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Systematics of the α decay to vibrational 2+ states
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We give a systematic analysis of α decays to low-lying 2+ states in even-even nuclei. Collective excitations are
considered within the spherical quasiparticle random-phase approximation. We use realistic G-matrix elements
of the Bonn interaction as a residual two-body force. The only free parameters are the ratio between the isovector
and isoscalar strengths and proton-neutron asymmetry. The formalism can reproduce the main experimental
trends versus the excitation energy for both the B(E2) values and the α-decay hindrance factors. We reproduced
most of the available data by using one common parametrization. It turns out that the fine structure of the α decay
is more sensitive than electromagnetic transitions as a tool for investigating nuclear interaction. With the adopted
parametrization, we predict B(E2) values and α-decay hindrance factors in even-even nuclei.
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I. INTRODUCTION

The importance of the interplay between the Coulomb
barrier and Q value on α decay was one of the most important
discoveries in the early days of nuclear physics [1]. It explained
the exponential dependence of half-lives upon the energy of
the emitted particle (Q value). The proposed physical picture
was very simple though it contradicted the classical intuition,
namely, a preformed α particle inside the nucleus penetrates
quantum mechanically the surrounding Coulomb barrier.

Later on, the preformation probability of the α cluster inside
the nucleus was introduced within the R-matrix theory [2].
This approach takes into account nuclear structure details,
because the cluster is built from two protons and two neutrons
moving in some mean field and interacting with each other
via two-body residual forces [3]. The so-called preformation
amplitude is defined as the overlap of the initial wave function
and the product between the daughter and α-particle wave
functions. For transitions between ground states, it is a
coherent superposition of many single-particle configurations,
including states in continuum. Therefore, the decay width is
not very sensitive to the nuclear mean field parameters. A
systematic analysis of decay widths in even- and odd-mass ac-
tinide nuclei was performed in Ref. [4] by using the pairing ap-
proach for preformation amplitudes and spherical penetration
factors. The most recent calculation, including super-heavy
nuclei, within a similar model was performed in Ref. [5].

The situation changes for transitions to excited states.
It turns out that the decay width is very sensitive to the
structure of the wave function in the daughter nucleus. The
fine structure in spectra of emitted α particles cannot be
explained by only different Q values, due to the excitation
energy of the daughter nucleus. It is known for a long time
that the experimental hindrance factors (HF), extracting the
exponential dependence upon the Coulomb barrier, are not
constant [6]. The first calculations of α decay in rotational
nuclei by using the coupled channels method were performed
in Ref. [7]. Reference [8] estimated HF’s in rotational nuclei
by using the Fröman approach [9] for the barrier penetration
but a simple phenomenological ansatz for the preformation

factor. The first attempts to calculate HF’s in vibrational nuclei
within the quasiparticle random-phase approximation (QRPA)
were performed in Refs. [10–12]. Later, Ref. [13] gave an
explanation for the connection between the HF of the first
excited 0+ state and the neutron number for Pb isotopes. The
calculation was performed in terms of proton-neutron pairing
vibrations within the spherical RPA formalism using two major
shells above the Fermi surface.

Only relatively recent experimental papers suggested that
the α-decay fine structure could be a powerful tool for
investigating nuclear structure details. In the last decade,
this new kind of α-decay spectroscopy was mainly used to
investigate 0+ and 2+ excited states in the Pb region by
the ISOLDE collaboration [14–20] and more recently by the
Liverpool-Jyväskylä-Helsinki collaboration [21]. There is also
an increasing interest in α-decay experiments searching for
fine structure in the U region [22]. Moreover, in the related
field of proton emission, two papers [23,24] have shown that
the influence of surface vibrations on the emission process is
very important.

The aim of this article is to perform a systematic analysis of
the α-decay fine structure for the lowest 2+ states in even-even
nuclei with moderate quadrupole deformations. Moreover, it
will be clearly shown that the α-decay fine structure is a
more sensitive probe of the 2+-state wave function than is
the electromagnetic transition deexiting this state. We use
the formalism developed in our previous works [25,26]. In
Sec. II, we give the necessary theoretical details. In Sec. III,
we investigate the HF together with electromagnetic transitions
for vibrational and transitional even-even nuclei. Here some
theoretical predictions are also given. Conclusions are drawn
in the last section.

II. THEORETICAL BACKGROUND

The microscopic description of the α decay to vibrational
states within the QRPA formalism was given in Ref. [26].
In this section, we summarize the main theoretical details
necessary to compute the decay width.
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Let us consider an α-decay process

B → A(k) + α, (2.1)

where k = 0 denotes the ground state (g.s.) and k > 0 some
excited state in the daughter nucleus. We will describe low-
lying collective states in terms of particle-hole excitations
within the spherical QRPA. Indeed, Ref. [27] showed that
the influence of the deformation on α decay is mainly given
by the penetration through the Coulomb barrier.

The excited states are described by a phonon operator acting
on the daughter ground state, taken as a core

|A(k)〉 = �
†
λµ(k)|A〉. (2.2)

The QRPA phonon is defined, as usual, by

�
†
λµ(k) =

∑
τ

∑
j1 � j2

[
X

(k)
λ (τj1j2)A†

λµ(τj1j2)

−Y
(k)
λ (τj1j2)Aλ−µ(τj1j2)(−)λ−µ

]
,

(2.3)

where A
†
λµ(τj1j2) denotes the quasiparticle creation operator

of the pair (τj1j2), with τ = π for protons and τ = ν for
neutrons. Here j is a short-hand notation for spherical quantum
numbers, i.e., single-particle energy ε, angular momentum l,
and total spin j. We will consider quadrupole phonon operators
with λ = 2 to describe low-lying 2+ collective excitations.

The amplitude of the decay process (2.1), called α-particle
preformation amplitude, is given as an overlap integral over the
internal coordinates of the daughter nucleus and the emitted
cluster [3], i.e.,

F
(k)
λµ (R) ≡ 〈A|(−)λ−µ�λ−µ(k)�α|B〉

=
∫

dξAdξα

[
�

(k)
A (ξA)

]∗
�∗

α(ξα)�B(ξB), (2.4)

where ξ denotes the internal coordinates and R the center-of-
mass coordinate of the α-daughter system. The preformation
amplitude squared is the probability of having an α-decaying
configuration inside the initial state. The above integral
depends only upon the relative radius between the daughter
nucleus and the emitted cluster.

We neglect the core-cluster antisymmetrization, because
we estimate the overlap for distances beyond the geometrical
nuclear radius, where the Pauli principle becomes less impor-
tant [28]. For k = 0, one uses the ground state in the daughter
nucleus instead of a QRPA excitation.

The most important ingredient of our calculation is the
single-particle mean field, generating proton and neutron
eigenstates. The single-particle wave functions are given in
the harmonic oscillator (ho) representation as follows

ψτεljm(r, s) ≡ 〈r, s|a†
τεljm|0〉

=
∑

n

cn(τεlj )Rnl(βr2)
[
ilYl(r̂) ⊗ χ 1

2
(s)

]
jm

.

(2.5)

Here a
†
τεljm denotes the single-particle creation operator.

The expansion coefficients cn(τεlj ) are provided by the
diagonalization procedure in the spherical ho basis Rnl(βr2).

They depend upon the standard ho parameter, defined as

β = f
MNω

h̄
, (2.6)

where MN is the nucleonic mass and h̄ω = 41A−1/3. As shown
in Refs. [5,29] the spectroscopic properties, connected with
the bound spectrum, practically do not depend upon the value
of the size parameter f. Moreover, Ref. [30] pointed out that
the error in expanding the radial wave function in terms of the
harmonic oscillator basis remains practically a constant in the
interval f ∈ [0.5, 1.2].

The radial part of the preformation amplitude for transitions
to excited states is given by the following superposition

F
(k)
λ (R) =

∑
Nα

W (k)(Nαλ)RNαλ(4βR2), (2.7)

where the W (k) coefficient is given in App. A of Ref. [26].
The preformation amplitude, connecting the ground states
of the two nuclei, is obtained in a similar way with k = 0,
where the W (0) coefficient is defined in the same appendix.
We stress the fact that the radial ho wave function RNL(4βR2)
depends on four times the single-particle parameter β, due to
the Talmi-Moshinsky transformation from absolute to relative
and center-of-mass coordinates.

The most important ingredients entering the W coefficients
in the above relations and expressing the nuclear structure
details are the expansion coefficients of the mother in terms of
the daughter wave function. For transitions to excited states,
they are given by

|B〉 = 1

2




∑
j1=j2

∑
j3 � j4

B(πj1j2; νj3j4)(a†
πj1

⊗ a
†
πj2

)0λ̂

× [(a†
νj3

⊗ a
†
νj4

)λ ⊗ �
†
λ(k)]0|A〉

+
∑
j1=j2

∑
j3 � j4

B(νj1j2; πj3j4)(a†
νj1

⊗ a
†
νj2

)0λ̂

× [(a†
πj3

⊗ a
†
πj4

)λ ⊗ �
†
λ(k)]0|A〉


 , (2.8)

where λ̂ = √
2λ + 1. By expressing the particle operators in

terms of quasiparticle operators, one obtains the following
results

B(πj1j2; νj3j4) = B(0)(πj1j2)B(k)(νj3j4),
(2.9)

B(νj1j2; πj3j4) = B(0)(νj1j2)B(k)(πj3j4),

where the two terms are given, respectively, by

B(0)(τj1j2) = δj1j2

ĵ1

2
uτj1vτj1 ,

(2.10)

B(k)(τj3j4) = 1√
1 + δj3j4

[
uτj3uτj4Y

(k)
λ (τj3j4)

− vτj3vτj4X
(k)
λ (τj3j4)

]
.

Here u, v denote BCS and X, Y QRPA amplitudes. In
particular, for a g.s. to g.s. transition, one obtains the expansion
given in Ref. [27].
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The decay width is derived from the continuity equation
and it is proportional to the asymptotic value of the radial wave
function amplitude squared. The matching condition between
the preformation amplitude and the outgoing Coulomb wave,
for some radius R inside the Coulomb potential, gives the
expression

�
(k)
λ = h̄v lim

r→∞
∣∣g(k)

λ (r)
∣∣2

=
{

2κR

[Gλ(κR)]2

}{
Rh̄2

2µ

[
F

(k)
λ (R)

]2
}

≡ Pλ(E,R)F (k)
λ (R),

(2.11)

where v is the center-of-mass velocity, κ the momentum of
the emitted α particle and R the center-of-mass radius. Note
that the meaning of the letter � is different from the definition
of the QRPA phonon (2.3). This quantity is a product of two
functions, the penetrability Pλ and preformation probability
Fλ (the so-called reduced width squared), which strongly
depend upon the radius R. However, the final result �(k)

λ should
be a constant in a region of several f m around the geometrical
touching point. This is an important accuracy test for our
calculations, and it was analyzed in detail in Ref. [26].

The HF of the first collective 2+ state we estimate
as the ratio between the corresponding “strengths” of the
preformation factors, i.e.,

HF =
〈
R

[
F

(0)
0 (R)

]2〉〈
R

[
F

(1)
2 (R)

]2〉 , (2.12)

where by brackets we denote the mean values, considered over
the interval R � Rc, beyond the touching radius

Rc = 1.2
(
A1/3

α + A
1/3
A

)
, (2.13)

including the last two maxima of preformation amplitudes.
We showed in Ref. [26] that the ratio of averaged quantities
in (2.12) practically does not depend upon the matching radius.
This definition is consistent with the experimental estimate
given by

HFexp = �(0)
exp

�
(1)
exp

P2(E − E2+ , R)

P0(E,R)
, (2.14)

where �(k), with k = 0, denotes the decay width corresponding
to a transition between ground states, and k = 1 denotes the
width associated with decay transition to the first 2+ eigenstate.
According to Rasmussen [6], the hindrance factor contains the
pentration through a barrier with a sharp internal potential.
As we will show later, the comparison between the two
estimates gives a difference of less than a factor of 2, i.e.,
within the experimental error. Anyway, we prefer the estimate
given by (2.14) because it depends only upon the well-defined
irregular function Gl(κR), generated by the external Coulomb
repulsion, and does not contain any arbitary internal potential.

The effect of the deformation, given by the Fröman
matrix [9] for the penetration part, was recently investigated
in Ref. [5], where it was shown that for |β2| � 0.2 the effect of
the barrier deformation is less than a factor of 2. Thus, the use
of a deformed penetration for both transitions will give similar

corrections and will not affect their ratio. This approach was
used in Ref. [8] to investigate transitions to rotational states.

We also computed another useful quantity, namely, the
spectroscopic factor, defined as

S(k)
α =

∫ ∞

0

∣∣RF
(k)
λ (R)

∣∣2
dR. (2.15)

It gives the order of magnitude of the α-particle probability
inside the nucleus.

Concerning the electromagnetic quadrupole transition, we
used the standard relation for the reduced matrix element,
namely,

〈0||T2||k〉 =
∑

τ

∑
j1 � j2

ξτj1j2

[
X

(k)
λ (τj1j2) + Y

(k)
λ (τj1j2)

]
,

ξτj1j2 = eτ√
1 + δj1j2

〈τj1||r2Y2||τj2〉
(
uτj1vτj2 + vτj1uτj2

)
,

(2.16)

where eτ denotes the effective charge and Y2 the quadrupole
spherical function.

III. B(E2) AND HF SYSTEMATICS ALONG
ISOTOPE CHAINS

A. Analysis of the experimental data

We will analyze α decays to low-lying 2+ states in
even-even nuclei with moderate quadrupole deformations,
|β2| � 0.2, i.e., in the so-called vibrational and transitional
nuclei. At the same time, we will connect this strong interacting
process with electromagnetic transitions in the daughter
nucleus.

Concerning B(E2) values, there are many available data,
e.g., those in Ref. [31]. In Fig. 1 we plotted them as a function
of the excitation energy for those even-even nuclei where

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
103

104
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Yb
Hf
W
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(E
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4 ]

E(2
+
)  [ MeV]

FIG. 1. Experimental B(E2) values versus E2+ .
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TABLE I. Experimental hindrance factors [33] according to Rasmussen [6] and Eq. (2.14) (last two columns). The first columns give the
three regions and the states in the abscissa of Fig. 2. The next columns give the charge and atomic numbers, energy of the 2+ state [33], and
quadrupole deformation [34]. Experimental errors for excitation energies and HF’s are also given.

Region i Z N A E2+ (keV) β2 HF (Ras)
exp HF exp

(A) 1 76 96 172 228.0 ± 0.2 0.190 38 ± 19 21.287
2 76 98 174 158.7 ± 0.3 0.226 3.3 ± 1.6 1.828
3 78 98 176 263 ± 1 0.171 152 ± ?? 85.688
4 78 100 178 170.7 ± 0.7 0.254 31.3 ± ?? 14.043
5 78 102 180 153 ± ?? 0.265 47 ± 10 26.571

(B) 6 84 110 194 319 ± 10 0.026 110 ± 40 66.379
7 84 112 196 463 ± 1 0.136 180 ± 60 173.541
8 84 120 204 684.342 ± 0.010 0.009 1.25 ± 0.11 0.706
9 84 122 206 703 ± 3 −0.018 6.9 ± 0.4 3.947

10 84 124 208 686.528 ± 0.020 −0.018 1.43 ± 0.15 0.830

(C) 11 84 130 214 609.31 ± 0.06 −0.008 4.8 ± 0.8 2.774
12 84 132 216 549.73 ± 0.05 0.020 3.2 ± 0.5 1.775
13 84 134 218 511 ± 2 0.039 1.9± ?? 1.052
14 86 130 216 461.9 ± 0.2 0.008 2.6 ± 0.8 1.565
15 86 132 218 324.22 ± 0.05 0.040 1.45 ± 0.04 0.852
16 86 134 220 240.986 ± 0.006 0.111 1.08 ± 0.01 0.622
17 86 136 222 186.211 ± 0.013 0.137 0.96 ± 0.01 0.546
18 88 130 218 389.2 ± 0.2 0.020 2.0 ± 0.7 1.219
19 88 132 220 178.37 ± 0.09 0.103 0.96 ± 0.07 0.572
20 88 134 222 111.12 ± 0.02 0.130 1.08 ± 0.02 0.650
21 88 136 224 84.373 ± 0.003 0.164 0.90 ± 0.03 0.536
22 90 132 222 183.3 ± ?? 0.111 1.4 ± 0.5 0.830
23 90 134 224 93 ± 4 0.164 1.00 ± 0.07 0.579

α-decay half-lives to the ground state are measured. One can
observe a universal systematic decreasing behavior versus the
excitation energy, almost independent of the considered chain.
This quantity is not very sensitive to other nuclear structure
details, because of the collective character of the 2+ state.
Indeed, Ref. [32], showed that one has the following empirical
relation between the B(E2) value and E2+ energy

B(E2) = cZ2

A2/3E2+
, (3.1)

where Z is the charge and A the mass number of the nucleus.
The situation is quite different concerning the α decay. At

present, the amount of available HF data is limited; see, e.g.
Ref. [33]. They are given in Table I. The last two columns
given the experimental HF’s, estimated according to the Ras-
mussen procedure HF(Ras)

exp [6] and by using Eq. (2.14) HFexp,
respectively. One can see that they differ by a factor less than 2.
Anyway, we prefer to use the simple definition (2.14), which is
free of any potential parameter. We plotted the logarithm of the
HFexp in Fig. 2 by a solid line, connecting experimental points
along a given neutron chain. In the same figure, experimental
values of the 2+ energy are given by dashes. The labels on
the abscissa correspond to the numbers in the first column
of Table I. We divided the figure into three regions,

(A) : Z < 82, N < 126,

(B) : Z > 82, N < 126, (3.2)

(C) : Z > 82, N > 126.

First of all, one notices an opposite tendency compared to
B(E2) data, namely, a general decreasing trend by decreasing
the excitation energy in the daughter nucleus. This is given
by the solid lines along each isotope chain. It turns out that

-1
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0.5

1

1.5

2

2.5

3

1050 15 20 25

1

FIG. 2. Experimental hindrance factors (solid lines) and E2+

(dashed lines) versus the state number in Table I.
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FIG. 3. The proton and neutron ratio of summed QRPA ampli-
tudes squared Y 2

τ /X2
τ , where (a) τ = π and (b) τ = ν, versus the

ratios R1 and R2. The decay process is 220Ra → 216Rn.

the HF’s in all the regions, apart from nuclei close to magic
numbers, satisfy the following empirical rule

log10(HF) = aE2+ + b, (3.3)

with a common coefficient for each of the regions. As a general
rule, the slope of this dependence for region (A) is larger than
for (C), i.e., a(A) > a(C). The situation in region (B), describing
Po isotopes as daughter nuclei, is more complex. Here one has
a phase transition along Po isotopes, from large HF’s, for
neutron-deficient isotopes, to small ones. Unfortunately the
available experimental values do not describe the full chain of
Po isotopes. It seems that the left side of the region (B) has a
behavior similar to that of (A), while the right one resembles
the behavior of region (C).

This behavior is less universal than the trend of electromag-
netic transitions. Thus, according to the available experimental
material, one concludes that the α-decay fine structure is
more sensitive to concrete nuclear structure details than the
corresponding electromagnetic transition. This makes the
study of the α decay to excited states a useful tool for
investigating the properties of collective states.
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FIG. 4. B(E2) values as a function of (a) E2+ , R1 for R2 = 0 and
(b) E2+ , R2 for R1 = 0. The decay process is 220Ra → 216Rn.

B. Analysis of the QRPA features

In our analysis we will try to explain the above discussed
experimental features within our QRPA formalism for collec-
tive 2+ excitations. We used the universal parametrization of
the Woods-Saxon potential, which is suitable for generating
proton and neutron single-particle spectra, especially for nuclei
around Pb region [35]. In the Woods-Saxon diagonalization
procedure, we considered N = 18 major shells. In our cal-
culation, we considered only 20 proton and 18–19 neutron
sp states around the corresponding Fermi surfaces. Therefore,
to simplify the calculations, we considered a smaller number
of configurations than the value necessary to reproduce the
absolute width [5]. Our analysis showed that indeed the ratio
of decay widths for transitions to excited and ground state,
i.e. HF, is sensitive only to spherical single-particle orbitals
around the Fermi level. Moreover, HF is insensitive to the size
used for parameter f because both preformation factors are
changed in the same way. We used a standard value for this
parameter, namely f = 1.

In Ref. [26] we used a modified surface δ residual
interaction by decoupling strength parameters for different
multipolarities. In our present analysis, we use realistic
G-matrix elements generated by starting from the Bonn one-
boson-exhange potential [36]. The quasiparticles are generated
by the monopole part of the two-body interaction. The pairing
strengths have been adjusted separately for protons and
neutrons to reproduce experimental gap values. We considered
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FIG. 5. Hindrance factor as a function of (a) E2+ , R1 for R2 = 0
and (b) E2+ , R2 for R1 = 0. The decay process is 220Ra → 216Rn.

in our calculations only superfluid nuclei, i.e., for both mother
and daughter nuclei, Z and N are not magic numbers.

To investigate the quadrupole-quadrupole part we used
three parameters, namely the proton-proton Vπ , neutron-
neutron Vν , and proton-neutron strengths Vπν . This allows
us to schematically rewrite the residual interaction in the form

−VπQπQ†
π − VνQνQ

†
ν − Vπν

[
QπQ†

ν + QνQ
†
π

]
= −V+Q+Q

†
+ − V−Q−Q

†
− − V±

[
Q+Q

†
− + Q−Q

†
+
]
,

(3.4)

in terms of isoscalar Q+ and isovector quadrupole components
Q−, defined as

Q+ = Qπ + Qν, Q− = Qπ − Qν. (3.5)

The corresponding strengths can be written as

V+ = Vπ + Vν + 2Vπν

4
,

V− = Vπ + Vν − 2Vπν

4
, (3.6)

V± = Vπ − Vν

4
.
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FIG. 6. Same as Fig. 5, but for the decay process 180Hg → 176Pt.

Our analysis depends on only two parameters, namely, the
following ratios

R1 ≡ V−/V+ = Vπ + Vν − 2Vπν

Vπ + Vν + 2Vπν

,

(3.7)
R2 ≡ 2V±

V+ + V−
= Vπ − Vν

Vπ + Vν

,

because, after fixing them, we adjust V+ to obtain the
experimental value of the energy E2+ . In what follows, we
call ratio R2 the proton-neutron asymmetry.

The QRPA amplitudes X, Y in Eq. (2.3) contain the
information about the nuclear structure in the HF and B(E2)
values. These are the key ingredients connecting the two kinds
of transition. Thus, we will characterize the “collectivity” of
the first excited state, with k = 1, by the following proton and
neutron ratios

Y 2
τ

/
X2

τ ≡
∑

j1 � j2

Y 2
τj1j2

(1)

/ ∑
j1 � j2

X2
τj1j2

(1), τ = π, ν.

(3.8)

The behavior of these ratios is strongly dependent upon
the values of R1 and R2. This is shown in Fig. 3 for
protons/neutrons for the decay process 220Ra → 216Rn.
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TABLE II. Experimental and predicted HF’s (in the last two columns) for α emitters below Pb. First four columns give the charge, mass
number, quadrupole deformation [34] and E2+ [31] in the daughter nucleus. The sixth and seventh columns give experimental B(E2) values [31]
and theoretical predictions. The interaction parameters are R1 = 0, R2 = −0.75. The fifth column gives the corresponding values of the strength
V+, according to Eqs. (3.6) and (3.7).

Z A β2 E2+ V+ B(E2)exp B(E2) HFexp HF

60 144 0.149 0.696 0.722 1.10 103 5.16 102 – 1.32 100

62 146 0.155 0.747 0.709 – 4.66 102 – 2.64 100

62 148 0.161 0.550 0.671 1.44 103 9.69 102 – 1.11 100

64 148 0.156 0.784 0.716 – 5.94 102 – 1.73 100

64 150 0.161 0.638 0.657 – 8.13 102 – 2.00 100

66 150 0.153 0.804 0.706 – 6.40 102 – 1.48 100

68 152 −0.018 0.808 0.724 – 8.31 102 – 1.22 100

68 154 0.143 0.561 0.675 – 1.58 103 – 6.35 10−1

70 154 −0.008 0.821 0.702 – 5.85 102 – 2.47 100

70 156 0.125 0.536 0.669 – 1.65 103 – 6.85 10−1

70 158 0.161 0.358 0.618 3.70 103 2.31 103 – 5.25 10−1

72 156 0.035 0.858 0.606 – 3.08 102 – 3.97 101

72 158 0.107 0.476 0.600 – 1.02 103 – 2.89 100

72 160 0.152 0.390 0.624 – 2.40 103 – 1.18 100

72 162 0.180 0.285 0.570 2.70 103 3.54 103 – 1.08 100

74 162 0.134 0.450 0.542 – 1.09 103 – 3.67 101

74 164 0.161 0.332 0.564 – 2.48 103 – 5.89 100

74 166 0.181 0.252 0.532 – 3.24 103 – 2.49 100

76 166 0.134 0.431 0.511 – 1.01 103 – 3.77 101

76 168 0.162 0.341 0.477 – 1.48 103 – 7.20 101

76 170 0.171 0.287 0.487 – 1.67 103 – 1.57 101

76 172 0.190 0.228 0.490 6.60 103 2.62 103 2.13 101 2.85 101

78 172 0.126 0.457 0.472 – 9.80 102 – 1.07 101

78 174 0.153 0.394 0.499 – 1.02 103 – 1.31 101

78 176 0.171 0.264 0.514 5.16 103 1.90 103 8.57 101 1.55 101

We stress that R1 = 0, R2 = 0 corresponds to a pure
isoscalar interaction with a common nucleon-nucleon interac-
tion strength, i.e., Vπ = Vν = Vπν . In Ref. [26] we investigated
this case for transitions from the Rn isotopes. Now we have
extended our analysis to the interval −1 < R1 < 1. In partic-
ular, when R1 = −1, R2 = 0, one has Vπ = Vν = 0 and only
the effective interaction between proton and neutron systems
Vπν has a nonvanishing value. In the opposite extreme, i.e., for
R1 = 1, R2 = 0, the effective interaction between proton and
neutron systems vanishes, Vπν = 0. We also considered in our
analysis a nonvanishing proton-neutron asymmetry parameter
R2, which was equal to zero in our previous reference.

First, we analyzed the behavior of the B(E2) value as a
function of the ratio R1 and R2 and excitation energy E2+ .
We used in Eq. (2.16) the bare charges eπ = 1, eν = 0. As a
typical example, in Fig. 4(a) we plot B(E2) values as a function
of R1 and excitation energy for R2 = 0 by considering the
decay process 220Ra → 216Rn. In Fig. 4(b), we give a similar
plot versus R2 and excitation energy for R1 = 0. One can see
that the B(E2) value decreases when R1 and the excitation
energy increase or when R2 decreases. It is interesting that
the dependence of the B(E2) value on these variables is
monotonic, except in the vicinity of R1 = 1. This feature
explains the universal behavior of experimental data, seen
in Fig. 1. Therefore, we conclude that the QRPA is able to
reproduce the experimental behavior of the B(E2) value versus
the excitation energy E2+ .

Let us now consider the main quantity in our analysis,
namely, the HF. In the three-dimensional Fig. 5(a), we plot
this quantity as a function of the ratio R1 (with R2 = 0) and
E2+ for the decay process 220Ra → 216Rn of region (C); while
in Fig. 5(b), we plot the HF versus the ratio R2 (with R1 = 0)
and E2+ . One observes, first of all, that the HF has much
stronger dependence upon R1, R2, and E2+ than the B(E2)
value. This means that the HF is more sensitive to the Y 2

τ /X2
τ

ratio than is the electromagnetic transition. On the other hand,
as a general rule, the HF increases with the increase of the exci-
tation energy, thus reproducing the main trend of experimental
data in Fig. 2. In Fig. 6 we made the same plots as in Fig. 5 but
for the transition 180Hg → 176Pt from region (A). Comparing
these two sets of figures one immediately notices a more com-
plex behavior of the slopes of the HF vs E2+ curves. Moreover,
our numerical analysis for several decay processes showed
that, as a general rule, the slope versus the excitation energy
is larger in region (A) than in region (C). Thus, once again,
the QRPA is able to reproduce the main experimental trends.

C. Systematic predictions

Finally, we computed the B(E2) values and HF’s for
several vibrational and transitional nuclei, where α-decay
half-lives were measured. We studied the dependence of the
standard mean square deviation from experimental data both
for the B(E2) and HF’s. It turned out that this quantity

044315-7



S. PELTONEN, D. S. DELION, AND J. SUHONEN PHYSICAL REVIEW C 71, 044315 (2005)

TABLE III. Same as in Table II, but for α emitters above Pb. The interaction parameters are R1 = 0, R2 = −0.75, except for the first two
nuclei, where R1 = 0.5, R2 = −0.75.

Z A β2 E2+ V+ B(E2)exp B(E2) HFexp HF

84 194 0.026 0.319 0.544 – 4.55 10+2 6.64 10+1 9.80 10+1

84 196 0.136 0.463 0.519 – 4.21 10+2 1.74 10+2 1.25 10+2

84 200 0.009 0.666 0.530 – 5.34 10+2 – 1.94 10+2

84 202 0.009 0.677 0.529 – 4.80 10+2 – 1.85 10+1

84 204 0.009 0.684 0.503 – 3.03 10+2 7.06 10−1 3.25 10+0

84 206 −0.018 0.700 0.521 – 2.39 10+2 3.95 10+0 1.32 10+0

84 212 0.045 0.727 0.745 – 3.25 10+2 – 1.19 10+1

84 214 −0.008 0.609 0.720 – 6.41 10+2 2.77 10+0 3.92 10+0

84 216 0.020 0.550 0.691 – 8.89 10+2 1.77 10+0 4.04 10+0

84 218 0.039 0.511 0.594 – 5.81 10+2 1.05 10+0 3.37 10+1

86 202 −0.104 0.504 0.529 – 9.17 10+2 – 7.36 10+2

86 204 −0.087 0.543 0.544 – 8.96 10+2 – 4.09 10+1

86 206 −0.044 0.575 0.537 – 6.47 10+2 – 5.20 10+0

86 208 −0.026 0.636 0.494 – 2.90 10+2 – 3.84 10+0

86 214 0.008 0.694 0.750 – 6.79 10+2 – 4.63 10+0

86 216 0.008 0.465 0.730 – 1.61 10+3 1.56 10+0 1.60 10+0

86 218 0.040 0.324 0.695 – 2.57 10+3 8.52 10−1 9.43 10−1

86 220 0.111 0.241 0.663 3.72 10+3 3.28 10+3 6.22 10−1 8.05 10−1

88 208 −0.104 0.520 0.545 – 9.15 10+2 – 2.12 10+1

88 210 −0.053 0.603 0.527 – 4.85 10+2 – 5.02 10+0

88 216 0.008 0.688 0.747 – 9.81 10+2 – 5.20 10+0

88 218 0.020 0.389 0.720 2.12 10+3 2.38 10+3 1.22 10+0 1.17 10+0

90 218 0.008 0.689 0.747 – 1.49 10+3 – 9.70 10+0

90 220 0.030 0.373 0.719 – 4.29 10+3 – 2.63 10+0

has a pronounced minimum concerning the B(E2) value for
R1 = 0, R2 = −0.75 in region (C) and the right side of region
(B). In region (A), this quantity is not sensitive to R1 for
the interval R1 ∈ [−1, 0]. Concerning the HF, we found that
the minimal standard square deviation is achieved close to the
same values R1 = 0, R2 = −0.75.

Therefore, we chose these values to make predictions for
both the B(E2) values and the HF’s for the other nuclei. In the
last column of Table II, we give the HF’s, as predictions by
our model, for measured α decays connecting ground states
of even-even nuclei with moderate deformations in the region
Z < 82. We considered only those nuclei with E2+ � 0.2 MeV.
Here, we also give the corresponding B(E2) values. One
can see that the electromagnetic transitions are rather well
reproduced, together with most of the measured HF’s. In
Table III we give similar predictions for even-even α emitters
with Z > 82. We divided the table into the abovementioned
(B) (upper part) and (C) (lower part) regions. Except for some
values in the region (B) in beginning of the Table III, our results
are in good agreement with experimental data, concerning
both the B(E2) values and the HF’s. The value R1 = 0 would
correspond to an isoscalar symmetry for equal strengths.

Because R2 = −0.75, the neutron strength dominates over
the proton one (Vν = 7Vπ ), but at the same time it is
comparable with the proton-neutron strength, Vπν ≈ 0.57Vν .
We stress that these strengths were obtained as the best fit
result for B(E2) values. Consequently, the neutron-proton
asymmetry is at least partially explained by the use of a van-
ishing neutron charge in the transition operator. On the other

hand, the HF’s, obtained by using an independent approach,
seem to confirm the validity of this result. Still, because of
the relative small number of experimental data on α-decay
intensities to excited states, a further investigation is necessary.

The phase transition in region (B) was reproduced by using
different values of the ratio parameter R1. Thus, the first two
large HF’s can be reproduced by using R1 = 0.5, with the
same R2. For the moment, we do not have experimental data
concerning B(E2) values for these nuclei, and we can only
point out this interesting feature.

We should also point out that several nuclei as 216,218Po,
218,220Rn, 218Ra have important octupole deformations [34].
Concerning Po isotopes, our systematics indeed predicts HF’s
that are three times, larger, but for the remaining nuclei they
are within the experimental errors. At the same time, let us
mention that the excitation energies for Rn and Ra isotopes
are two times less than in the case of Po isotopes. According
to Eq. (3.3), the HF depends exponentially upon the excitation
energy. Thus, the influence of octupole vibrations becomes
indeed stronger in the former case.

Finally, we should point out that the spectroscopic factors
for transitions connecting ground states, computed by using
Eq. (2.15), have similar values for the decays below Pb,
namely, S(0)

α ≈ 5 × 10−3. For decays above Pb, we obtained
S(0)

α ≈ 10−3. This gives the order of magnitude of the α-decay
preformation probability, which agrees with the estimate of
Ref. [37].

Thus we show once again that α-decay fine structure
involving the first 2+ state is a more sensitive tool for probing
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the residual interaction than is the electromagnetic transition
deexiting the first 2+ state.

IV. CONCLUSIONS

In this article we presented a systematics of the α-decay HF
and B(E2) values of the first excited 2+ states in even-even
nuclei. We computed the α-decay HF within the spherical
QRPA formalism. The single-particle spectrum is given by
a diagonalization procedure of the Woods-Saxon mean field
with the universal parametrization. We considered as a residual
force a realistic two-body interaction, obtained from the
G-matrix elements of the Bonn interaction. The only free
parameters will the ratio of the isovector to the isoscalar
strength R1 and the proton-neutron asymmetry R2.

We performed a systematic analysis of the HF and B(E2)
values versus these ratios and the energy E2+ of the first
collective state. This formalism was able to explain the main
trends seen in the systematics of experimental data, namely,
the universal decrease of the B(E2) value and the increase
of the HF with increasing energy E2+ along any neutron

chain. Moreover, the specific character of each isotope chain,
concerning the slope of the HF versus E2+ , could be explained
by concrete nuclear structure details. We proposed an empirical
linear dependence between the logarithm of the hindrance
factor and the lowest energy E2+. This dependence was
confirmed by our QRPA calculations.

We found out that most of the existing experimental data
concerning the B(E2) value and HF could be reproduced by
using a single set of parameters, namely R1 = 0, R2 = −0.75,
except for very neutron-deficient nuclei, where R1 = 0.5.
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