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Quality of the restricted variation after projection method with angular momentum projection

Tomás R. Rodrı́guez,∗ J. L. Egido,† and L. M. Robledo‡
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Recently, the restricted angular momentum variation after projection method, using the quadrupole degree of
freedom as a variational coordinate in conjunction with effective interactions of the Skyrme or Gogny type, has
been used very successfully to study a variety of phenomena concerning the quadrupole degree of freedom. In
this paper, we study the quality of such an approach by considering additional degrees of freedom as variational
coordinates: the hexadecapole moment and the fluctuations on the quadrupole moment, particle number, and
angular momentum operators. The study has been performed with the Gogny interaction (D1S parametrization)
for the nuclei 32Mg and 34Mg. The results of the angular momentum projection and the subsequent generator
coordinate calculations show that the extra degrees of freedom considered are irrelevant for the description of
the lowest lying states for each angular momentum.
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I. INTRODUCTION

Currently, mean field calculations like the ones based on
the Hartree-Fock-Bogoliubov (HFB) method are routinely
carried out (see Ref. [1] for a recent review) with effective
phenomenological interactions like Skyrme or Gogny in order
to study nuclear bulk properties in a systematic way. These
studies have opened up the possibility of confronting theory
(both the method and the interactions) with experiment all over
the nuclide chart. The conclusions reached in such studies
confirm the validity of both the mean field concept and
the associated spontaneous symmetry breaking mechanism
leading to nuclear super-fluidity, shape deformations, etc. (see
Ref. [2] for a recent example). However, there are several
examples, scattered all over the nuclide chart, indicating that
the correlations associated with the restoration of symmetries
broken at the mean field level can substantially modify the
mean field picture. Perhaps the best known of these examples
is the ground state of 32Mg, which is predicted to be spherical
at the mean field level with most of the reasonable interactions
available in the market [3–6] but always turns out to be
quadrupole deformed when the correlation energy associated
with the restoration of the broken rotational symmetry is
considered [7,8]. Experimentally, this nucleus is assumed to
be deformed, in spite of being semimagic (N = 20), because
of the low excitation energy of the first 2+ state and also
because of the ratio E(4+)/E(2+) = 2.6, which is consistent
with the expectations for a rotational (and therefore deformed)
state [9,10]. Measurements of the B(E2, 0+

1 → 2+
1 ) transition

probabilities also strongly support the interpretation in terms
of a deformed intrinsic state [11–14].
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To restore the rotational symmetry broken by the intrinsic
state, the angular momentum projection (AMP) technique is
used (see [15,16] for a detailed account of the theory and
[1,17,18] for additional considerations in the case of density
dependent interactions). In the AMP method, a symmetry
breaking intrinsic state is projected onto good angular momen-
tum J by taking linear combinations of properly weighted wave
functions obtained by rotating the intrinsic state. There are two
ways [15] to consider the effect of symmetry restoration on
the energy. The easiest one, called projection after variation
(PAV), starts with the mean field ground state solution, which
is projected afterward onto the proper quantum numbers, and
the resulting wave functions are used to compute the projected
energies. By definition, this procedure excludes the possibility
of having intrinsic wave functions with a projected energy
lower than the one obtained from the intrinsic ground state; that
is, the intrinsic ground state minimum is assumed to be sitting
on the bottom of a deep enough well. However, it is known that
this is not the case in the nucleus 32Mg, for example, where the
spherical mean field absolute minimum is not deep enough, and
therefore there exist other deformed mean field solutions that
lead to a projected energy lower than the one of the spherical
intrinsic state [7,8]. To overcome this deficiency, the variation
after projection (VAP) method was introduced. In this method,
the optimum intrinsic states are searched for by minimizing
the projected energy for each value of J instead of the HFB one
[15]. Unfortunately, this is a rather sophisticated and computa-
tionally demanding procedure, and therefore it has only been
implemented in small configuration spaces so far (see Ref. [19]
for a recent theoretical account). A simplifying alternative is
to perform a VAP calculation but over a reduced (a physically
inspired) subset of the whole variational space available for
the intrinsic configurations. For instance, in the 32Mg case
[18], a reduced set of intrinsic mean field configurations was
determined by constraining the axial quadrupole operator, and
the optimum intrinsic configurations were chosen by requiring
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the projected energy for each value of J to yield an absolute
minimum. In this way, a deformed intrinsic state was predicted
for the 0+ ground state in opposition to the spherical one
predicted by the mean field. Obviously, the success of such
a restricted VAP procedure is linked to the adequacy of the
reduced variational space for the physics involved. In the
case of AMP, it seems rather natural to assume that the axial
quadrupole degree of freedom is going to play an important
role as this is the lowest order multipole moment linked
to spatial deformation. This is the reason why most of the
calculations performed to date with effective forces and along
the lines described previously have used this collective variable
to generate the reduced configuration space. However, other
degrees of freedom such as (a) higher order axial multi-
pole moments, (b) fluctuations on the multipole moments,
(c) fluctuations on the angular momentum operators,
(d) fluctuations on particle number (pairing correlations),
(e) reflection asymmetric multipole moments (octupole
shapes), (f) triaxial moments, and (g) time reversal breaking
degrees of freedom (such as the ones induced by the cranking
approximation) could be needed for a more accurate descrip-
tion of nuclear dynamics, and therefore they deserve further
investigation.

In this paper, we have addressed the study of the role
of some of the degrees of freedom mentioned above by
performing calculations with the Gogny interaction [20] (D1S

parametrization [21]) for the 32Mg and 34Mg nuclei. For
computational reasons, the calculations have been restricted
to axial and reflection symmetric intrinsic configurations (see
Ref. [18] for further details), and therefore we have been unable
to study the effect of reflection asymmetry, triaxiality, and
time reversal breaking configurations. Reflection asymmetry
is supposed not to play a relevant role in the magnesium
isotopes, making its omission somehow justified. However,
the other two neglected degrees of freedom (triaxiality and
time reversal breaking) certainly play an important role
for J �= 0 states, restricting our conclusions mainly to the
J = 0+ states (including the ground state). Although our
results indicate that the extra degrees of freedom considered
(the hexadecapole moment Q̂40 and the fluctuations in the
quadrupole moment (�Q̂20)2, angular momentum �Ĵ 2

x , and
particle number (�N̂)2) do not substantially modify the pre-
dictions already obtained with the axial quadrupole moment
Q̂20 alone, we have also carried out configuration mixing
calculations in the spirit of the generator coordinate method
(GCM) and using the axial quadrupole degree of freedom
as a generating coordinate in order to make sure that
the dynamical aspects are not altered by the tiny changes
induced by considering the additional operators. A prelim-
inary account of the present work but considering only the
hexadecapole and particle number fluctuations and without
considering the GCM results has already been published
[22].

The paper is organized as follows. In Sec. II, the method
used is discussed in detail, and the selection of the additional
degrees of freedom is discussed and justified. In Sec. III, the
results obtained are analyzed, and finally in Sec. IV, some
conclusion are drawn.

II. THEORETICAL FRAMEWORK: RESTRICTED
PROJECTION BEFORE VARIATION WITH
CONSTRAINED HFB INTRINSIC STATES

Our starting point in the generation of a restricted varia-
tional space is a set of constrained Hartree-Fock-Bogoliubov
(CHFB) calculations with two constraints at a time (apart from
the ones on proton and neutron particle numbers that are always
included in the HFB method):

〈φ(q, s)|Q̂20|φ(q, s)〉 = q, 〈φ(q, s)|Ŝ|φ(q, s)〉 = s.

(1)

The first constraint refers to the axial quadrupole mo-
ment q, which is restricted to its K = 0 component as a
consequence of our restriction to axially symmetric and
parity conserving configurations. In the second constraint,
the operator Ŝ stands for any of the additional degrees of
freedom considered. The set of wave functions |φ(q, s)〉
is determined by minimizing the HFB energy E(q, s) =
〈φ(q, s)|Ĥ |φ(q, s)〉 subject to the constraints of Eq. (1). The
constrained minimization process is equivalent to the solution
of the HFB equation δ〈φ(q, s)|Ĥ ′|φ(q, s)〉 = 0 where Ĥ ′ =
Ĥ − λq(Q̂20 − q) − λs(Ŝ − s), and the Lagrange multipliers
λq and λs are determined in the usual way by requiring the
gradient of the constraint to be orthogonal to the gradient of
〈φ(q, s)|Ĥ ′|φ(q, s)〉. The CHFB equation is solved using the
gradient method [23] as it has the advantage of being very well
suited for the handling of many constraints at the same time.
Another merit of the gradient method is that it is also very well
suited for the handling of two body operators as constraints.
The HFB equation is solved with the Gogny interaction [20]
(D1S parametrization [21]). As is customary in these kinds
of calculations, we have fully included the two body kinetic
energy correction (to correct for the center of mass motion
problem) but neglected the Coulomb exchange and pairing
fields. The range of q values considered starts at −2 b and
goes up to 2 b in steps of 0.05 b and is well suited for both
the 32Mg and 34Mg nuclei. For the quantity s, we consider
a range of values depending on q and centered around the
self-consistent value sSC(q), which is determined by releasing
the constraint on that quantity and keeping only the constraint
on the quadrupole moment.

After the set of wave functions |φ(q, s)〉 is determined, we
compute the angular momentum projected (AMP) energies for
each value of J = 0, 2, 4, . . . , as

EJ (q, s) = 〈φ(q, s)|Ĥ P̂ J
00|φ(q, s)〉

〈φ(q, s)|P̂ J
00|φ(q, s)〉 , (2)

where P̂ J
00 is the angular momentum projection operator for

axially symmetric intrinsic states. These projected energies
define a two-dimensional potential energy surface (PES) as a
function of (q, s) whose minimum provides the solution of this
restricted VAP procedure.

Concerning the set of additional constraining operators Ŝ

considered, we have included the next even order multipole
moment, i.e., the hexadecapole moment Q̂40, in order to better
explore the variety of (reflection symmetric) nuclear shapes.
Next we have considered the quadrupole fluctuations given by
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the two body operator (�Q̂20)2, where �Q̂20 = Q̂20 − 〈Q̂20〉.
Taking for granted that the rotational energy correction (the
energy gain with respect to the mean field) is proportional to
the fluctuations in the angular momentum operators, we have
also considered as a constraining operator the fluctuation in Ĵx ;
namely, we have used the two body operator (�Ĵx)2, where
�Ĵx = Ĵx − 〈Ĵx〉 = Ĵx (the last equality is due to the fact that
we consider axially symmetric wave functions in even-even
nuclei). Finally, and taking into account the predominant role
that the pairing degree of freedom plays in the determination of
moments of inertia (the other quantity entering the rotational
energy correction), we have also performed calculations
constraining the fluctuations of the particle number (�N̂)2

as a device to modulate pairing correlations or the smearing
out of the Fermi surface.

The topological structure of the AMP potential energy
surface in 32Mg as a function of q alone (flat minima separated
by rather small barriers) suggested [18] that configuration
mixing in the spirit of the generator coordinate method (GCM)
using the axial quadrupole moment as a generating coordinate
would be of paramount importance in the description of this
particular system. As we see in the next section, the same kind
of arguments applied to the present calculations call for a GCM
calculation including both the q and s degrees of freedom.
However, this is a highly demanding task (it would increase
the computational burden by two orders of magnitude), and
therefore we have restricted ourselves to performing GCM
calculations using the quadrupole moment q as a generating
coordinate, and the value of s determined by the minimum of
the projected energy EJ (q, s) for each value of q and J. In
other words, we use as the GCM wave functions the ansatz

∣∣�J
σ

〉 =
∫

dq f J
σ (q)P̂ J |φ(q, sJ (q))〉,

where the set of functions sJ (q) is determined by requiring
EJ (q, s) to be a minimum for fixed values of q.

III. RESULTS

In this section we show the results for 32Mg and 34Mg
using the theoretical tools described in the previous section.
For the convenience of the reader, we begin by briefly
discussing the results obtained with the single constraint on the
axial quadrupole moment q for 32Mg. The energies of the q-
constrained HFB calculation, as well as the ones corresponding
to the AMP for J = 0, 2, and 4, are shown in Fig. 1. At the
mean field level, the 32Mg ground state has a spherical absolute
minimum, as well as a shoulder around q =1b. On the other
hand, the projected energy for J = 0 exhibits both prolate and
oblate minima located at 1.0 and −0.5 b, respectively. The
ground state corresponds to the prolate shape. This example
clearly shows how the plain PAV procedure provides incorrect
results. In the strict PAV approach, one would first solve the
self-consistent HFB equation and then perform AMP. In this
case, since the self-consistent solution is spherical, one would
obtain no energy gain at all. However, by looking at the
reduced space of the quadrupole deformed axial shapes (in
the spirit of the restricted VAP) we find deeper minima than
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FIG. 1. Single-constraint HFB and angular momentum projected
potential energy surfaces for 32Mg as a function of the quadrupole
moment q = 〈Q̂20〉.

the spherical one, and therefore a completely different physical
picture emerges.

The next step is now to perform double constrained
calculations as described in the previous section. In Fig. 2,
we present a representative selection of the results obtained by
plotting cuts of EJ (q, s) for q = −0.5 and 1 b as a function
of s for the different constraining operators Ŝ considered,
namely, the hexadecapole moment Q̂40 (panels (a) and (b)),
the fluctuation in the number of particles (�N̂ )2 (panels (c)
and (d)), the fluctuation in the quadrupole moment (�Q̂20)2

(panels (e) and (f)), and finally the fluctuation in the angular
momentum operator (�Ĵx)2 (panels (g) and (h)). The bullets
on each curve are placed at the corresponding minima, and the
vertical lines pass through the minimum of the HFB energy
curve, i.e., the value found without constraining Ŝ. For a
given value of J, the energy gain obtained by constraining the
additional operator is given by the energy difference between
the projected energy at the minimum (marked by the bullets)
and the projected energy obtained at the intersection of the
vertical line with the AMP energy curve. For J = 0, the
projected energy minima remain rather close to the single
constraint results for both the prolate and oblate examples
shown in Fig. 2, and therefore the effect of the additional
constraints is negligible. For J = 2, the situation changes:
although the minima are the same as in the single constraint
case for the prolate configuration, we observe noticeable
differences in the oblate configuration considered. This can
be understood by the fact that the prolate deformation (1 b) is
larger than the oblate one (−0.5 b), and the HFB approach is
better for larger deformations. It is also noticeable that the
largest corrections are obtained for the 〈�N̂2〉 and 〈�Ĵ 2

x 〉
constraints. The same tendency as in the J = 2 case, but
amplified, is obtained for J = 4. The numerical values for
the energy gain for the operators and J values considered
are given in Table I. The small energy corrections obtained
for J = 0 indicate that the energy minimum obtained with
only the constraint on Q̂20 provides a rather stable minimum,
probably close to the true VAP one. We cannot say the same
for higher J values and the oblate configurations.
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FIG. 2. The projected energies EJ (q, s) as a function of s for the four additional constraining operators considered and the q = 〈Q̂20〉
values of 1 (lower panels) and −0.5 b (upper panels). The bullets mark the position of the minima. The dashed curves correspond to the HFB
solutions. The vertical dotted lines mark the minima of the HFB curves. See text for further details.

In order to better understand the effect of the additional
constraints on the results of Fig. 2, we have plotted in
Fig. 3 the energy differences EJ (q, s) − EHFB(q, s) for J = 0,

2, and 4 as a function of the constraining quantities s and the q
values 1 and −0.5 b. In order to clarify the discussion of these
results, it is convenient to introduce the “strong deformation
limit” of the projected energies [15,17]

EJ (q, s) ≈ 〈φ(q, s)|Ĥ |φ(q, s)〉

− 〈φ(q, s)| �̂J
2
|φ(q, s)〉

2JY (q, s)
+ h̄2 J (J + 1)

2JY (q, s)
.

The first term is simply the intrinsic energy; the second,
called the “rotational energy correction” (REC), is the ratio
between the fluctuations of the angular momentum operator
and the Yoccoz moment of inertia JY ; and the third one
is just the rotational band energy that follows the rigid
rotor J (J + 1) energy rule. The rotational energy correction
is the energy gain due to the additional correlations introduced
by the projection procedure, and its evolution with s depends on
the evolution of both the fluctuations on the angular momentum
and the evolution of the Yoccoz moment of inertia. On the
other hand, the rotational band energy only depends on the
Yoccoz moment of inertia, and therefore its behavior with s
can be rather different from that of the REC. Obviously, the

J = 0 energy difference depicted in Fig. 3 is nothing but the
rotational energy correction. On the other hand, it is obvious
that the other curves will remain parallel to the J = 0 one
in the case in which the Yoccoz moment of inertia does not
change with the constraining quantity s. When the moment
of inertia increases with increasing values of the additional
constraint, the lines will converge, whereas for a decreasing
moment of inertia, the lines will diverge.

By looking at panels (a) and (b) of Fig. 3, we realize that
the constraint on the hexadecapole moment do not change
the Yoccoz moment of inertia in both cases, as the projected
energy curves remain more or less parallel. The same happens
for the rotational energy correction (REC) in the prolate cut.
On the other hand, the REC increases with an increasing
hexadecapole moment in the oblate cut. For the constraint
on the particle number fluctuation (panels (c) and (d)), we
observe how the projected energy curves diverge as 〈�N̂2〉
increases, implying the decrease of the Yoccoz moment
of inertia. This is consistent with the general consensus
(see, for instance, [15]) that moments of inertia decrease
with increasing pairing correlations. The moment of inertia
decreases faster in the oblate than in the prolate case. The
REC slightly increases as a function of 〈�N̂2〉 in the prolate
side, but the increase is a little more pronounced in the oblate
one. This behavior, together with the behavior of the moment

TABLE I. Energy gains �EJ for angular momenta J = 0, 2, and 4 obtained for the quadrupole moment values q = −0.5 and 1 b by
constraining the additional operators considered.

Ŝ q �EJ=0 �EJ=2 �EJ=4 q �EJ=0 �EJ=2 �EJ=4

(b) (keV) (keV) (keV) (b) (keV) (keV) (keV)

Q̂40 −0.5 8.0 19.0 39.0 1.0 1.0 0.0 14.0
(�N̂)2 −0.5 6.0 250.0 1401.0 1.0 30.0 0.0 79.0
(�Q̂20)2 −0.5 0.0 40.0 278.0 1.0 0.0 0.0 67.0
(�Ĵx)2 −0.5 0.0 297.0 1103.0 1.0 0.0 0.0 192.0
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FIG. 3. The energy differences EJ (q, s) − EHFB(q, s) as a function of s for the four additional constraining operators considered for the
q = 〈Q̂20〉 values of 1 b (lower panels) and −0.5 b (upper panels). The bullets mark the positions of the minima of the corresponding EJ (q, s)
curves, whereas the vertical dotted lines mark the positions of the HFB minima. See text for further details.

of inertia, implies that 〈�Ĵ 2
x 〉 decreases with increasing particle

number fluctuations. For the constraint on the quadrupole
moment fluctuation, we observe a pattern similar to that in
the hexadecapole case. One noticeable difference is that in
the prolate side, the moment of inertia slightly decreases
with 〈(�Q̂20)2〉, whereas it slightly increases with increasing
〈Q̂40〉. A second difference is the violent increase in the
REC energy observed when the quadrupole fluctuation is
reduced with respect to the self-consistent minimum. For the
angular momentum fluctuation constraint, the Yoccoz moment
of inertia increases, with the increasing 〈�Ĵ 2

x 〉 being the
increment more pronounced in the prolate than in the oblate
side. This behavior is due to the fact that bigger values of 〈�Ĵ 2

x 〉
imply a stronger rotational symmetry violation and therefore
bigger moments of inertia. As a consequence of the increase
of the moment of inertia with 〈�Ĵ 2

x 〉, the REC decreases with
increasing fluctuation in the prolate case, whereas it slightly
increases in the oblate case.

In Fig. 4 we have plotted, for the nucleus 32Mg, the projected
energies for J = 0, 2, and 4 corresponding to the minima of
the curves of Fig. 2 but for all values of the quadrupole moment
q (solid line) along with the projected energies obtained for
the self-consistent value of 〈Ŝ〉 (dashed line) corresponding
to the intrinsic energy. We observe that the solid and dashed
lines are almost indistinguishable for J = 0, with the exception
of the constraints on 〈�N̂2〉 and 〈�Ĵ 2

x 〉 and for q values around
the kink at 75 fm2. For J = 2, solid and dashed lines are again
almost indistinguishable around the prolate minima but show
small deviations for the oblate ones. For J = 4, appreciable
differences are seen in the oblate side which is, however,
not the absolute minimum for this value of the angular
momentum. These results indicate that the extra degrees of
freedom considered are of no relevance for the description
of the lowest lying state for each angular momentum J. For
higher lying states with J = 2 and 4 and sitting in the oblate
minimum, the energies will certainly change and the effect of
the additional degrees of freedom can be relevant. In Fig. 5 we

have plotted the same quantities as in Fig. 4 but for the nucleus
34Mg. Behavior similar to that in the 32Mg case is observed,
and therefore the conclusions to be drawn are the same.

Although the projected energies are not much affected in the
vicinity of the absolute minimum for each angular momentum
considered as a consequence of the second constraint, it might
well happen that the slight changes induced in the wave
functions could modify the dynamical aspects of the problem,
and for this reason we have performed GCM calculations for
the nucleus 32Mg along the lines described in Sec. III for
each of the additional constraints and for J = 0, 2, and 4.
By looking at the rather flat projected energy curves as a
function of s depicted in Fig. 2, and also taking into account
that their topologies change with angular momentum (see
also the discussion of Fig. 3), one can easily see that a
better approach would be to perform just a two-dimensional
GCM calculation. Unfortunately, this task is still too time
consuming (increasing the computational burden by two orders
of magnitude), and therefore we have restricted ourselves to
the less general procedure outlined in Sec. II. The results of
the GCM calculations are summarized in Table II. As can be
observed in Table II, the energy gains for the J = 0 ground
states are tiny, and a maximum value of 93 keV is reached
for the 〈�N̂2〉 constraint. Obviously, these small changes
are of the order of magnitude of the uncertainties associated
with the parameters of the interaction and/or issues related
to the finite size of the basis and therefore can be safely
overlooked. For J = 2, the changes are even smaller than for
the J = 0 case, as expected from Fig. 4. As a consequence,
the changes in the E2+ excitation energies come mainly
from the decrease of the J = 0 energies, and the biggest one,
corresponding to the 〈�N̂2〉 additional constraint, amounts
to an increase of 89 keV, which represents a small fraction
(a 5% effect) of the absolute value and is also of the order
of magnitude of other uncertainties that could eventually
affect the E2+ energies as discussed previously. The results
obtained are in agreement with the general considerations
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FIG. 4. A comparison of the projected energy curves EJ (q, s) with s determined as the minimum of EJ (q, s) for each value of q = 〈Q̂20〉
(solid line), and the same quantity but with s given by the HFB self-consistent value (dashed curves) for J = 0 (lower panels), 2 (middle
panels), and 4 (upper panels) and the four additional constraints considered.

drawn from similar calculations [19]: whenever additional
correlations are included, the 0+ gets pushed down, and
therefore excitation energies tend to increase. Unfortunately,

this behavior is the opposite of that needed to improve the
agreement with the experimental results [9,10]. As previously
discussed [8], in order to decrease the E2+ excitation energy,
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TABLE II. The GCM energies for the lowest lying states with angular momenta J = 0, 2, and 4, as well some energy differences. Each
column corresponds to a different set of generating functions and “single” in this context means that only the constraint on the quadrupole
moment q is considered. The quantity �EJ=0 is the energy difference between the GCM calculation that includes the effect of the additional
constraint and the one that does not include it. See text for further details.

Constraint

Single Q40 �N 2 �Q2
20 �J 2

x

EJ=0 (MeV) −246.744 −246.753 −246.837 −246.751 −246.794
EJ=2 (MeV) −245.271 −245.274 −245.285 −245.281 −245.285
EJ=4 (MeV) −243.172 −243.173 −243.247 −243.273 −243.297
�EJ=0 (keV) 0.0 9 93 7 50
E2+ = EJ=2 − EJ=0 (MeV) 1.473 1.479 1.562 1.470 1.509
E4+ = EJ=4 − EJ=0 (MeV) 3.572 3.580 3.590 3.478 3.497

additional degrees of freedom with �K �= 0 are needed (i.e.,
the kind of triaxial and time reversal breaking configurations
mentioned in Sec. I and not taken into account in the present
work), as they will push down the J = 2 energy but leave the
J = 0 energy unaffected. Obviously, the additional degrees of
freedom considered in this paper are of the �K = 0 kind, and
therefore they cannot induce the mentioned effects. The EJ=4

energies change in amounts similar to those in the J = 2 case,
the change being bigger for the 〈�N̂2〉, 〈�Q̂2

20〉, and 〈�Ĵ 2
x 〉

additional constraints. This is again consistent with the tiny
change observed in 4 around the J = 4 absolute minimum.
The E4+ energies change by tiny amounts, with the 〈�Q̂2

20〉
constraint being the most significant with a reduction of the
E4+ energy of only 94 keV. At this point, let us mention that the
results obtained for the GCM calculation for the nucleus 32Mg
could have been anticipated by looking at Fig. 4 and observing
that the additional constraints did not change the AMP energy
landscape around the absolute minima. As a consequence, and
because of the corresponding plots for 34Mg (see Fig. 5), we
have decided not to carry out a similar GCM calculation for
this nucleus as the results would be similar to those already
discussed for 32Mg. Finally, as a general conclusion, we can say
that the GCM results corresponding to the lowest lying states
remain almost unaffected by the inclusion of the additional
constraints considered in this paper. On the other hand, among
the extra degrees of freedom considered, the 〈�N̂2〉 and 〈�Ĵ 2

x 〉
ones might play a quantitative role for higher lying states and
angular momenta greater than 0.

IV. CONCLUSIONS

With the aim of testing the stability of previous results
obtained for the nuclei 32Mg and 34Mg, which were obtained
in the framework of a restricted variation after angular momen-
tum projection where the quadrupole moment was the parame-
ter chosen to parametrize the reduced variational Hilbert space,
we have enlarged the variational Hilbert space for the projected
energies by the inclusion of additional wave functions obtained
by constraining the mean values 〈Q̂40〉, 〈�N̂2〉, 〈�Q̂2

20〉, and
〈�Ĵ 2

x 〉 corresponding to axially symmetric operators. The
projected energy landscapes obtained, as well as the results of
additional GCM calculations, indicate that the extra degrees
of freedom considered only induce minute changes on the
energies of the lowest lying state for each angular momentum
J = 0, 2, and 4. We therefore conclude that, in order to include
correlations to describe the lowest lying states in the present
framework, the relevant axially symmetric degree of freedom
to be considered is the one associated with the quadrupole
moment operator. Obviously, the present results do not rule
out the relevant role triaxiality and/or time reversal breaking
might have for J �= 0 states.
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