, axial-vector, weak-magnetism,
and pseudoscalar effective dimensionless coupling constants.
Their numerical values are

gV = 1, gA = 1.26,
(2.5)

gM = κp − κn = 3.70, gP = gA

2Mm�

k2 + m2
π

.

These estimates for gM and gP come from the conserved vector
current (CVC) hypothesis and from the partially conserved
axial vector current (PCAC) hypothesis, respectively. In the
numerical calculation we will use an effective axial-vector
coupling gA = 1 [19–21].

The finite nuclear size (FNS) effect is incorporated via the
dipole form factor with a cutoff � = 850 MeV, that is, as

g → g

(
�2

�2 + k2

)2

.

To use (2.1) with nonrelativistic nuclear wave functions,
the Foldy-Wouthuysen transformation has to be performed on
the hadronic current (2.2). When the velocity-dependent terms
are included this yields

J∅ = gV + (gA + gP 1)σ · k̂ − gAσ · v,

J = −gAσ − igWσ × k̂ − gV k̂ + gP 2(σ · k̂)k̂ + gV v,

(2.6)

where v ≡ −i∇/M is the velocity operator, acting on the
nuclear wave functions. The following shorthand notation has
been introduced:

gV = gV

κ

2M
, gA = gA

κ

2M
, gW = (gV + gM )

κ

2M
,

gP 1 = gP

κ

2M

k∅
m�

, gP 2 = gP

κ

2M

κ

m�

, (2.7)

where κ ≡ |k|.
In performing the multipole expansion of the nuclear

operator

Oα ≡ (O, iO∅) = Jαe−ik·r, (2.8)

the momentum k is taken to be along the z axis, that is,

e−ik·r =
∑
L

i−L
√

4π (2L + 1)jL(κr)YL0(r̂), (2.9)

and one gets

O∅ =
∑

J

i−J
√

4π (2J + 1)jJ (κr)YJ0(r̂)J∅,

OM =
∑
JL

i−LFJLM

√
4π (2J + 1)jL(κr) [YL(r̂) ⊗ J]JM .

(2.10)

The geometrical factors

FJLM ≡ (−)J+M
√

(2L + 1)

(
L 1 J

0 −M M

)
, (2.11)
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TABLE I. Values of the geometrical factors FJLM .

M L FJLM

0 J + 1 −
√

J+1
2J+1

0 J 0

0 J − 1
√

J

2J+1

1 J + 1 1√
2

√
J

2J+1

1 J − 1√
2

1 J − 1 1√
2

√
J+1
2J+1

−1 J + 1 1√
2

√
J

2J+1

−1 J 1√
2

−1 J − 1 1√
2

√
J+1
2J+1

which will be seldom used in our work, fulfill the sum rule∑
L

FJLMFJLM ′ = δMM ′ , (2.12)

and their explicit values are listed in Table I.
After performing some Racah algebra we find

Oα =
∑

J

√
2J + 1Oα(J ), (2.13)

with

O∅(J ) = i−J
√

4π [gV YJ0(κr) − gAYJ0(κr, σ · v)]

+
√

4π
(
gA + gP 1

) ∑
L=J±1

i−LFJL0SJL0(κr)

(2.14)

and

OM (J ) =
√

4π
∑
L

i−LFJLM

[
−gASJLM (κr) + gV PJLM (κr)

− i(−)J gV FJL0YJM (κr) +
∑

I

(i(−)LgWGJLI

+ gP 2FJL0FJI0)SJIM (κr)
]
, (2.15)

where we have introduced the operators listed in Table II, along
with the coefficients

GJLI = (−)J
√

6(2L + 1)(2I + 1)

{
1 1 1

I L J

}(
I 1 L

0 0 0

)
,

(2.16)

TABLE II. Elemental operators and their parities.

Operator Parity

YJM (κr) = jJ (κr)YJM (r̂) (−)J

SJLM (κr) = jL(κr) [YL(r̂) ⊗ σ ]JM (−)L

PJLM (κr) = jL(κr) [YL(r̂) ⊗ v]JM (−)L+1

YJM (κr, σ · v) = jJ (κr)YJM (r̂)(σ · v) (−)J+1

which obey the sum rule∑
L

FJLMGJLI = −MFJIM. (2.17)

Using (2.12) and (2.17) we can rewrite the spherical
components of OM (J ) as

OM (J ) =
√

4π
∑
L

i−LFJLM [(−gA + MgW + gP 2δM0)

× SJLM (κr) + gV PJLM (κr)]

−
√

4πi−J gV δM0YJ0(κr). (2.18)

For the neutrino-nucleus reaction the momentum transfer
is k = p� − qν , with p� ≡ {p�, iE�} and qν ≡ {qν, iEν}, and
the corresponding cross section reads

σ (E�, Jf ) = |p�|E�

2π
F (Z + 1, E�)

∫ 1

−1
d(cos θ )Tσ (κ, Jf ),

(2.19)

where F (Z + 1, E�) is the Fermi function, θ ≡ q̂ν · p̂�, and

Tσ (κ, Jf ) ≡ 1

2Ji + 1

∑
s�,sν

∑
Mi,Mf

|〈Jf Mf |HW |JiMi〉|2, (2.20)

with |JiMi〉 and |Jf Mf 〉 being the nuclear initial and final
state vectors.

The weak Hamiltonian matrix element reads

〈Jf Mf |HW |JiMi〉 = G√
2
Oαlα, (2.21)

where

Oα ≡ 〈Jf Mf |Oα|JiMi〉, (2.22)

and lα is the leptonic current defined in (2.3). Thus

Tσ (κ, Jf ) = G2

2Ji + 1

∑
MiMf

OαO∗
βLαβ, (2.23)

where the lepton traceLαβ , when expressed in Cartesian spatial
coordinates, reads

Lαβ = 1

2

∑
s�sν

lαl∗β = − 1

E�Eν

[pαqβ + qαpβ

− δαβ (p · q) ± εαβγ δqγ pδ], (2.24)

with the positive (negative) sign standing for neutrino (an-
tineutrino) scattering.

It is convenient to follow Ref. [15] and express the spatial
parts of O and L in spherical coordinates (M,M ′ = 0,−1, 1).
In this way one might write

Tσ (κ, Jf ) = G2

2Ji + 1

∑
Mf Mi

[
|O∅|2 L∅∅ +

∑
MM ′

OMO∗
M ′LMM ′

− 2�
(
O∗

∅
∑
M

(−)MO−ML∅M

)]
, (2.25)

with [15]

L∅∅ ≡ L44 = 1 + p · q
E�Eν

, (2.26)
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L∅M ≡ −iL4M = 1

E�Eν

[E�qM + EνpM ∓ i(q × p)M ] ,

(2.27)

LMM ′ = δMM ′ + 1

E�Eν

(q∗
MpM ′ + qM ′p∗

M − δMM ′p · q)

±
√

6(−)M
(

1 1 1

−M M ′ M − M ′

)(
q∗

M−M ′

Eν

− p∗
M−M ′

E�

)
.

(2.28)

From the Wigner-Eckart theorem we also get

O∅ =
∑

J

(−)Jf −Mf
√

2J + 1

(
Jf J Ji

−Mf 0 Mi

)
〈Jf ‖O∅(J )‖Ji〉

(2.29)

and

OM =
∑

J

(−)Jf −Mf
√

2J + 1

(
Jf J Ji

−Mf M Mi

)

×〈Jf ‖OM (J )‖Ji〉. (2.30)

Using the orthogonality condition

∑
MiMf

(
Jf J Ji

−Mf M Mi

)(
Jf J ′ Ji

−Mf M ′ Mi

)
= 1

(2J + 1)
δJJ ′δMM ′

(2.31)

one obtains

Tσ (κ, Jf ) = G2

2Ji + 1

∑
J

[
|〈Jf ‖O∅(J )‖Ji〉|2L∅∅

+
∑
M

|〈Jf ‖OM (J )‖Ji〉|2LMM

− 2�(〈Jf ‖O∅(J )‖Ji〉∗〈Jf ‖O0(J )‖Ji〉L∅0)

]
,

(2.32)

where, from (2.14) and (2.18),

〈Jf ‖O∅(J )‖Ji〉 =
√

2Ji + 1[gVMV (J ) − gAMA′(J )

+ (gA + gP 1)M0
A(J )]

〈Jf ‖OM (J )‖Ji〉 =
√

2Ji + 1
[
(−gA + MgW + gP 2δM0)

×MM
A (J ) + gVMM

V ′(J )

− gV δM0MV (J )
]
, (2.33)

with the nuclear matrix elements defined as

MV (J ) = i−J

√
4π

2Ji + 1
〈Jf ‖YJ (κr)‖Ji〉,

MM
A (J ) =

√
4π

2Ji + 1

∑
L

i−LFJLM〈Jf ‖SJL(κr)‖Ji〉,
(2.34)

MA′(J ) = i−J

√
4π

2Ji + 1
〈Jf ‖YJ (κr, σ · v)‖Ji〉,

MM
V ′(J ) =

√
4π

2Ji + 1

∑
L

i−LFJLM〈Jf ‖PJL(κr)‖Ji〉.

The explicit expressions for L∅M and LMM ′ that appear in
(2.32) are [14]

L∅0 =
(

q0

Eν

+ p0

E�

)
,

L00 = 1 + 2q0p0 − p · q
E�Eν

,

L±1,±1 = 1 − q0p0

E�Eν

±
(

q0

Eν

− p0

E�

)
, (2.35)

with

q0 = κ̂ · q = Eν(|p| cos θ − Eν)

κ
,

(2.36)

p0 = κ̂ · p = |p|(|p| − Eν cos θ )

κ
.

Finally, the transition amplitude can be cast in the form

Tσ (κ, Jf )

= G2
∑

J

{
L∅∅
[
g2

V |MV (J )|2 + ∣∣(gA + gP 1)M0
A(J )

− gAMA′(J )
∣∣2]+ L00

[�[(gVMV (J ) − 2gVM0
V ′(J ))

× gVM∗
V (J )

]+ (g2
P 2 − 2gAgP 2

)∣∣M0
A(J )

∣∣2]
+

∑
M=0,±1

LMM

∣∣(gA − MgW )MM
A (J ) − gVMM

V ′(J )
∣∣2

+ 2L∅0�
(
gV

[
gVMV (J ) − gVM0

V ′(J )
]
M∗

V (J )

+ (gA − gP 2)
[
(gA + gP 1)M0

A(J )

− gAMA′(J )
]
M0∗

A (J )
)}

. (2.37)

The muon-capture transition amplitude T�(Jf ) can be
derived from the result (2.32) for the neutrino-nucleus reaction
amplitude, by keeping in mind that (i) the roles of p and q
are interchanged within the matrix element of the leptonic
current, which brings in a minus sign in the last term of
L±1,=1, (ii) the momentum transfer turns out to be k = q − p,
and therefore the signs of the right-hand sides of (2.36) have
to be changed, and (iii) the threshold values (p → 0 : k →
q, k∅ → Eν − m�) must be used for the lepton traces. All this
yields

L∅∅ = L00 = L∅0 = 1,L±1,±1 = 1 ∓ 1. (2.38)

One should also remember that instead of summing over the
initial lepton spins s�, as done in (2.20), one now has to average
over the same quantum number, getting

�(Jf ) = E2
ν

2π
|φ1S |2T�(Jf ), (2.39)

where φ1S is the muonic bound state wave function evaluated
at the origin, and Eν = mµ − (Mn − Mp) − E

µ

B − Ef + Ei ,
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where E
µ

B is the binding energy of the muon in the 1S orbit.
In view of (2.39) the transition amplitude reads

T�(Jf ) = G2

2Ji + 1

∑
J

[|〈Jf ‖O∅(J ) − O0(J )‖Ji〉|2

+ 2|〈Jf ‖O−1(J )‖Ji〉|2], (2.40)

which, based on parity considerations, can be expressed as

T�(Jf ) = G2
∑

J

{∣∣(gV + gV )MV (J ) − gVM0
V ′(J )

∣∣2
+ ∣∣(gA + gA − gP )M0

A(J ) − gAMA′(J )
∣∣2

+ 2
∣∣(gA + gW )M−1

A (J ) − gVM−1
V ′ (J )

∣∣2} ,

(2.41)

where gP = gP 2 − gP 1. In the case of muon capture, it is
convenient to rewrite the effective coupling constants as [11]

gV = gV

Eν

2M
, gA = gA

Eν

2M
,

(2.42)

gW = (gV + gM )
Eν

2M
, gP 1 = gP

Eν

2M
.

Lastly, we mention that the B-values for the Gamow-Teller
(GT) β transitions, are defined and related to the f t-values
as [22]

|gA〈Jf ‖σ‖Ji〉|2
2Ji + 1

≡ B(GT) = 6146

f t
sec. (2.43)

Let us now compare our matrix elements with those
currently used in the literature. First, in Walecka’s notation
(see Eqs. (45.13) in Ref. [7]) one has

O∅(J ) = MJ0,

OM (J ) =
{ LJ0, for M = 0,

− 1√
2

[
MT mag

JM + T el
JM

]
, for M = ±1,

(2.44)

where the meaning of MJ0 and LJ0 is self-evident, and

T el
JM = gW SJJM − iJ

√
2
∑

L=J±1

i−LFJLM

× [gASJLM − gV PJLM ],
(2.45)

T mag
JM = −gASJJM + gV PJJM + iJ

√
2gW

×
∑

L=J±1

i−LFJLMSJLM.

The matrix elements defined by Donelly [6] are related to
ours as

MM
J (κr) = YJM (κr),

�M
J (κr) =

(
iM

κ

)
PJJM (κr),

�′M
J (κr) = iJ

√
2

(
M

κ

) ∑
L=J±1

i−LFJLMPLJM (κr),

�M
J (κr) = SJJM (κr), (2.46)

�′M
J (κr) = iJ−1

√
2
∑

L=J±1

i−LFJLMSJLM (κr),

�′′M
J (κr) = iJ−1

∑
L=J±1

i−LFJL0SJLM (κr),

�M
J (κr) =

(
iM

κ

)
YJM (κr, σ · v).

The relationship between our formalism and those from
Refs. [10,11] can be obtained from the formula(

L 1 J

0 M −M

)(
L′ 1 J

0 M −M

)

= δLL′

3(2L + 1)
− M

√
3

2

(
L L′ 1
0 0 0

){
L 1 J

1 L′ 1

}

+ (−)J+1

√
5

6
(3M2 − 2)

(
L L′ 2
0 0 0

){
L 1 J

1 L′ 2

}
.

(2.47)

For the matrix elements of Kuramoto et al. [10] we get

|〈f |1̃|i〉|2 =
∑

J

|MV (J )|2 ,

〈f |σ̃ |i〉|2 =
∑

J

∑
M=0,±1

∣∣MM
A (J )

∣∣2,
� = 1

3

∑
J

(∣∣M0
A(J )

∣∣2 − ∣∣M1
A(J )

∣∣2); (2.48)

and for those of Luyten et al. [11] we get

M2
V =

(
Eν

mµ

)2∑
J

|MV (J )|2 ,

M2
A =

(
Eν

mµ

)2∑
J

∑
M=0,±1

∣∣MM
A (J )

∣∣2, (2.49)

M2
P =

(
Eν

mµ

)2∑
J

∣∣M0
A(J )

∣∣2.
III. PQRPA FORMALISM

We have shown in Ref. [14] that to account for the weak
decay observables in a light N = Z nucleus in the framework
of the RPA, besides including the BCS correlations, it is
imperative to perform the particle number projection. It should
be remembered that in heavy nuclei the neutron excess is
usually large, which makes the projection procedure less
important than in light nuclei [23]. In this section we give
a more detailed overview of the PBCS and approximation
PQRPA.

When the excited states |Jf 〉 in the final (Z ± 1, N ∓ 1)
nuclei are described within the PQRPA, the transition ampli-
tudes for the multipole charge-exchange operators YJ , etc.
listed in Table II read

〈Jf , Z + µ,N − µ‖YJ ‖0+〉
= 1

(IZIN )1/2

∑
pn

[
�µ(pnJ )

(IZ−1+µ(p)IN−1+µ(n))1/2
X∗

µ(pnJf )

+ �−µ(pnJ )

(IZ−1−µ(p)IN−1−µ(n))1/2
Y ∗

µ(pnJf )

]
, (3.1)
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with the one-body matrix elements given by

�µ(pnJ ) = −〈p‖YJ ‖n〉√
2J + 1

{
upvn, for µ = +1,

unvp, for µ = −1,
(3.2)

where

IK (k1k2 · ·kn) = 1

2πi

∮
dz

zK+1
σk1 · · · σkn

∏
k

(
u2

k + z2v2
k

)jk+1/2
,

σ−1
k = u2

k + z2
kv

2
k , (3.3)

are the PBCS number projection integrals.
The PBCS gap equations are

2ēkukvk − �k

(
u2

k − v2
k

) = 0, (3.4)

where

�k = −1

2

∑
k′

(2jk′ + 1)1/2

(2jk + 1)1/2
uk′vk′G(kkk′k′; 0)

IZ−2(kk′)
IZ

(3.5)

are the pairing gaps, and

ēk = ek

IZ−2(k)

IZ
+
∑
k′

(2jk′ + 1)1/2

(2jk + 1)1/2
v2

k′

× F(kkk′k′; 0)
IZ−4(kk′)

IZ
+ �ek (3.6)

are the dressed single-particle energies. The PBCS correction
term �ek can be found in Ref. [23], and F and G stand for
the usual particle-hole (ph) and particle-particle (pp) matrix
elements, respectively.

The forward, Xµ, and backward, Yµ, PQRPA amplitudes
are obtained by solving the RPA equations(

Aµ B

−B∗ −A∗
−µ

)(
Xµ

Yµ

)
= ωµ

(
Xµ

Yµ

)
, (3.7)

with the PQRPA matrices defined as

Aµ(pn, p′n′; J )

= (εZ−1+µ
p + εN−1−µ

n

)
δpn,p′n′ + Nµ(pn)−1/2Nµ(p′n′)−1/2

× {[upvnup′vn′IZ−1+µ(pp′)IN−3−µ(nn′)

+ vpunvp′un′IZ−3+µ(pp′)IN−1−µ(nn′)]F(pn, p′n′; J )

+ [upunup′un′IZ−1+µ(pp′)IN−1−µ(nn′)

+ vpvnvp′vn′IZ−3+µ(pp′)IN−3−µ(nn′)]G(pn, p′n′; J )
}
,

B(pn, p′n′; J )

= Nµ(pn)−1/2N−µ(p′n′)−1/2IZ−2(pp′)IN−2(nn′)
× [(vpunup′vn′ + upvnvp′un′ )F(pn, p′n′; J )

+ (upunvp′vn′ + vpvnup′un′ )G(pn, p′n′; J )], (3.8)

where

Nµ(pn) = IZ−1+µ(p)IN−1−µ(n) (3.9)

are the norms,

εK
k = RK

0 (k) + RK
11(kk)

IK (k)
− RK

0

IK
(3.10)

are the projected quasiparticle energies, and the quantities RK

are defined as [23]

RK
0 (k) =

∑
k1

(
2jk1 + 1

)
v2

k1
ek1I

K−2(kk1)

+ 1

4

∑
k1k2

(
2jk1 + 1

)1/2(
2jk2 + 1

)1/2

× [v2
k1

v2
k2

F(k1k1k2k2; 0)IK−4(k1k2k)

+uk1vk1uk2vk2 G(k1k1k2k2; 0)IK−2(k1k2k)
]
,

RK
11(kk) = ek

[
u2

kI
k1 (kk) − v2

k I
K−2(kk)

]+
∑
k1

(
2jk1 + 1

)1/2

(2jk + 1)1/2

×{v2
k1

F(k1k1kk; 0)
[
u2

kI
K−2(k1kk)−v2

k I
K−4(k1kk)

]
−uk1vk1ukvkG(k1k1kk; 0)IK−2(k1kk)

}
. (3.11)

It is worth noting that the PQRPA formalism is valid not
only for the particle-hole charge-exchange excitations (Z ±
1, N ∓ 1) but also for the charge-exchange pairing vibrations
(Z ± 1, N ± 1). In the later case one simply has to make the
replacement µ → −µ in the neutron sector.

The usual gap equations are obtained from Eqs. (3.4)–(3.6)
by doing the following:

1. Make the replacement ek → ek − λk , with λk being the
chemical potential, and taking the limit IK → 1. That is,
Eq. (3.4) remains as it is, but instead of (3.5) and (3.6) one
now has

�k = −1

2

∑
k′

(2jk′ + 1)1/2

(2jk + 1)1/2
uk′vk′G(kkk′k′; 0) (3.12)

and

ēk = ek − λk +
∑
k′

(2jk′ + 1)1/2

(2jk + 1)1/2
v2

k′F(kkk′k′; 0).

(3.13)
2. Impose the subsidiary conditions

Z =
∑
jp

(2jp + 1)2v2
jp

, N =
∑
jn

(2jn + 1)2v2
jn

, (3.14)

as the number of particles is no longer a good quantum
number.

Finally, the plain QRPA equations are recovered from (3.7)
and (3.8) by (i) dropping the index µ and taking the limit
IK → 1 and (ii) substituting the unperturbed PBCS energies
by the BCS energies relative to the Fermi level, that is, by

E
(±)
k = ±Ek + λk, (3.15)

where Ek = (ē2
k + �2

k)1/2 are the usual BCS quasiparticle
energies. In this way the unperturbed energies in (3.8) are
replaced as2

ε
Z−1+µ

jp
+ ε

N−1−µ

jn
→ Ejp

+ Ejn
+ µ(λp − λn). (3.16)

2We note that there are misprints in [14, (23)].

044319-6



NEUTRINO-NUCLEUS REACTIONS AND MUON CAPTURE . . . PHYSICAL REVIEW C 71, 044319 (2005)

TABLE III. BCS and PBCS results for neutrons. Eexp
j stands for the experimental energies used in the fitting procedure,

and ej are the resulting single-particle energies. The underlined quasiparticle energies correspond to single-hole excitations
(for jh = 1s1/2, 1p3/2) and to single-particle excitations (for jp = 1p1/2, 1d5/2, 2s1/2, 1d3/2, 1f7/2, 2p3/2, 2p1/2, 1f5/2). The
nonunderlined energies are mostly two-hole/one-particle and two-particle/one-hole excitations. The fitted values of the
pairing strengths vpair

s in units of MeV fm3 are also displayed.

Shell E
exp
j BCS PBCS

E
(+)
j E

(−)
j ej εN

j −εN−2
j ej

1s1/2 11.34 −35.13 −23.58 19.93 −34.99 −22.37
1p3/2 −18.72 −5.07 −18.72 −7.80 −1.28 −18.73 −7.24
1p1/2 −4.94 −4.94 −18.85 −2.07 −4.95 −22.33 −1.51
1d5/2 −1.09 −1.09 −22.70 2.12 −1.09 −26.82 2.16
2s1/2 −1.85 −1.86 −21.93 2.70 −1.85 −25.98 2.68
1d3/2 2.72 2.72 −26.51 6.24 2.73 −30.79 6.26
1f7/2 5.81 5.82 −29.61 8.14 5.83 −33.61 8.17
2p3/2 7.17 7.18 −30.98 11.49 7.16 −35.23 11.47
2p1/2 12.89 −36.69 17.30 12.89 −41.01 17.32
1f5/2 16.72 −40.52 19.18 16.72 −44.58 19.21

vpair
s 23.16 23.92

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, our theoretical results within the PQRPA
are confronted with the experimental data for the µ− +12B →
12C + νµ muon-capture rates, as well as for the neutrino cross
sections involving the DAR reaction νe +12 C → 12N + e−
and DIF reaction νµ + 12C → 12N + µ−. We also make our
predictions for the νe + 12C → 12N + e− differential cross
section for νe energies in the DIF energy range. At variance
with our previous work, we consider here also the velocity-
dependent matrix elements MA′(J ) and MM

V ′(J ), defined in
(2.34).

The calculations shown here were done in the same way as
in the previous work [14]. That is, for the residual interaction
we adopted the delta force,

V = −4π (vsPs + vtPt ) δ(r), (4.1)

which has been used extensively in the literature [24–26]
for describing single and double β decays. The configu-
ration space includes the single-particle orbitals with nl =
(1s, 1p, 1d, 2s, 1f, 2p) for both protons and neutrons.

Most of the bare single-particle energies ej , as well as
the value of the singlet strength within the pairing channel
(vpair

s ), were fixed from the experimental energies E
exp
j of

the odd-mass nuclei 11C,11 B,13 C, and 13N. That is, in the
BCS case, (1) we assume that the ground states in 11C and
11B are pure quasi-hole excitations E

(−)
jh

, with jh = 1p3/2,
and that the lowest observed 1/2−, 5/2+, 1/2+, 3/2+, 7/2−,
and 3/2− states in 13C and 13N are pure quasiparticle exci-
tations E

(+)
jp

with jp = 1p1/2, 1d5/2, 2s1/2, 1d3/2, 1f7/2, 2p3/2,
and (2) the single-particle energies of these seven states and
the pairing strength, which appear in the BCS gap equation
(3.4), (3.12)–(3.14), are then varied in a χ2 search to account
for the experimental spectra E

exp
j [27]. In the PBCS case

we proceed in the same way, that is, we solve Eqs. (3.4)–
(3.6), and, instead of fitting E

(+)
jp

and E
(−)
jh

to E
exp
j , we fit

now ε
Z,N
jp

and −ε
Z−2,N−2
jh

. We have considered the faraway
orbitals 1s1/2, 2p1/2, and 1f5/2 as well, assuming the first
one to be a pure hole state and the other two pure particle
states. Their single-particle energies were taken to be that of a
harmonic oscillator (HO) with standard parametrization [28].
The single-particle wave functions were also approximated
with that of the HO with the length parameter b = 1.67
fm, which corresponds to the estimate h̄ω = 45A−1/3 −
25A−2/3 MeV for the oscillator energy. The final results for
neutrons are shown in Table III and those for protons in
Table IV. It is worth noting that the PBCS neutron energy
εN

1p3/2
= −1.28 MeV nicely agrees with the experimental

energy E3/2−
1

= −1.26 MeV in 13C. In the same way the PBCS
proton energy εZ

1p3/2
= 1.46 MeV agrees with the measured

energy E3/2−
1

= 1.55 MeV in 13N [27]. This does not happen

in the BCS case, where E
(+)
1p3/2

= −5.07 MeV for neutrons and

E
(+)
1p3/2

= −2.44 MeV for protons, which clearly shows the
necessity for the number projection procedure. At this point
it could be useful to remember that, although in 11C and 11B
the state 3/2−

1 is dominantly a hole state, in 13C and 13N it is
basically a two-particle one-hole state.

Before proceeding let us remember an important issue in
the description of the N ∼= Z nuclei within the QRPA, which
is more inherent to the model itself than to the occasional
parametrization that might be employed. In fact, a few years
ago Volpe et al. [9] called attention to the inconvenience of
applying QRPA to 12N, since the lowest state turned out not
to be the most collective one. Later on we showed [14] that
the origin of this difficulty was the degeneracy among the four
lowest proton-neutron two-quasiparticle states, |1p1/21p3/2〉,
|1p3/21p3/2〉, |1p1/21p1/2〉, and |1p3/21p1/2〉. It also has been
shown in Ref. [14] that it is imperative to use the PQRPA
for a physically sound description of the weak processes
among the ground states of the triad {12B, 12C, 12N}. In fact,
when the Fermi level is fixed at N = Z = 6, their BCS
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TABLE IV. Same as Table III but for protons.

Shell E
exp
j BCS PBCS

E
(+)
j E

(−)
j ej εZ

j −εZ−2
j ej

1s1/2 14.94 −33.13 −21.62 19.44 −32.99 −20.41
1p3/2 −15.95 −2.24 −15.96 −4.95 1.46 −15.95 −4.40
1p1/2 −1.94 −1.95 −16.25 1.01 −1.95 −19.76 1.56
1d5/2 1.61 1.61 −19.80 4.76 1.61 −23.90 4.83
2s1/2 0.42 0.42 −18.61 4.88 0.42 −22.59 4.88
1d3/2 4.95 4.95 −23.14 8.40 4.95 −27.37 8.43
1f7/2 8.42 8.42 −26.61 10.72 8.42 −30.58 10.75
2p3/2 9.76 9.77 −27.96 14.05 9.77 −32.22 14.07
2p1/2 16.23 −34.43 20.63 16.22 −38.73 20.66
1f5/2 19.70 −37.90 22.15 19.71 −41.96 22.20

vpair
s

23.13 23.92

energies,

Ejpjn
=




E
(+)
jp

− E
(−)
jn

= Ejp
+ Ejn

+ λp − λn for 12N,

−E
(−)
jp

+ E
(+)
jn

= Ejp
+ Ejn

− λp + λn for 12B,

E
(+)
jp

+ E
(+)
jn

= Ejp
+ Ejn

+ λp + λn for 14N,

−E
(−)
jp

− E
(−)
jn

= Ejp
+ Ejn

− λp − λn for 10B,

(4.2)

are almost degenerate for all four odd-odd (Z ± 1, N ∓ 1)
and (Z ± 1, N ± 1) nuclei. As illustrated in Fig. 1, this, in
turn, comes from the fact that for N = Z = 6 the quasiparticle
energies E1p1/2 and E1p3/2 are very close to each other. The
upper panel of Fig. 2 shows the BCS energies (4.2), as a
function of N, of these four states for nitrogen isotopes. One
notices that for N �= Z the degeneracy is removed yet only
partially. However, as seen from the lower panel in Fig. 2, the
degeneracy discussed here is totally removed when the number
projection is done.

Moreover, within the PBCS in the case of 12N, for instance,
we get from numerical calculations

E1p3/21p3/2
∼= E1p1/21p1/2

∼= E1p1/21p3/2 + �,

E1p3/21p1/2
∼= E1p1/21p3/2 + 2�, (4.3)

with � = 3.4 MeV. The meaning of this results can be easily
disentangled by referring to the SM and analyzing the particle-
hole (ph) limits of the proton-neutron two-quasiparticle states,
which are pictorially shown in Fig. 3. One sees that, whereas
|1p1/21p3/2〉 corresponds to a 1p1h state in 12N, |1p3/21p3/2〉
and |1p1/21p1/2〉 correspond to 2p2h states, and |1p3/21p1/2〉
to a 3p3h state in the same nucleus. Therefore one can expect
that the energy ordering of these states would be given by (4.3),
with � = �ls − �pair being the energy difference between the
spin-orbit splitting, �ls, and the pairing energy, �pair. A similar
discussion is pertinent to the remaining three nuclei 10B, 14N,
and 12B. That is, one expects that their lowest states would be,
respectively, |1p3/21p3/2〉, |1p1/21p1/2〉, and |1p3/21p1/2〉, as
happens in the PBCS case but not within the BCS. Finally, it is
worthwhile to indicate that the same pn quasiparticle excitation

has quite different ph compositions in different nuclei. This can
be observed by scrutinizing the four columns in Fig. 3.

The improvement introduced by the PBCS can also be
visualized by making a direct calculation of the unperturbed

0

10

20

30

-30 -20 -10 0 10 30
0

10

20

30

1p           1p   

N = 6

N = 8

3/2              1/2   

3/2              1/2   1p           1p   

E
jn

(M
eV

)

ej(MeV)

20

FIG. 1. Neutron quasiparticle excitation energies for N = 6 and
N = 8. The states are ordered as 1s1/2, 1p3/2, 1p1/2, 2s1/2, 1d3/2,
1f7/2, 2p3/2, 2p1/2, and 1f7/2, and the energies are indicated by
circles.
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)
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FIG. 2. Unperturbed two-quasiparticle energies Ejpjn
for ni-

trogen isotopes, as a function of N, of the states |1p1/21p3/2〉,
|1p3/21p3/2〉, |1p1/21p1/2〉, and |1p3/21p1/2〉. (Upper panel) BCS
results. (Lower panel) PBCS results.

GT strength in 12N, given by

SGT(E) ≡ 1

π

∑
pn

|gA〈p‖σ‖n〉|2 η

η2 + (E − Ejpjn

)2 . (4.4)

The BCS and PBCS results for 12N, when folded with
η = 1 MeV, are compared in Fig. 4. The PBCS energy
ordering, given by (4.3), is accompanied by the partial shifting
of the GT strength to higher energies. Therefore it can be said
that within the PBCS the GT resonance is quenched even at
the level of the mean field.

In view of these disadvantages of the standard BCS
approach, from now on we will mainly discuss the number
projection results. In our previous work [14] we have also
pointed out that the values of the coupling strengths vs and
vt within the pp and ph channels used in N > Z nuclei
(vpp

s ≡ v
pair
s and v

pp
t >∼ v

pp
s ) might not be suitable for N = Z

nuclei. In fact, the best agreement with data in 12C was
obtained when the pp channel is totally switched off (i.e.,
v

pp
s ≡ v

pp
t = 0) and using three different sets of values for the

ph coupling strengths [14], as follows:
Parametrization I (PI): v

ph
s = v

pair
s = 24 MeV fm3 and

v
ph
t = v

ph
s /0.6 = 39.86 MeV fm3. This means that the singlet

ph strength is the same as v
pair
s obtained from the proton and
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FIG. 3. Schematic representation of the particle-hole limits for
the seniority two-pn states. The zero-angular-momentum couplings
of two particles or two holes are indicated by a horizontal bracket.
EF represents the Fermi energy. The unperturbed energies Ejpjn

are
given in MeV, with the PBCS results given in brackets.

neutron gap equations, whereas the triplet ph depth is estimated
from the relation used by Goswami and Pal [29] in the RPA
calculation of 12C.

Parametrization II (PII): v
ph
s = 27 MeV fm3 and v

ph
t =

64 MeV fm3. These values were first used in Refs. [20,30]
and later on in the QRPA calculations of 48Ca [13,24,31].

Parametrization III (PIII): v
ph
s = v

ph
t = 45 MeV fm3. With

these coupling constants it is possible to reproduce fairly well
the energies of the Jπ = 0+

1 and 1+
1 states in 12B and 12N.

The results displayed in Fig. 5 suggest that the choice
v

pp
t = 0 for the pp parameter in the S = 0, T = 1 channel

could be appropriate for the description of the N = Z nuclei.
They are shown as functions of the parameter

t = 2v
pp
t

v
pair
s (p) + v

pair
s (n)

,

together with the experimental data for (1) the energy dif-
ference ω1+ between the 1+ ground state in 12N and the 0+
ground state in 12C, (2) the B value for the GT β transition
between these two states, and (3) the corresponding exclusive
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FIG. 4. BCS (upper panel) and the PBCS (lower panel) GT
strength functions in 12N.

muon-capture rate �(1+
1 ) ≡ �exc. The values of v

ph
s and v

ph
t

are those from the PII, but quite similar results are obtained
with the other two sets of parameters. Note that the ph
interaction first shifts the energy ω1+ upward by ∼1.5 MeV,
from its unperturbed value E1p3/21p3/2 = 16.8 MeV. Then, when
t is increased, we have an opposite attractive effect. That
is, the pp interaction diminishes ω1+ up to t >∼ 0.6, where
the well-known collapse of the QRPA approximation occurs.
At variance with what happens in the case of heavy nuclei,
here the values of B(GT ) and �(1+

1 ) basically rise with t,
and agreement with the data is achieved only when the pp
interaction is totally switched off. Quite generally, the nuclear
moments (2.34) also depend weakly on the S = 1, T = 0
channel parameter v

pp
s , for which we adopt as well the null

value, just to be consistent with our election of v
pp
t .

Results for the muon-capture rates and the neutrino (νe, e
−)

DAR and (νµ, µ−) DIF reaction flux-averaged cross sections
are shown, respectively, in Tables V, Tables VI and Tables VII.

The flux-averaged cross section is defined as

σ �(Jf ) =
∫

�Jf

dEνσ�(Eν, Jf )��(Eν), � = e, µ, (4.5)

where ��(Eν) is the normalized neutrino flux. For electron
neutrinos this flux was approximated by the Michel spectrum,
and for the muon neutrinos we used that from Ref. [37]. The
energy integration is carried out in the DAR interval me +
ωJf

� �DAR
Jf

� 52.8 MeV for electrons and in the DIF interval

mµ + ωJf
� �DIF

Jf
� 300 MeV for muons.

15

16

17

18

19

   
   

   
   

   
   

   
   

  (
M

eV
)

PQRPA (II)
Exp.

0.4

0.6

0.8

1.0

   
   

   
   

   
   

   
B

(G
T

)
Λ

(1
+ 1) (

10
3 

s−1
)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
t

6

8

10

12

14

N
12

ω 1+

FIG. 5. The results of the PQRPA calculations, as functions of
the pp parameter t, compared with the experimental data taken from
Refs. [27,32,33] for (1) the energy difference ω1+ between the 1+

ground state in 12N and the 0+ ground state in 12C (upper panel), (2)
the B value for the GT β transition between these two states (middle
panel), and (3) the corresponding muon-capture rate �(1+

1 ) (lower
panel). The values of vph

s and v
ph
t correspond to PII.

The full PQRPA calculations, which include relativistic
corrections, are listed for all three parametrizations (I, II, and
III) whereas, the theoretical results involving just the velocity-
independent operators YJ (κr) and SJL(κr) are displayed only
for the PII case. Contributions of the other two operators,
PJL(κr) and YJ (κr, σ · v), to the muon-capture rates are
small (of the order of 5%) as displayed in Table V. The only
exception is for the 0− states, where the relativistic operator
Y0(κr, σ · v) dominates over the nonrelativistic one S01(κr).
We also see from Tables VI and VII that nonlocality effects
on the neutrino-nucleus reactions are of the order of 1% and
therefore can be neglected.

The numerical results are sorted according to the order of
forbiddeness of the transition moments, which can be allowed
(A): Jπ = 0+, 1+; first forbidden (F1): Jπ = 0−, 1−, 2−;
second forbidden (F2): Jπ = 2+, 3+; third forbidden (F3):
Jπ = 3−, 4−; and so on. The response of the three weak
processes to successive multipoles is strongly correlated with
the average momentum transfer κ involved in each: For
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TABLE V. Experimental and calculated muon-capture rate in units of 103 s−1. The full PQRPA calculations, which include the relativistic
corrections, are listed for all three parametrizations. Theoretical results that involve only the velocity-independent matrix elements are displayed
in parentheses in the third column for the case PII. The rates are grouped by their degrees of forbiddeness. We show (i) the exclusive rates
�(J π ), for J π

f = 1+
1 , 1−

1 , 2−
1 , 2+

1 , (ii) the multipole decomposition of the rates
∑

f �(J π
f ) for each final state with spin and parity J π

f , and (iii)
the inclusive decay rate �inc ≡∑Jπ

f
�(J π

f ). In the fourth column are listed the results of recent SM calculations, which are explained in the

text. The measured capture rates are given in the last column.

Muon-capture PQRPA Shell model Experiment
rate

(I) (II) (III) SM1 [16] SM2 [16] SM3 [17]

Allowed 49.3% 39.3%
�(1+

1 ) 7.52 6.27(6.50) 6.27 11.56 6.3 6.0 6.2 ± 0.3 [33]∑
f �(0+

f ) 3.68 2.86(3.15) 3.77 0.21∑
f �(1+

f ) 20.28 18.14(18.63) 18.22 15.43

First forbidden 46.6% 55.7%
�(1−

1 ) 1.06 0.49(0.51) 0.98 1.86 0.62 ± 0.20 [34,35]
�(2−

1 ) 0.31 0.18(0.18) 0.16 0.22 0.18 ± 0.10 [34,35]∑
f �(0−

f ) 2.62 2.35(0.72) 2.35 2.12∑
f �(1−

f ) 11.84 10.37(9.51) 11.37 12.25∑
f �(2−

f ) 7.78 7.12(6.90) 7.15 7.79

Second forbidden 3.9% 4.6%
�(2+

1 ) 0.19 0.14(0.16) 0.15 0.25 0.21 ± 0.10 [34,35]∑
f �(2+

f ) 1.26 1.09(0.89) 1.17 1.36∑
f �(3+

f ) 0.63 0.57(0.57) 0.58 0.46

�inc 48.16 42.56(40.7) 44.67 39.82 41.9 33.5 38 ± 1 [36]

the (νe, e
−) reaction, κ ∼ 0.2 fm−1; for muon-capture, κ ∼

0.5 fm−1; and for the (νµ, µ−) reaction, κ ∼ 1 fm−1. As a
consequence, in the first case the A moments are by far the
dominant ones, contributing ∼83.0%, with the remaining part
of the reaction strength carried almost entirely (∼16.6%) by

the F1 moments. For muon capture, the A- and F1-matrix
elements contribute, respectively, 49.3% and 46.6%, whereas
the F2 moments carry only 3.9% of the total transition rate,
and the contribution of the F3 moments are negligibly small.
Finally, the inclusive cross section in the (νµ, µ−) reaction

TABLE VI. Experimental and calculated flux-averaged cross section for the 12C(νe, e
−)12N DAR reaction in units of 10−42 cm2. The full

PQRPA calculations, which include the relativistic corrections, are listed for all three parametrizations. Theoretical results that involve only
the velocity-independent matrix elements are displayed in parentheses for the case PII in the third column. The multipole decomposition∑

f σ e(J π
f ) for each final state with spin and parity J π

f , as well as the exclusive, σ exc
e ≡ σ e(J π

f = 1+
1 ), and inclusive, σ inc

e =∑Jπ
f

σ e(J π
f ) cross

sections, are shown. In the fourth column are listed the results of recent SM calculations, which are explained in the text. The measured cross
sections are given in the last column.

(νe, e
−) cross PQRPA Shell model Experiment

section
(I) (II) (III) SM1 [16] SM2 [16] SM3 [17]

Allowed 83.0% 83.6%
σ e(1

+
1 ) 9.94 8.07(8.00) 8.17 20.86 7.9 9.3 8.9 ± 0.3 ± 0.9 [4]∑

f σ e(0
+
f ) 1.92 1.35(1.31) 2.01 0.00∑

f σ e(1
+
f ) 15.98 14.08(14.22) 12.14 22.52

First forbidden 16.6% 16.0%∑
f σ e(0

−
f ) 0.07 0.07(0.05) 0.07 0.04∑

f σ e(1
−
f ) 1.94 1.59(1.43) 1.80 1.90∑

f σ e(2
−
f ) 1.66 1.43(1.41) 1.44 2.36

Second forbidden 0.4% 0.4%∑
f σ e(2

+
f ) 0.07 0.05(0.04) 0.05 0.08∑

f σ e(3
+
f ) 0.03 0.03(0.03) 0.03 0.03

σ inc
e 21.67 18.60 (18.49) 17.54 26.93 12.5 15.1 13.2 ± 0.4 ± 0.6 [4]
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TABLE VII. Same as Table VI but for the averaged exclusive, σ exc
µ ≡ σµ(J π

f = 1+
1 ), and inclusive, σ inc

µ =∑Jπ
f

σµ(J π
f ), cross sections for

the 12C(νµ, µ−)12N DIF reaction in units of 10−40 cm2.

(νe, e
−) cross PQRPA Shell model Experiment

section
(I) (II) (III) SM1 [16] SM2 [16] SM3 [17]

Allowed 20.0% 17.1%
σµ(1+

1 ) 0.74 0.59(0.56) 0.59 1.16 0.56 0.9 0.56 ± 0.08 ± 0.10 [5]∑
f σµ(0+

f ) 0.37 0.26(0.26) 0.39 0.11∑
f σµ(1+

f ) 2.68 2.33(2.40) 2.34 2.95

First forbidden 39.5% 36.4%∑
f σµ(0−

f ) 0.03 0.04(0.07) 0.04 0.07∑
f σµ(1−

f ) 3.34 2.79(2.84) 3.10 3.55∑
f σµ(2−

f ) 2.53 2.28 (2.13) 2.29 2.91

Second forbidden 27.1% 22.2%∑
f σµ(2+

f ) 2.55 2.28(2.11) 2.37 2.59∑
f σµ(3+

f ) 1.34 1.23(1.29) 1.23 1.39

Third forbidden 10.2% 17.7%∑
f σµ(3−

f ) 0.74 0.69(0.73) 0.71 1.77∑
f σµ(4−

f ) 0.68 0.63(0.63) 0.63 1.41

Fourth forbidden 3.1% 6.5%∑
f σµ(4+

f ) 0.22 0.21(0.20) 0.21 0.66∑
f σµ(5+

f ) 0.20 0.19(0.19) 0.19 0.51

σ inc
µ 14.69 12.94(12.86) 13.51 17.92 13.8 19.2 10.6 ± 0.30 ± 1.80 [5]

is spread out rather uniformly over several multipoles and
it is necessary to include up to fourth forbidden moments,
with their intensities distributed as follows: 20.0% (A), 39.5%
(F1), 27.1% (F2), 10.2% (F3), and 3.1% (F4). The exclusive
contributions, coming from the ground state 1+

1 , are quite
different in the three cases owing to the afore mentioned
implication of the momentum transfer. That is, of the total
transition rates for the (νe, e

−) reaction, muon capture, and the
(νµ, µ−) reaction, the exclusive contributions are, respectively,
43%, 15%, and 5%.

Let us say a few words on the comparison of our results
with the experimental data:

� Muon capture (Table V): All exclusive rates �(Jπ ) with
Jπ

f = 1+
1 , 1−

1 , 2−
1 , 2+

1 are fairly well accounted for by the
theory, whereas the inclusive rate, �inc, is overpredicted by
∼10%.

� (νe, e
−) reaction (Table VI): Even though the exclusive cross

section, σ exc
e , is well reproduced within the PQRPA, the

inclusive one, σ inc
e , is ∼40% above the data. A plausible

explanation for this difference could be the fact that we find
a very significant amount of the GT strength (32%) and
the Fermi strength (7%) within the DAR energy interval,
18 MeV <∼ Eν <∼ 50 MeV, where the electron-neutrino flux,
�e(Eνe

), changes very abruptly, making the inclusive cross
section very sensitive to the strength distribution of low-
lying excited states.

� (νµ, µ−) reaction (Table VII): Here also the exclusive cross
section, σ exc

µ , is in full agreement with the data, whereas the
inclusive one, σ inc

µ , is overpredicted by ∼20%.

In the last three tables we also confront our PQRPA results
with the SM calculations performed by: (a) Hayes and Towner
[16], within the model spaces called by them as (iii) and (iv),
and which are labeled here, respectively, as SM1 and SM2, and
(b) Auerbach and Brown [17], which we label as SM3. The
multipole breakdown in the contributions to the cross sections
from each multipole is only given for the SM1 scheme [16]. At
first glance our results seem to agree fairly well with the SM
ones, particularly when the amounts of allowed and forbidden
transition strengths are confronted. However, this is not true,
as can be seen from a more careful analysis of the multipole
structure of the transition rates.

For instance, the total positive parity capture rates with the
1+

1 state excluded [i.e.,
∑

Jf �=1+
1
�(J+

f )] are equal to 5.9 and
3.6 in SM1 and SM3, respectively, whereas we get 16.4 (in
units of 103 s−1). Note also that in SM calculations almost
all the GT strength is exhausted by the ground-state transition,
whereas within the PQRPA only 35% of this strength goes into
the 1+

1 state. Another important discrepancy is in the Fermi
transitions, for which we get

∑
f �(0+

f ) = 2.86, whereas they
obtain only

∑
f �(0+

f ) = 0.21 (in units of 103 s−1).
One sees that our σ exc

e is consistent with the SM2 and
SM3 shell model calculations, whereas our σ inc

e falls in
between the SM1 and SM2 calculations and is ∼20% larger
than the SM3 result. However, as in muon capture, we find
much more σ e(1+) strength in the excited states of the
12N nucleus than appears in SM calculations. Namely, we
obtain

∑
Jf �=1+

1
σ e(J+

f ) = 7.44, whereas in SM1 and SM3 this

quantity is, respectively, 1.77 and 0.40 (in units of 10−42 cm2).
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FIG. 6. (Color online) Calculated cross section σνe
as a function

of the neutrino energy. The dashed region indicates the experimental
energy window.

Moreover, in all three SM calculations more than 90% of the
σ e(1+) strength is concentrated in the 12N ground state whereas
we find only 57%.

In the same way as in the SM calculations, within the
PQRPA the total DIF cross section is mainly built up from
forbidden excitations. Nevertheless, although the PQRPA
results agree with the SM2 calculation, they are quite small
when compared with those provided by the SM1 and SM3
models, for both σ exc

µ and σ inc
µ . The differences in σ inc

µ come
not only from the positive parity contributions but also from
the negative parity ones.

As a corollary of this discussion we would like to stress
that it is not easy to assess whether the PQRPA results are
better or worse than the shell model ones. We can only say
that with the use of just a few essentially phenomenological
parameters the PQRPA is able to account for a large number
of weak processes in 12C. (The experimental energies of
the 3/2−

1 state in 13C and 13N are also predicted within
the PBCS.) That is, the single-particle energies ej , for j =
1p3/2, 1p1/2, 1d5/2, 2s1/2, 1d3/2, 1f7/2, 2p3/2, and the pairing
strength vpair

s
have been fixed from the experimental energies

of the odd-mass nuclei 11C, 11B, 13C and 13N, whereas the
particle-hole coupling strengths v

ph
s and v

ph
t were taken from

the previous QRPA calculations of 48Ca [13,24,31]. Only the
particle-particle couplings v

pp
s and v

pp
t have been treated as

free parameters, and we have used here v
pp
s = v

pp
t = 0. It

would be interesting to inquire whether this rather extreme
parametrization is also appropriate for the description of other
light N = Z nuclei, such as 14N and 16O, which have been
discussed recently within a shell model scheme [17].

Finally, we point out that in the DIF neutrino oscillation
search [1] an excess signal of

N exp
νµ→νe

= 18.1 ± 6.6 ± 4.0

events has been observed in the 12C(νe, e
−)12N reaction, which

are evaluated theoretically by the expression

N th
νµ→νe

=
∫

�osc
dEνσe(Eν)Pνµ→νe

(Eν)�µ(Eν),

σe(Eν) ≡
∑
Jf

σe(Eν, Jf ),

where 77.3 MeV � �osc � 217.3 MeV stands for the experi-
mental energy window. The oscillation probability reads

Pνµ→νe
(Eν) = sin2(2θ ) sin2

(
1.27�m2L

Eν

)
,

where θ is the mixing angle between the neutrino mass
eigenstates, �m2 is the difference in neutrino eigenstate
masses squared, in eV2, and L is the distance in meters
traveled by the neutrino from the source. One sees therefore
that the extraction of the permitted values of θ and �m2 from
experimental data might depend critically on the theoretical
estimate of σe(Eν). So far, the electron cross section obtained
within the continuum random phase approximation (CRPA)
[38] has been used [1]. This σe(Eν) is compared in Fig. 6 with
our QRPA and PQRPA results calculated with PII. As can be
noticed the PQRPA yields a substantially different σe(Eν),
inside the experimental energy window for the neutrino
energy. The consequences of this difference on the confidence
regions for sin2(2θ ) and �m2 will be discussed in a future
paper.

After finishing this work we have learned that quite recently
Nieves et al. [39] were able to describe rather well the inclusive
muon-capture rate in 12C, and the inclusive 12C(νµ, µ−)12N
and 12C(νe, e

−)12N cross sections, within the framework of a
local Fermi gas picture that includes the RPA correlations.
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[24] J. Hirsch and F. Krmpotić, Phys. Rev. C 41, 792 (1990).
[25] J. Hirsch and F. Krmpotić, Phys. Lett. B246, 5 (1990).
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