γ -ray spectroscopy of ¹³²Te through β decay of a ¹³²Sb radioactive beam

R. O. Hughes,^{1,2} N. V. Zamfir,^{1,3,4} D. C. Radford,⁵ C. J. Gross,⁵ C. J. Barton,⁶ C. Baktash,⁵ M. A. Caprio,^{1,7} R. F. Casten,¹

A. Galindo-Uribarri,⁵ P. A. Hausladen,⁵ E. A. McCutchan,¹ J. J. Ressler,¹ D. Shapira,⁵ D. W. Stracener,⁵ and C.-H. Yu⁵

¹Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520-8124, USA

²Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom

⁴Institutul Național de Fizică și Inginerie Nucleară, RO-76900 București-Măgurele, Romania

⁵Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

⁶University of York, Heslington, YO10 5DD, United Kingdom

⁷Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut 06520-8120, USA

(Received 28 December 2004; published 26 April 2005)

 γ -ray spectroscopy of ¹³²Te, obtained from β^- decay of a ¹³²Sb radioactive beam at the Holifield Radioactive Ion Beam Facility, was performed using the Clarion array. A significantly revised γ -decay scheme for ¹³²Te was obtained including a number of new, likely 2⁺, states below 2.5 MeV and the removal of a 3⁻ state at 2280 keV. A simple shell-model interpretation is discussed for the low-lying levels.

DOI: 10.1103/PhysRevC.71.044311

PACS number(s): 21.10.-k, 21.60.Cs, 23.20.Lv, 27.60.+j

I. INTRODUCTION

The availability of high-intensity β -decay activities at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge provides a means of improving the quality of γ -ray spectroscopy data on neutron-rich nuclei. One of the most interesting and, at the same time, most accessible regions is that near the doubly magic ¹³²Sn. Coulomb excitation experiments in this region [1–3] making use of radioactive beam scattering in inverse kinematics have allowed a systematic study of the quadrupole collectivity and discovered an unusual behavior: in ¹³⁶Te both the 2⁺₁ energy and the $B(E2; 0^+_1 \rightarrow 2^+_1)$ transition strength are lower than in ¹³²Te. This contradicts the general intuition that a decreasing 2⁺₁ energy should be accompanied by an increasing $B(E2; 0^+_1 \rightarrow 2^+_1)$ value. The experimental anomaly was explained by Terasaki *et al.* [4] by using a pairing strength dependent on single-particle level density.

This paper presents new decay data on ¹³²Te populated in β^- decay and studied through γ -ray coincidence spectroscopy. The details of the experiment and the results are presented in Sec. II. The low-lying levels in the ¹³²Te nucleus can be, at least qualitatively, explained in terms of the shell model as coupling two protons and two neutron holes to the doubly closed shell nucleus ¹³²Sn. A short discussion on the structure of some selected levels is presented in Sec. III. Some of this material has been summarized previously [5].

II. EXPERIMENT AND RESULTS

Low-lying levels of ¹³²Te were populated in the β^- decay of ¹³²Sb. A radioactive ¹³²Sb beam at 396 MeV and with an intensity of ~10⁷ particles/s was provided by the HRIBF, from proton-induced fission of uranium. The beam was embedded in a thick foil target (14.3 mg/cm² Al + 1.0 mg/cm² C) and the γ rays following β decay were observed with the Clarion array [6]. Decay experiments such as this can be carried out using the experimental setup from Coulomb excitation experiments [1,2] with minimal modification, that is, essentially the substitution of a stopper foil for the excitation foil, and can thus productively be performed in conjunction with such experiments. The beam energy used is not an essential requirement, but is chosen simply to be sufficiently below the Coulomb barrier to avoid production of background radiation.

The Clarion array [6] consists of 11 clover Ge detectors equipped with BGO Compton suppression shields. The array surrounds a 15-cm radius target chamber. Most of the detectors were located in the back hemisphere of the array, approximately 25 cm from the target, with a 2.3% total array photopeak efficiency at 1.33 MeV. The experiment was run for 16 h with a $\gamma - \gamma$ doubles or higher fold trigger. Singles γ -ray data were also briefly acquired. A total of ~4.0 × 10⁶ singles events and ~2.5 × 10⁷ coincidence events were collected.

The singles spectrum obtained in the present work is shown in Fig. 1. The observed γ rays in ¹³²Te, their relative intensity, and the most useful coincidence relations in building the decay scheme are listed in Table I. The intensities were calculated from singles and coincidence data following procedures similar to those in Ref. [7]. Due to the high statistics, the lowest measurable transition intensity was reduced by more than an order of magnitude from the previous ~0.5 γ rays per 100 decays [8] to ~0.02 per 100 decays.

The ¹³²Sb parent nuclei decay via two β^- channels, from the 4⁺ ground state ($T_{1/2} = 2.8 \text{ m}$) and an 8⁻ excited state ($T_{1/2} = 4.2 \text{ m}$). Thus, levels of a relatively wide spin range could be populated. Continuous beam deposition was used to provide maximal statistics. Therefore, no attempt was made to separate the γ rays originating from the two different parent states on the basis of decay curves.

Multiple isomeric states are present in 132 Te. As a conventional coincidence condition was imposed in the triggering electronics, the experiment provided at most limited sensitivity to coincidences between γ -ray transitions populating and depopulating levels with lifetimes greater than a few microseconds. Thus, coincidences between transitions deexciting the

³Clark University, Worcester, Massachusetts 01610, USA

FIG. 1. γ -ray spectrum observed in the present work following the β decay of ¹³²Sb. Some strong transitions from ¹³²Te are marked by their energy in keV. The strongest of the contaminant lines are indicated by their origin.

145-ns isomeric state at 1775 keV [9] and transitions feeding this level could be observed, but no coincidence events were registered between transitions below and above the 1925 keV state ($T_{1/2} = 28 \,\mu$ s).

The new $\gamma \cdot \gamma$ coincidence data have led to a revised γ -decay scheme for ¹³²Te with many new transitions and new levels. A number of previous placements were found to be inconsistent with the new high-quality coincidence data. A complete summary of the levels populated in ¹³²Te and their γ -ray decays are listed in Table II. Partial results were reported in Ref. [5]. Some of the results obtained here have been corroborated in the unpublished work of Ref. [10]. Figure 2 highlights the levels observed below 2500 keV as deduced in this work, including a comparison with the previously reported β -decay level scheme [8]. Changes to the level scheme below 2400 keV are discussed in detail below. Intensities given in the following discussion are normalized to the intensity of the 974 keV, $2_1^+ \rightarrow 0_1^+$, γ -ray transition ($I_{974} \equiv 1000$).

 (2_2^+) at 1665 keV. We observe a new state at 1665 keV, nearly degenerate with the 4_1^+ state at 1671 keV, decaying by a 690.96(10) keV transition with intensity 20(3) to the 2_1^+ level and by a very weak 1665.3(2) keV transition with intensity 0.2(1) to the ground state. The level is observed to have nine populating transitions (see Table I), three of which are reasonably strong: 822, 936, and 1098 keV. Coincidence spectra gated on the 822 keV feeding transition and on the 691 and 1665 keV depopulating transitions are given in Fig. 3. Based on the transitions to only the 2_1^+ and 0_1^+ states, we tentatively give the level at 1665 keV a 2^+ assignment. Three additional levels (1788, 2249, and 2364 keV), discussed in detail below, also decay only to the 2_1^+ and 0_1^+ levels. A simple interpretation in terms of the shell model (see below) supports a likely 2^+ assignment to each of these levels.

 (2_3^+) at 1788 keV. The level at 1788 keV was identified on the basis of several transitions. Two depopulating transitions, an 813.25(10) keV line with intensity 23(1) and a 1787.6(3) keV line with intensity 16(1) to the 2_1^+ and 0_1^+ levels, respectively, were observed along with eight populating transitions. A gate on one of the strongest populating transitions, a 2587.1(4) keV line with intensity 3.6(9), is given in Fig. 4, illustrating coincidences with the 813 and 1788 keV depopulating transitions. Support for the spin assignment of this level will be discussed in detail below.

 (5_1^-) at 2054 keV. The 5_1^- state at 2054 keV was previously reported to decay to the 4_1^+ state through a transition of 383 keV [9]. This transition was observed and confirmed to have an intensity consistent with the literature intensity with some reduction in the uncertainty. Evidence was found for an additional depopulating transition, of 279.09(9) keV with intensity 5.3(2), to the 6_1^+ state. This new transition is consistent with the previous spin assignment of 5_1^- .

Level at 2192 keV. A level 2191.93(22) keV is observed on the basis of one populating and one depopulating transition. The prior β -decay study [8] places a 138.5 keV transition, with intensity 7.0(20), tentatively depopulating a level at 3349 keV. Our coincidence data find a 138.05(8) keV transition with intensity 6.5(9) as depopulating a new level at 2192 keV. This placement is supported by additional coincidence relations (see Table I).

 (2_4^+) at 2249 keV. A new level at 2249 keV is identified on the basis of two depopulating transitions and two weak populating transitions. The level is observed to decay to the 2_1^+ and 0_1^+ states via a 1274.6(2) keV line with intensity 5.0(5) and a 2248.8(6) keV line with intensity 0.3(2), respectively. A 1274.6 keV line was observed with an intensity of 12(2) in the prior β -decay study, but it was not given a placement within the level scheme of ¹³²Te.

 (3_1^-) at 2281 keV. A 3_1^- level was previously reported at 2281 keV [8,9]. The placement was based primarily on three transitions, 610 keV with intensity 20(4), 1306 keV with intensity 10(2), and 2280 keV with intensity 10(2), from this level to the 4_1^+ , 2_1^+ , and 0_1^+ states, respectively. These intensities yield a huge value for the corresponding B(E3) of the $3^- \rightarrow 0_1^+$ transition. From the reported literature values [9], the ratio $B(E1; 3^- \rightarrow 2^+)/B(E3; 3^- \rightarrow 0^+)$ gives 3×10^{-8} . Assuming a $B(E1; 3^- \rightarrow 2^+)$ value of $\sim 10^{-4}$ W.u., which is typical for transitions of this kind in this region [11], the $B(E3; 3^- \rightarrow 0^+)$ would have been $\sim 10^4$ W.u., two orders of magnitude larger than any other known value. If this was indeed the decay mode of this state, it would have presented a challenge to our understanding of negative parity excitations.

TABLE I. Observed γ -ray transitions in ¹³²Te, arranged in order of increasing transition energy. Intensities (normalized to $I_{974} \equiv 1000$) and the most useful coincidence relations are given.

E_{γ} (keV)	Ι	E_i (keV)	E_f (keV)	Coincidences (keV)
103.36(8)	611(131)	1774.69	1671.34	151,354,636,697,974,990,1152,1197,1436
$124.2(2)^{a}$	1.2(4)	3091.7	2967.4	383,1042
138.05(8) ^b	6.5(9)	2191.93	2053.88	383,697,974
143.0(3) ^a	0.7(3)	3234.8	3091.7	1042,1166
150.54(7)	436(61)	1925.23	1774.69	103,697,974
$172.2(2)^{a}$	2.6(6)	3478.1	3305.9	338.964.1042.1129
$214.22(9)^{a}$	6(1)	3305.9	3091.7	287,1136,1166,1207,1301
$237.8(4)^{a}$	0.8(6)	2601.8	2363.7	1389.2363
$2437(2)^{a}$	2.3(8)	3335 5	3091 7	258 849 921 1014 1166
$257.61(8)^{a}$	3 5(5)	3593.1	3335 5	244 670 849 921 1014 1166 1410
$2737(4)^{a}$	23(7)	3241.1	2967 4	A11 AA9 7A0 760 1042
275.7(4) 276.45(7) ^b	2.3(7) 8 $4(8)$	52 4 1.1 2764 37	2907.4	380 601 607 817 822 074 1514
270.43(7) 270.00(0) ^a	5 2(2)	2704.37	2407.9	102 260 611 607 074 1181
279.09(9)	$\frac{5.5(2)}{1.4(10)}$	2000.00	2205.0	214 228 840 1014 1042 1281
$207.1(5)^{\circ}$	1.4(10)	5595.1 2261.0	5505.9 20(7.4	214,556,649,1014,1042,1561
$293.02(7)^{2}$	18(1)	3201.0	2967.4	441,449,735,740,1042,1340,1453
301.4(4) ^a	0.4(2)	2854.5	2553.2	437,445,882,1134
325.6(3) ^a	2.0(6)	3210.4	2884.8	697,777,974,1214
338.55(9) ^a	9(1)	3305.9	2967.4	173,287,441,494,696,689,1042,1137,1207
353.69(8)	19(1)	2764.37	2410.6	103,636,697,974
356.78(9) ^a	2.8(5)	3211.1	2854.5	103,697,731,844,974,1080,1183
363.25(12) ^a	1.4(9)	2971.5	2608.2	500,1134,1634
368.49(9)	24(2)	2422.3	2053.88	243,279,383,697,813,928,974,1056,1171
379.9(1) ^a	3.7(4)	2487.9	2108.05	276,437,697,974,1134,1887
382.65(9)	74(4)	2053.88	1671.34	138,369,385,611,697,974,1181,1281,2022
383.2(2) ^a	9(1)	3350.5	2967.4	911,1042,1092
384.93(9) ^a	2.7(6)	2576.9	2191.93	138,279,383,697,974
399.9(9) ^a	0.8(2)	2763.6	2363.7	974,1389,2363
406.75(10) ^a	1.6(6)	3015.1	2608.2	500,1134,1634
436.72(8)	14(1)	2108.05	1671.34	380.445.500.656.697.777.907.974
440.98(8) ^a	14(1)	4442.6	4001.6	273.294.338.518.538.696.740.760.1034
443 7(3) ^a	0.7(2)	2854 5	2410.6	103 636 697 974
$445.09(8)^{a}$	7(1)	2553.2	2108.05	437 697 974 1076 1134 1338 1502 1574
140 3(1) ^a	(1)	3710.3	3261.0	273 204 518 538 1042
49.3(1)	0.4(2)	2601.8	2108.05	A37 113A
493.7(4)	0.4(2)	2001.8	2108.05	204 238 680 733 1027 1042
495.95(8)	$\frac{3.4(3)}{48(2)}$	2422.2	1025.22	274,558,089,755,1027,1042
490.90(8)	48(5)	2422.5	1923.25	243,813,928,1030,1171,1271,1381,2100
$500.1(2)^{\circ}$	3.3(3)	2008.2	2108.05	505,457,1154 840,1014,1166
501.5(2)	2.4(0)	3393.1	3091.7	849,1014,1100
510.96(8)*	10.9(14)	34/8.1	2967.4	964,1042,1129
523.24(10) ^a	4(1)	2576.9	2053.88	383,279,697,974
552.0(2) ^a	3.0(5)	3519.1	2967.4	
560.9(2) ^a	2.5(5)	2971.5	2410.6	103,591,636,658,697,974
$568.8(2)^{a}$	1.6(4)	4262.5	3693.7	1767
569.6(5) ^a	3.4(5)	3234.8	2665.2	383,611,1254,1354
591.09(9) ^a	3.3(7)	3562.5	2971.5	561,636,1197,1300
611.36(9) ^b	19(1)	2665.2	2053.88	279,383,570,670,928
635.9(1)	62(3)	2410.6	1774.69	103,354,561,697,974,1108,1115,1152
655.7(3) ^a	1.9(6)	2763.6	2108.05	437,1134
657.6(3) ^a	1.1(4)	3629.4	2971.5	561,636,1197,1300
667.9(3) ^a	0.7(3)	4260.9	3593.1	258,287,501,928,1171,1668
670.3(3) ^a	0.9(4)	3335.5	2665.2	258,611
688.8(2) ^a	3.1(5)	3994.8	3305.9	338.494
$690.96(10)^{a}$	20(3)	1665 30	974 34	276.822.936.974.1098 2717 2919
695 9(2) ^a	3 1(5)	4001.6	3305.0	338 441
697 0(1)	873(A0)	1671 3/	07/ 3/	103 151 383 437 817 074 000 1002
$700 1(3)^{a}$	0.5(+0)	2487.0	7/4.J4 1707 6	212 1727
/00.1(3)	0.0(1)	2407.9	1/8/.0	013,1707

TABLE I. (Continued.)

E_{γ} (keV)	Ι	E_i (keV)	E_f (keV)	Coincidences (keV)
723.5(4) ^a	2.3(5)	3211.1	2487.9	817,974,1514
730.9(3) ^a	2.4(6)	3942.1	3211.1	357,1437,1540
733.0(3) ^a	1.0(3)	3994.8	3261.0	294,494,1042
737.3(2) ^a	1.2(8)	3254.8	2517.4	974,1543
740.5(1) ^a	6.0(6)	4001.6	3261.0	273,294,441,518,538,1042
750.6(2) ^a	1.4(4)	4443.5	3693.7	1767
$760.4(2)^{a}$	2.0(8)	4001.6	3241.1	273,441,518
776.7(2) ^b	5(1)	2884.8	2108.05	326,437,1134
782.5(4) ^a	0.4(2)	4260.9	3478.1	511,1042,1553
796.6(2) ^a	1.8(4)	4490.3	3693.7	1767
798.2(5) ^a	0.3(2)	3562.5	2764.37	990,103,697,974
812.54(10) ^a	4.8(6)	3234.8	2422.3	369,497,1254,1354
813.25(10) ^b	23(1)	1787.6	974.34	974,2587
814.2(3) ^a	0.6(3)	2601.8	1787.6	813,1787
816.56(10)	68(4)	2487.9	1671.34	276,697,724,974,1887
821(1) ^a	<0.2	2608.2	1787.6	813,1787
822.6(1) ^a	3.4(3)	2487.9	1665.30	691,974
841.1(4) ^a	0.9(3)	4534.8	3693.7	1767
844.1(2) ^a	1.6(4)	4055.4	3211.1	357.1437.1540
$8495(1)^{a}$	12(1)	4442.6	3593.1	258 287 501 928 1171 1668
881 8(1) ^b	9(1)	2553.2	1671 34	697 974 1076 1338 1502 1574
$907.0(4)^{a}$	14(4)	3015.1	2108.05	437 1134
$910.2(2)^{a}$	1.1(1) 1.2(4)	4260.9	3350.5	383 929 1426
$921.1(2)^{a}$	2.8(7)	4513.8	3593.1	258 287 501 928 1171 1668
$927.9(4)^{a}$	3.2(6)	3593.1	2665.2	611 849 921 1014
930 3(3) ^a	6.6(11)	2601.8	1671 34	697 974
$936.5(2)^{a}$	4 3(5)	2601.8	1665 30	691 974
$936.9(2)^{a}$	4(1)	2608.2	1671 34	697 974
955(1) ^a	-1(1)	4260.9	3305.9	338 1381
953(1)	7(1)	4200.9	3478 1	173 511 1056 1553
974 34(10)	1000(50)	974 34	0.0	691 697 813 1134 1275 1389 1513
989 67(11)	91(6)	2764 37	1774 69	103 697 974
$1014.25(11)^{a}$	10(1)	4607 3	3593 1	258 287 501 928 1171 1668
1014.25(11) $1027 A(2)^{a}$	10(1)	300/ 8	2067 /	494 1042
1027.4(2) $1034.2(2)^{a}$	-4.3(7)	4001.6	2907.4	441 1042
10.042(2) $10.042(1)^{b}$	74(4)	2067 /	1025.23	294 273 338 1027 1034
1042.1(1) 1055 06(11) ^a	/ 4 (4) / 8(0)	3478 1	2422.25	360 407 064 1120
1055.90(11) 1056 7(2) ^a	4.8(9)	2821.1	2422.3	254 000
1030.7(3) 1076 2(2) ^a	1.4(4) 1.7(10)	3621.1	2704.37	334,990 427 445 882 1124
1070.2(2)	1.7(10)	3029.4 2854 5	2333.2	457,445,662,1154
10/9.77(12) 1087 76(12) ^a	2.0(4)	2034.3	1774.09	103,537,1088,1201
$1007.70(13)^{\circ}$	2.7(0) 1.8(6)	3942.1	2004.0	282 020 1426
1092.0(3) 1002.04(11) ^b	1.0(0)	4442.0	1671.24	505,929,1420
1095.04(11)	28(2)	2704.57	10/1.54	697,974
1098.3(2)*	1.7(4)	2/63.6	1005.30	691,974
$1103.2(4)^{a}$	0.5(2)	3211.1	2108.05	457,1154
$1108.5(2)^{a}$	2.5(6)	3519.1	2410.6	103,636,697,974
1114.5(3) ^a	1.3(9)	3525.1	2410.6	103,636,697,974
$1120.7(4)^{a}$	0.5(2)	3/22.3	2601.8	813,930,936
1126.5(3) ^a	0.9(4)	3891.6	2764.37	990
1129.0(2) ^a	6(1)	4607.3	34/8.1	1/3,511,1056,1553
1133.8(2)	34(2)	2108.05	974.34	380,445,500,656,777,974
1136.66(18) ^a	0.9(3)	4442.6	3305.9	214,338,1381
1151.85(16)	21(1)	3562.5	2410.6	103,636,697,974
1166.46(13)	22(1)	3091.7	1925.23	214,243,501,1169,1351
1169.2(3) ^a	8(1)	4260.9	3091.7	1166
1170.9(2) ^a	13.8(30)	3593.1	2422.3	369,497,849,921,1014
$1181.0(2)^{a}$	9(1)	3234.8	2053.88	279,383,1254,1354

TABLE I.	(Continued.)
----------	--------------

E_{γ} (keV)	Ι	E_i (keV)	E_f (keV)	Coincidences (keV)
1181.6(3) ^a	1.3(4)	4442.6	3261.0	294,1042
1183.3(3) ^c	6.4(6)	2854.5	1671.34	357,697,974,1088,1201
1196.7(2) ^b	9.5(7)	2971.5	1774.69	103,591,658,697,974
1200.9(13) ^a	0.6(4)	4055.4	2854.5	1080,1183
1207.64(18) ^a	2.6(9)	4513.8	3305.9	214,338,1381
1213.55(12)	14(1)	2884.8	1671.34	326,697,974
1219.0(5) ^a	< 0.5	3629.4	2410.6	636
1219.6(6) ^a	0.2(1)	2884.8	1665.30	691,974
1227.7(9) ^a	< 0.2	3015.1	1787.6	813,1787
1238.0(6) ^a	0.2(1)	4588.5	3350.5	383,929,1426
$1238.01(2)^{a}$	4.3(5)	3660.3	2422.3	369,497
1240.1(6) ^a	3(1)	3015.1	1774.69	103,697,974
1246.6(4) ^a	0.7(2)	2917.9	1671.34	697,974
1252.6(4) ^a	0.8(2)	2917.9	1665.30	691,974
1254.1(2) ^a	3.3(6)	4488.7	3234.8	570,813,1181,1310
$1271.4(3)^{a}$	2.1(9)	3693.7	2422.3	369.497
$1274.6(2)^{\circ}$	5.0(5)	2248.9	974.34	974.2126.2166.2218.2284
$1281.8(3)^{a}$	2.2(14)	3335.5	2053.88	279.383
$1291.0(8)^{a}$	0.2(1)	4055.4	2764.37	354,990,1093
$1293 3(3)^{a}$	1.5(5)	4260.9	2967.4	1042
$1300.2(2)^{a}$	4.4(5)	2971.5	1671.34	591.658.697.974
$1300.2(2)^{a}$	1.0(3)	4607 3	3305.9	214 338 1381
$1309.46(13)^{a}$	12(1)	3234.8	1925 23	1254 1354
1309.10(13) 1321 3(2) ^a	12(1) 1 1(3)	3429.4	2108.05	437 1134
1321.3(2) 1338 8(3) ^a	<1	3891.6	2553.2	445 882
$1343 6(3)^a$	20(5)	3015.1	1671 34	697 974
$1346 \ 3(2)^a$	2.0(5) 2 4(5)	4607 3	3261.0	273 294 518 538
$1351.05(15)^{a}$	3 2(6)	4442 6	3091.7	1166
1353 95(16) ^a	7(1)	4588 5	3234.8	570 813 1181 1310
1358 6(4) ^a	(1)	3722.3	2363 7	074 1380 2363
1380.7(2)	10(1)	3305.9	1925.23	287 689 696 1136 1207
1380.7(2) 1380.8(3) ^a	16(4)	3488 3	2108.05	437 1134
1380 5(2) ^a	1.0(4) 1 2(7)	2363 7	074 34	238 400 974 1359 1524 2011
1309.3(2) $1400.8(5)^{a}$	1.2(7)	4173.8	2764 37	238,400,974,1359,1524,2011
1409.0(3) $1/10.2(2)^{a}$	8(1)	3335 5	1025.23	258 849 921 1014
1410.2(2) $1422.0(2)^{a}$	5(1)	4513.8	3001 7	1166
1422.0(2) $1425.3(2)^{a}$	5 6(7)	3350 5	1025.23	910 1092
1425.5(2) 1436.45(14)	13.0(7)	3211.1	1925.25	607 731 844 074
1450.45(14) $1453.2(3)^{a}$	0.4(10)	4714.2	3261.0	204
1455.2(5)	0.4(2) 0.9(4)	4/14.2	2108.05	294 437 1134
1434.3(3) $1475.0(3)^{a}$	0.9(4)	4442.6	2108.05	1042
1475.0(5) $1480.1(4)^{a}$	1.5(3)	3801.6	2907.4	1042
1400.1(4) $1502.2(2)^{a}$	0.0(2)	4055 4	2410.0	105,050,057,574
1502.5(2)	1.3(3) 12 4(12)	4033.4	2355.2	457,445,882,1154
1515.0(1)	12.4(12) 1 4(4)	2487.9	974.54	270,724,974,1887
1521.2(4) 1522 5(2) ^a	1.4(4)	3029.4	2108.05	457,097,974,1154
$1525.5(5)^{\circ}$	1.2(0) 1.2(2)	2042 1	2303.7	102 626 607 074
1551.0(5)*	1.3(3)	3942.1	2410.6	103,030,097,974
1539.6(3)	4.8(14)	3211.1	16/1.34	697,731,844,974
1543.1(2) ^a	1.4(6)	2517.4	974.34	/3/,9/4
1553.1(2) ^a	/(1)	34/8.1	1925.23	964,1129
15/4.0(2)*	4.3(5)	4127.0	2553.2	437,445,882,1134
15/9.8(2)"	3.0(10)	4002.1	2422.3	369,383,497
1633.9(2)	7(1)	2608.2	9/4.34	363,974
1644.5(2)°	9(1)	4055.4	2410.6	103,636,697,974
1665.3(2) ^a	0.2(1)	1665.30	0.0	822,936,1098
1667.9(2) ^a	17.9(19)	3593.1	1925.23	849,921,1014
1763.2(4) ^c	2.2(6)	4173.8	2410.6	103,636,697,974

TABLE I. (Continued.)

166.93 ¹ 14(1) 369.7 1925.23 569.71.77.841 1787.623 ¹ 0.0 2887 178.161 178.161 0.0 2887 1787.623 ¹ 0.63(1) 4408.3 2487.9 83.161 182.141 185.343 245.2 383.611 1887.244 ¹ 2.55(5) 4408.4 174.69 30.807.974 1887.244 ¹ 285.38 383 1887.464 ¹⁰ 0.0(5) 390.21 285.38 383 383.60774 1887.464 ¹⁰ 0.0(5) 4955.3 2410.5 103.866.0774 1943.564 ¹⁰ 3.7(7) 29.17.9 974.34 94 144.154 1943.564 ¹⁰ 3.7(7) 29.17.9 974.34 974 143.14 1943.564 ¹⁰ 3.6(6) 4455.3 2410.65 383.67.97.41 1389.26.63 11.1389 -0.4 435.1 266.5.2 383.61.97.41 1389.26.64 210.8.66.69.77.4 210.8.66.69.77.4 210.8.66.69.77.4 210.8.66.69.77.4 210.8.66.69.77.4 210.8.66.69.77.4 210.8.7.66.97.74 210.6.1.69.71.4 217.77.7 216.6.1.77.4.6.9 10.3.66.69.77.4 216.6.1.77.4 <th>E_{γ} (keV)</th> <th>Ι</th> <th>E_i (keV)</th> <th>E_f (keV)</th> <th>Coincidences (keV)</th>	E_{γ} (keV)	Ι	E_i (keV)	E_f (keV)	Coincidences (keV)
1787.63 ¹ 16(1) 1787.6 0.0 287 1857.74 ¹ 0.8(3) 4405.3 2487.9 817.1514 1822.14 ¹⁰ 0.6(3) 4488.7 2665.2 33.611 1887.24 ¹⁰ 2.5(5) 3629.4 177.469 103.697.974 1887.24 ¹⁰ 0.6(3) 3942.1 2053.88 383 1894.64 ¹⁰ 0.9(3) 4305.3 2406.0 103.669.9734 1943.85 ¹⁰ 0.04 4533.0 2068.2 30.01154.1634 1943.26 ¹⁰ 1.6(6) 4654.1 2068.2 33.611 1983.85 ¹⁰ 2.4(6) 4127.0 2108.05 437.697.974.1134 2011.30 ¹⁰ -0.4 437.51 204.5 201.201.774 2012.27(5) ¹⁰ 1.1(5) 4443.5 210.6 173.67 210.6 2013.80 ¹⁰ 0.9(3) 30.51 774.34 974 200.201.777 1.131.4 203.201.777 210.6 213.787 210.6 133.787 210.6 217.4 212.175 210.1 213.787 210.6 217.4 213.777 215.4 213.73 2248	1766.9(3) ^a	14(1)	3693.7	1925.23	569,751,797,841
1815.7(d^{1} 0.8(3)4305.32487.9817.15141822.1(d^{1} 0.6(3)4488.7265.2383.6111854.3(d^{1} 2.5(5)3629.41774.69103.6779741884.7(d^{1} 0.6(3)3402.12053.883831894.6(d^{1} 0.6(3)3402.12053.883831924.889'-0.44353.02668.2500.113.16141934.5(q^{1} 3.3(7)2917.9974.349741947.2(3)'1.8(5)4055.42108.05437.697.974.11341988.9(q^{1} 1.6(6)4451.12665.233.6111988.8(q^{1} 1.6(6)4451.12665.233.6111988.8(q^{1} 1.6(6)447.12665.233.6111988.8(q^{1} 1.6(6)447.71.389.2663218.66,97.9742011.3(q^{1} 1.4(6)447.7208.6547.667.9742022.9(q^{1} 1.1(5)443.52410.6103.65.669.742012.9(q^{1} 1.1(5)443.52410.6103.66.69.742014.1(q^{1} 1.5(4)3891.61774.69103.677.9742016.0(q^{1} -0.23887.11787.6813.17872106.1(q^{1} 1.5(4)3891.61774.69103.67.697.9742166.2(q^{1} 3.64.1247.3309.38.497.697.9742166.2(q^{1} 3.64.11774.69103.67.697.9742166.2(q^{1} 3.64.11774.69103.67.697.9742166.2(q^{1} 4.55.2216.3216.1 <t< td=""><td>1787.6(3)^b</td><td>16(1)</td><td>1787.6</td><td>0.0</td><td>2587</td></t<>	1787.6(3) ^b	16(1)	1787.6	0.0	2587
1822.1(4)* 0.6(3) 4488.7 2665.2 383.11 1854.3(3)* 25(5) 3629.4 1774.69 103.697.974 1887.2(4)* 2.9(9) 4757.1 2487.9 380.178.22.1514 1890.1(b* 0.6(3) 3942.1 2053.88 383 1894.6(b*) 0.9(3) 4305.3 240.6 103.667.974 1943.5(4)* 0.04 4533.0 2608.2 360.1134.1651 1943.5(4)* 3.6(7) 2017.9 974.34 974 1943.5(4)* 1.6(6) 4654.1 2665.2 383.011 1988.9(4)* 1.6(6) 4455.1 2108.05 473.677.974.1134 2022.9(6)* 1.2(11) 476.8 2053.88 383.677.974 2022.9(6)* 1.2(11) 476.8 2013.85 242.3 2022.9(6)* 1.2(11) 476.8 131.1787 210.1(1)* <0.2	1815.7(4) ^a	0.8(3)	4305.3	2487.9	817,1514
1854.30° 2.5(5) 3629.4 1774.69 103,036,07,974 1887.2(4)* 2.9(9) 4375.1 2487.9 330,817,822,1514 1890.(1)* 0.6(3) 3492.1 2033.88 33 1894.6(4)* 0.9(3) 4305.3 2608.2 501,134,1634 1943.5(4)* 3.3(7) 2917.9 974.34 974 1947.20)* 1.8(5) 4055.4 2108.05 437,679,714,1134 2011.3(8)* -0.4 4375.1 2363.7 1389,2365 2011.3(8)* -0.4 4375.1 2363.7 1389,2366 2012.705/* 1.1(5) 4443.5 2410.6 103,656,07,974 2032.705/* 1.1(5) 4443.5 2410.6 103,566,07,974 2012.705/* 1.1(5) 4483.5 2410.6 103,566,07,974 2012.01/* -0.2 388.1 1787.6 81,1787 2106.1(4)* 1.5(4) 3891.6 1774.69 103,566,07,974 2106.2(2)* 0.6(4) 4453.3 2248.9 974,12	1822.1(4) ^a	0.6(3)	4488.7	2665.2	383,611
1887.24)* 2.9(9) 475.1 2487.9 380.17.822,1514 1894.64)* 0.9(3) 4305.3 2410.6 103.56,607.974 1943.63)* -0.4 4353.0 2608.2 500.1134.1634 1943.53(4)* 3.3(7) 2917.9 974.34 974 1947.2(3)* 1.8(5) 4055.4 2108.05 437,697.974,1134 1988.9(4)* 1.6(6) 4654.1 2665.2 383,611 2011.38(5)* 2.4(6) 4127.0 2108.05 437,697.974,1134 2022.7(5)* 1.1(5) 4443.5 2410.6 103,656.67.974 2020.2(6)* 1.2(11) 4076.8 203.388 133,1787 2000.8(6)* 0.9(3) 3015.1 974.34 974 2100.1(1)* <0.2	1854.3(3) ^c	2.5(5)	3629.4	1774.69	103,697,974
1890(1) ^b 0.6(3) 3942.1 2033.88 383 1894.6(4) ^b 0.9(3) 4305.3 2410.6 103.656.679.774 1924.8(8) ^b -0.4 453.0 2608.2 500.1134.163.4 1943.5(4) ^c 3.3(7) 2917.9 974.34 974 1947.2(3) ^c 1.8(5) 4055.4 2108.05 437,697.974.1134 1988.9(4) ^c 1.6(6) 4654.1 2665.2 38.011 1988.9(4) ^c 0.4 4375.1 2363.7 1389.236.3 2013.8(8) ^c 2.4(6) 4127.0 2108.05 437,697.974.1134 2022.9(6) ^c 1.2(11) 4065.5 2410.6 103.56,697.974 2014.0(4) ^c 0.9(3) 3015.1 974.3 974 2071.0(1) ^c -0.2 388.1 1787.6 813.1787 2106.1(4) ^c 1.5(4) 3891.6 1774.69 103.56,697.974 2120.0(1) ^c -0.6 4375.1 2248.9 974.1275 2166.0(2) ^c 0.6(4) 4453.3 2248.9	1887.2(4) ^a	2.9(9)	4375.1	2487.9	380,817,822,1514
1894.64 ^b 0.9(3) 4305.3 2410.6 103.65.607.974 1994.8(8)* -0.4 4533.0 2608.2 500.1134.16.44 1994.7(2)* 1.8(5) 4055.4 2108.05 437.697.974.1134 1988.9(4)* 1.6(6) 4654.1 2665.2 383.611 2011.3(b)* -0.4 4375.1 2363.7 138.92363 2022.7(5)* 1.1(5) 4443.5 2410.6 105.636.97.974 2022.7(5)* 1.1(5) 4443.5 2410.6 105.636.697.974 2022.7(5)* 1.1(5) 4443.5 2410.6 105.636.697.974 2040.8(6)* 0.9(3) 305.1 974.34 974 2040.1(6)* -0.2 3858.1 1787.6 815.1787 2106(1)* -0.2 3858.1 1774.69 103.697.974 2166.03* 1.3(5) 4585.5 2422.3 363.66.07.974 2166.049* 0.6(4) 4451.3 2248.9 974.125 2181.5(9* -0.4 46046.7 240.6 103.56.697.	1890(1) ^b	0.6(3)	3942.1	2053.88	383
1924.8(8)* <0.4 4533.0 200.2 200.113.(634 1943.5(4)* 1.8(5) 4055.4 2168.05 437.607.974.1134 1988.9(4)* 1.6(6) 4651.1 2665.2 383.611 2011.3(8)* <0.4	1894.6(4) ^b	0.9(3)	4305.3	2410.6	103,636,697,974
1943.5(4)* 3.3(7) 2917.9 974.34 974 1947.2(3)* 1.8(5) 4055.54 2108.05 437.607.974.1134 1988.9(4)* 1.6(6) 4654.1 2665.2 383.611 2011.3(8)* <0.4	1924.8(8) ^a	< 0.4	4533.0	2608.2	500,1134,1634
1947 203' 1.8(5) 4055.4 2108.05 437,697,974,1134 20113.08' <0.4	1943.5(4) ^a	3.3(7)	2917.9	974.34	974
1988.9(4)* 1.6(6) 4654.1 2665.2 383.611 2011.3(8) <0.4	1947.2(3) ^a	1.8(5)	4055.4	2108.05	437,697,974,1134
2011.3(8)* -0.4 4375.1 2363.7 1389.2363 2018.8(5)* 2.4(6) 4177.0 2108.05 477.079.74.1134 2022.9(6)* 1.2(11) 4076.8 2053.88 383.697.974 2022.7(5)* 1.1(5) 4443.5 2410.6 103.656.697.974 2071(1)* -0.2 3857.1 1787.6 813.1787 2100(1)* -0.2 3857.1 1787.6 813.1787 2116.1(4)* 1.5(4) 3891.6 1774.69 103.697.974 2126(2)* 0.6(4) 4415.3 2248.9 974.1275 2166.0(8)* 1.3(5) 4588.5 2422.3 309.383.497.697.974 2166.0(2)* 0.6(4) 4415.3 2248.9 974.1275 2181.5(9)* -0.4 4604.6 2420.5 135.6697.974 2194.0(8)* 1.2(5) 4604.6 2410.6 103.656.97.974 2194.0(8)* 1.3(10) 4305.3 2108.05 437.697.974.1134 2194.0(8)* 0.5 4555.2 385.61 <td< td=""><td>1988.9(4)^a</td><td>1.6(6)</td><td>4654.1</td><td>2665.2</td><td>383,611</td></td<>	1988.9(4) ^a	1.6(6)	4654.1	2665.2	383,611
2018.8(5) ^µ 2.4(6) 4127.0 2108.05 437.697.97.41.134 2022.9(6) ^µ 1.2(11) 4076.8 2053.86 383.697.974 2022.9(6) ^µ 1.1(5) 4443.5 2410.6 103.656.697.974 2040.8(6) ^µ 0.9(3) 3015.1 974.34 974 2040.8(6) ^µ 0.9(3) 3015.1 974.34 974 2106.1(1) ^µ -0.2 3858.1 1787.6 813.1787 2116.1(4) ^µ 1.5(4) 3891.6 1774.69 103.697.974 2166(2) ^µ 0.7(4) 4375.1 2248.9 974.1275 2166(2) ^µ 0.6(4) 4415.3 2248.9 974.1275 2187(1) ^µ 0.6(3) 3858.1 1671.34 697.974 2197.2(5) ^µ 1.3(10) 4305.3 2108.05 437.697.974.1134 2197.2(5) ^µ 1.3(10) 4305.3 2108.05 437.697.974.1134 2197.2(5) ^µ 0.3(2) 248.9 0.0 2126.2166.2218 2219.(2) ^µ 0.4(2) 4880.1 2246.	2011.3(8) ^a	<0.4	4375.1	2363.7	1389,2363
2022.9(6)* 1.2(1) 4076.8 2053.88 383.697.974 2032.7(5)* 1.1(5) 4443.5 2410.6 103.636.697.974 2032.7(5)* 0.9(3) 3015.1 974.34 974 2071(1)* <0.2	2018.8(5) ^a	2.4(6)	4127.0	2108.05	437,697,974,1134
2032.7(j^{h} 1.1(s^{h} 4443.52410.6103.636.697.9742040.8(j^{h} 0.9(3)3015.1974.349742040.8(j^{h} 0.023858.11787.6813.17872100(1) ^h <0.2	2022.9(6) ^a	1.2(11)	4076.8	2053.88	383,697,974
$2040.8(6)^{\circ}$ $0.9(3)$ 3015.1 974.34 974 $2071(1)^{\circ}$ <0.2 3858.1 1787.6 813.1787 $2100(1)^{\circ}$ <0.2 3887.1 1787.6 813.1787 $2116.1(4)^{\circ}$ $1.5(4)$ 3891.6 1774.69 $103.697.974$ $2126(2)^{\circ}$ $0.7(4)$ 4375.1 2248.9 974.1275 $2166.0(8)^{\circ}$ $1.3(5)$ 4588.5 2422.3 $369.383.497.697.974$ $2166(2)^{\circ}$ $0.6(4)$ 4415.3 2248.9 974.1275 $2181.5(9)^{\circ}$ <0.4 4604.6 2422.3 $369.383.497.697.974$ $2197.2(5)^{\circ}$ $1.3(10)$ 4305.3 2108.05 $437.697.974.134$ $2194.0(8)^{\circ}$ $1.2(5)$ 4604.6 2422.3 $369.383.497.697.974.134$ $2197.2(5)^{\circ}$ $1.3(10)$ 4305.3 2108.05 $437.697.974.134$ $2197.2(5)^{\circ}$ $1.3(10)$ 4305.3 2108.05 $69.1974.134$ $2215.(9)^{\circ}$ <0.5 4585.2 2363.7 $974.1275.73.73.73.74.134$ $2225(1)^{\circ}$ 0.4 4533.0 2248.9 $974.1275.73.73.73.74.134.77.75.73.73.73.74.134.73.73.74.174.692284.2(5)^{\circ}2.1(5)4665.2383.611.73.74.79.79.74.134.73.73.79.79.74.134.73.73.79.79.74.134.73.73.79.79.74.134.73.73.79.79.74.134.73.73.79.79.74.134.73.73.79.79.74.134.73.73.79.79.74.134.73.73.79.79.74.134.73.73.79.79.74.73.73.79.79.74.73.73.79.79.74.73.73.79.79.74.73.73.79.79.74.73.73.79.79.74.73.73.79.79.74.73.73.79.79.74.73.73.79.79.74.73.73.79.79.74.73.73.79.79.74.73.73.79.79.74.73.73.79.79.74.73.73.79.79.74.73.73.79.79.74.73.73.79.79.74.73.$	2032.7(5) ^a	1.1(5)	4443.5	2410.6	103.636.697.974
$-0.201(1)^{5}$ -0.2 3858.1 1787.6 $813,1787$ $2100(1)^{4}$ -0.2 3887.1 1787.6 $813,1787$ $2116.1(4)^{4}$ $1.5(4)$ 3891.6 1774.69 $103,697.974$ $2126(2)^{4}$ $0.7(4)$ 4375.1 2248.9 $974,1275$ $2166(2)^{6}$ $0.6(4)$ 4415.3 2248.9 $974,1275$ $2187(1)^{4}$ $0.6(3)$ 3858.1 1671.34 697.974 $2197(2)^{5}$ $0.6(3)$ 3858.1 1671.34 697.974 $2197(2)^{5}$ $0.6(3)$ 3858.1 1671.34 697.974 $2197(2)^{5}$ $0.6(3)$ 3858.1 1665.30 $97.974.1234$ $2197(2)^{5}$ 0.4 4467.7 2248.9 974.1275 $2221(2)^{5}$ 0.42 4890 2665.2 335.611 $2225(1)^{5}$ 0.42 4890 2665.2 33.611 $2248.2(5)^{5}$ 0.42 4890 2665.2 33.611 223	2040.8(6) ^a	0.9(3)	3015.1	974.34	974
2100(1)*<0.23887.11787.6813.17872116.1(4)*1.5(4)3891.61774.69103.697.9742126(2)*0.7(4)4375.12248.9974.12752166.08)*1.3(5)4588.52422.3369.383.497.697.9742166(2)*0.6(4)4415.32248.9974.12752181.5(9)*<0.4	$2071(1)^{a}$	< 0.2	3858.1	1787.6	813,1787
2116.1(4)*1.5(4)3891.61774.69103.697.9742126(2)*0.7(4)4375.12248.9974.12752166.0(8)*1.3(5)4588.52422.3369.383.497.697.9742166.0(8)*0.6(4)4415.32248.9974.12752181.5(9)*<0.4	$2100(1)^{a}$	< 0.2	3887.1	1787.6	813,1787
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$2116 1(4)^{a}$	1 5(4)	3891.6	1774 69	103 697 974
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2110.1(+) $2126(2)^{a}$	0.7(4)	4375 1	2248 9	974 1275
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2120(2) 2166 $\Omega(8)^a$	1.3(5)	4588 5	22-10.9	360 383 407 607 074
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$2166(2)^{a}$	1.5(5)	4/15 3	2722.5	974 1275
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2100(2) 2181 5(0) ^a	<0.0(4)	4413.5	2240.9	360 383 407
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2101.3(9) $2197(1)^{a}$	< 0.4	2959 1	1671.24	607.074
$2197.2(5)^{*}$ $1.3(10)$ 4004.5 2140.5 $105.05.097,974$ $2197.2(5)^{*}$ $1.3(10)$ 4305.3 2108.05 $437,697,974,1134$ $2219(2)^{*}$ <0.4 4467.7 2248.9 $974,1275$ $2222(1)^{*}$ $0.5(2)$ 3887.1 1665.30 $691,974$ $2225(1)^{*}$ $0.4(2)$ 4890 2665.2 $383,611$ $2248.8(6)^{*}$ $0.3(2)$ 2248.9 0.0 $2126,2166,2218$ $2280.2(5)^{*}$ $2.1(5)$ 4054.9 1774.69 $103,697,974$ $2284.2(5)^{*}$ <0.4 4533.0 2248.9 $974,1275$ $2307.4(7)^{*}$ $1.1(4)$ 4415.3 2108.05 $437,697,974,1134$ $2365.7(5)^{*}$ $0.5(3)$ 4466.8 2108.05 $437,697,974,1134$ $2365.5(3)^{*}$ $3.6(4)$ 2363.7 0.0 $238,400,135,1524,2011,2221$ $2383.6(3)^{*}$ $3.3(14)$ 4054.9 1671.34 $697,974$ $2413.7(7)^{*}$ <0.5 4477.7 203.88 $383,697,974$ $2477.0(3)^{*}$ $2.3(9)$ 4585.2 2108.05 $437,697,974,1134$ $2563.0(3)^{*}$ $3.8(10)$ 4337.7 1774.69 $103,697,974$ $2477.0(3)^{*}$ $2.3(9)$ 4585.2 2108.05 $437,697,974,1134$ $2563.0(3)^{*}$ $3.8(10)$ 4337.7 1774.69 $103,697,974$ $257.1(4)^{*}$ $3.6(9)$ 4375.1 178.6 $813,974,1788$ $263.0(4)^{*}$ $2.6(5)$ 4685.9 2053.88 $32,697,974$ <t< td=""><td>$2107(1)^{2}$</td><td>0.0(5)</td><td>3838.1</td><td>2410 6</td><td>102 626 607 074</td></t<>	$2107(1)^{2}$	0.0(5)	3838.1	2410 6	102 626 607 074
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2194.0(8)^{\circ}$	1.2(3)	4004.0	2410.0	105,050,097,974
219(2)*<0.4440.72248.9974.12752211.5(9)*<0.5	$2197.2(3)^{\circ}$	1.3(10)	4303.3	2108.05	437,097,974,1134
$2221(9)^{\circ}$ <0.54585.22567.7974,189,2363 $2222(1)^{4}$ 0.5(2)3887.11665.30691.974 $2225(1)^{4}$ 0.4(2)48902665.2383,611 $2248.8(6)^{\circ}$ 0.3(2)2248.90.02126,2166,2218 $2280.2(5)^{5}$ 2.1(5)4054.91774.69103,697,974 $2284.2(5)^{4}$ <0.4	2219(2)*	<0.4	4407.7	2248.9	974,1275
$2222(1)^{*}$ $0.5(2)$ 388.1 1605.30 $691.9/4$ $2225(1)^{*}$ $0.4(2)$ 480 2665.2 383.611 $2248.8(6)^{*}$ $0.3(2)$ 2248.9 0.0 $2126.2166.2218$ $2280.2(5)^{6}$ $2.1(5)$ 4054.9 1774.69 $103.697.974$ $2284.2(5)^{*}$ <0.4 4533.0 2248.9 974.1275 $2307.4(7)^{*}$ $1.1(4)$ 4415.3 2108.05 $437.697.974.1134$ $2363.5(3)^{*}$ $0.5(3)$ 4468.8 2108.05 $437.697.974.1134$ $2363.5(3)^{*}$ $3.6(4)$ 2363.7 0.0 $238.400.1359.1524.2011.2221$ $2383.6(3)^{*}$ $3.6(4)$ 2363.7 0.0 $238.400.1359.1524.2011.2221$ $2383.6(3)^{*}$ $3.5(4)$ 2363.7 0.0 $238.400.1359.1524.2011.2221$ $2383.6(3)^{*}$ $3.5(4)$ 2363.7 0.0 $238.400.1359.1524.2011.2221$ $2383.6(3)^{*}$ $3.5(4)$ 2363.7 0.0 $238.400.1359.1524.2011.2221$ $2383.6(3)^{*}$ $3.3(14)$ 4054.9 1671.34 697.974 $2413.7(7)^{*}$ <0.5 4467.7 2053.88 $383.697.974$ $2475.0(3)^{*}$ $2.3(9)$ 4337.7 1774.69 $103.697.974$ $2563.0(3)^{*}$ $3.6(0)$ 4375.1 178.7 $8263.0(4)^{*}$ $265.0(6)^{*}$ $1.9(4)$ 4339.6 1774.69 $103.697.974$ $2565.0(6)^{*}$ $1.9(4)$ 4335.1 178.6 813.1787 $2050.8)^{*}$ $0.6(2)$ 474.89 2053.88 <td>2221.5(9)"</td> <td><0.5</td> <td>4585.2</td> <td>2363.7</td> <td>974,1389,2363</td>	2221.5(9)"	<0.5	4585.2	2363.7	974,1389,2363
$2228, 8(6)^{\mu}$ $0.4(2)$ 4890 2665.2 $383,611$ $2248, 8(6)^{\mu}$ $0.3(2)$ $2248, 9$ 0.0 $2126, 2166, 2218$ $2280, 2(5)^{\mu}$ $2.1(5)$ 4054.9 1774.69 $103,697,974$ $2284, 2(5)^{\mu}$ <0.4 4533.0 $2248, 9$ $974, 1275$ $2307, 4(7)^{\mu}$ $1.1(4)$ 4415.3 $2108, 05$ $437,697,974, 1134$ $2360, 7(5)^{\mu}$ $0.5(3)$ 4468.8 $2108, 05$ $437,697,974, 1134$ $2363, 5(3)^{\mu}$ $3.6(4)$ 2363.7 0.0 $238, 400, 1359, 1524, 2011, 2221$ $2383, 6(3)^{\mu}$ $3.3(14)$ 4054.9 1671.34 $697,974$ $2413, 7(7)^{\mu}$ <0.5 4127.0 1671.34 $697,974$ $2477, 0(3)^{\mu}$ $2.3(9)$ 4585.2 $2108, 05$ $437,697,974, 1134$ $2513, 9(6)^{\mu}$ $1.7(9)$ 3488.3 974.34 974 $253.0(3)^{\mu}$ $3.8(10)$ $4337, 7$ 1774.69 $103,697,974$ $2587.1(4)^{\mu}$ $3.6(9)$ 4375.1 $1787, 6$ $813,974,1788$ $2633.0(4)^{\nu}$ $2.6(5)$ 4685.9 2053.88 $279,383,697,974$ $2655.0(6)^{\mu}$ $1.9(4)$ 4439.6 1774.69 $103,697,974$ $2710.9(7)^{\mu}$ $2.3(7)$ 4382.2 1671.34 $697,974$ $2710.9(7)^{\mu}$ $2.3(7)$ 4382.2 1665.30 $691,974$ $2717.0(9)^{\mu}$ <0.3 4584 $1787,6$ $813,1787$ $2801(1)^{\mu}$ <0.3 $4467,7$ 1665.30 $691,974$	2222(1) ^a	0.5(2)	3887.1	1665.30	691,974
$2248.8(6)^{a}$ $0.3(2)$ 2248.9 0.0 $2126.2166,2218$ $2280.2(5)^{b}$ $2.1(5)$ 4054.9 1774.69 $103.697.974$ $2284.2(5)^{a}$ <0.4 4533.0 2248.9 974.1275 $2307.4(7)^{a}$ $1.1(4)$ 4415.3 2108.05 $437.697.974,1134$ $2365.7(5)^{a}$ $0.5(3)$ 4468.8 2108.05 $437.697.974,1134$ $2363.5(3)^{a}$ $3.6(4)$ 2363.7 0.0 $238.400,1359,1524,2011,2221$ $2383.6(3)^{a}$ $3.3(14)$ 4054.9 1671.34 697.974 $2413.7(7)^{a}$ <0.5 4467.7 2053.88 $383.697.974$ $2455(1)^{a}$ <0.5 4127.0 1671.34 697.974 $2477.0(3)^{a}$ $2.3(9)$ 4585.2 2108.05 $437.697.974,1134$ $2563.0(3)^{a}$ $3.8(10)$ 4337.7 1774.69 $103.697.974$ $2563.0(3)^{a}$ $3.8(10)$ 4337.7 1774.69 $103.697.974$ $2563.0(3)^{a}$ $3.6(9)$ 4375.1 1787.6 $813.974.1788$ $2653.0(6)^{c}$ $1.9(4)$ 4439.6 1774.69 $103.697.974$ $2703.4(7)^{a}$ $1.2(4)$ 4375.1 1671.34 697.974 $2717.0(9)^{a}$ $2.3(7)$ 4382.2 1671.34 697.974 $2710.9(7)^{a}$ $0.4(2)$ 4433.5 1671.34 697.974 $2717.0(9)^{a}$ 0.3 4584 1787.6 813.1787 $2829.2(7)^{a}$ 0.5 4386.7 1665.30 691.974 $2703.4(7)^{a}$	2225(1)"	0.4(2)	4890	2665.2	383,611
$2280.2(5)^{o}$ $2.1(5)$ 4054.9 $17/4.69$ $103,697,974$ $2284.2(5)^{a}$ <0.4 4533.0 2248.9 $974,1275$ $2307.4(7)^{a}$ $1.1(4)$ 4415.3 2108.05 $437,697,974,1134$ $2360.7(5)^{a}$ $0.5(3)$ 4468.8 2108.05 $437,697,974,1134$ $2363.5(3)^{a}$ $3.6(4)$ 2363.7 0.0 $238,400,1359,1524,2011,2221$ $2383.6(3)^{a}$ $3.3(14)$ 4054.9 1671.34 $697,974$ $2413.7(7)^{a}$ <0.5 4467.7 2053.88 $383,697,974$ $2455(1)^{a}$ <0.5 4127.0 1671.34 $697,974$ $2477.0(3)^{a}$ $2.3(9)$ 4585.2 2108.05 $437,697,974,1134$ $2563.0(3)^{a}$ $1.7(9)$ 3488.3 974.34 974 $2563.0(3)^{a}$ $3.8(10)$ 4337.7 1774.69 $103,697,974$ $2587.1(4)^{b}$ $3.6(9)$ 4375.1 1787.6 $813,974,1788$ $2633.0(4)^{c}$ $2.6(5)$ 4685.9 2053.88 $279,383,697,974$ $2655.0(6)^{c}$ $1.9(4)$ 4439.6 1774.69 $103,697,974$ $2703.4(7)^{a}$ $1.2(4)$ 4375.1 1671.34 $697,974$ $2717.0(9)^{a}$ $2.3(7)$ 4382.2 1667.30 $691,974$ $2717.0(9)^{a}$ $0.4(2)$ 4433.5 1671.34 $697,974$ $2717.0(9)^{a}$ 0.3 4584 1787.6 $813,1787$ $2801(1)^{a}$ <0.3 4467.7 1665.30 $691,974$ $2797(1)^{a}$ <td< td=""><td>2248.8(6)^a</td><td>0.3(2)</td><td>2248.9</td><td>0.0</td><td>2126,2166,2218</td></td<>	2248.8(6) ^a	0.3(2)	2248.9	0.0	2126,2166,2218
$2284.2(5)^a$ < <0.4 4533.0 2248.9 $9/4,1275$ $2307.4(7)^a$ $1.1(4)$ 4415.3 2108.05 $437,697,974,1134$ $2360.7(5)^a$ $0.5(3)$ 4468.8 2108.05 $437,697,974,1134$ $2363.5(3)^a$ $3.6(4)$ 2363.7 0.0 $238,400,1359,1524,2011,2221$ $2383.6(3)^a$ $3.3(14)$ 4054.9 1671.34 $697,974$ $2413.7(7)^a$ <0.5 4467.7 2053.88 $383,697,974$ $2477.0(3)^a$ 2.05 4467.7 2053.88 $383,697,974$ $2477.0(3)^a$ 2.05 4127.0 1671.34 $697,974$ $2477.0(3)^a$ $2.3(9)$ 4585.2 2108.05 $437,697,974,1134$ $2513.9(6)^a$ $1.7(9)$ 3488.3 974.34 974 $2563.0(3)^a$ $3.8(10)$ 4337.7 1774.69 $103,697,974$ $2665.0(6)^c$ $1.9(4)$ 4439.6 1774.69 $103,697,974$ $2665.0(6)^c$ $1.9(4)$ 4439.6 1774.69 $103,697,974$ $2695.0(8)^a$ $0.6(2)$ 4748.9 2053.88 $383,697,974$ $2703.4(7)^a$ $1.2(4)$ 4375.1 1671.34 $697,974$ $2703.4(7)^a$ $2.3(7)$ 4382.2 1671.34 $697,974$ $2703.4(7)^a$ $0.4(2)$ 4433.5 1671.34 $697,974$ $2707.10(9)^a$ <0.5 4382.2 1665.30 $691,974$ $2707.10(9)^a$ <0.5 4387.1 174.69 $103,697,974$ $2797(1)^a$ $0.4(2)$ 4433.5 <	2280.2(5)	2.1(5)	4054.9	17/4.69	103,697,974
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2284.2(5)^{a}$	<0.4	4533.0	2248.9	974,1275
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2307.4(7)^{a}$	1.1(4)	4415.3	2108.05	437,697,974,1134
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2360.7(5)^{a}$	0.5(3)	4468.8	2108.05	437,697,974,1134
2383.6(3) ^a 3.3(14)4054.91671.34697,9742413.7(7) ^a <0.5	2363.5(3) ^a	3.6(4)	2363.7	0.0	238,400,1359,1524,2011,2221
$2413.7(7)^a$ <0.5 4467.7 2053.88 $383,697,974$ $2455(1)^a$ <0.5	2383.6(3) ^a	3.3(14)	4054.9	1671.34	697,974
$2455(1)^a$ <0.54127.01671.34697.974 $2477.0(3)^a$ 2.3(9)4585.22108.05437.697.974.1134 $2513.9(6)^a$ 1.7(9)3488.3974.34974 $2563.0(3)^a$ 3.8(10)4337.71774.69103.697.974 $2587.1(4)^b$ 3.6(9)4375.11787.6813.974.1788 $2633.0(4)^c$ 2.6(5)4685.92053.88279.383.697.974 $2665.0(6)^c$ 1.9(4)4439.61774.69103.697.974 $2695.0(8)^a$ 0.6(2)4748.92053.88383.697.974 $2703.4(7)^a$ 1.2(4)4375.11671.34697.974 $2710.9(7)^a$ 2.3(7)4382.21665.30691.974 $2717.0(9)^a$ <0.5	2413.7(7) ^a	<0.5	4467.7	2053.88	383,697,974
$2477.0(3)^a$ $2.3(9)$ 4585.2 2108.05 $437,697,974,1134$ $2513.9(6)^a$ $1.7(9)$ 3488.3 974.34 974 $2563.0(3)^a$ $3.8(10)$ 4337.7 1774.69 $103,697,974$ $2587.1(4)^b$ $3.6(9)$ 4375.1 1787.6 $813,974,1788$ $2633.0(4)^c$ $2.6(5)$ 4685.9 2053.88 $279,383,697,974$ $2665.0(6)^c$ $1.9(4)$ 4439.6 1774.69 $103,697,974$ $2695.0(8)^a$ $0.6(2)$ 4748.9 2053.88 $383,697,974$ $2703.4(7)^a$ $1.2(4)$ 4375.1 1671.34 $697,974$ $2710.9(7)^a$ $2.3(7)$ 4382.2 1665.30 $691,974$ $2717.0(9)^a$ <0.5 4382.2 1665.30 $691,974$ $2797(1)^a$ <0.3 4584 1787.6 $813,1787$ $2801(1)^a$ <0.3 4467.7 1665.30 $691,974$ $2829.2(7)^a$ $1.7(5)$ 4604.6 1774.69 $103,697,974$ $2912.0(5)^c$ $3.5(5)$ 3887.1 974.34 974 $2919.0(8)^a$ $1.6(5)$ 4305.3 974.34 974	2455(1) ^a	<0.5	4127.0	1671.34	697,974
$2513.9(6)^a$ $1.7(9)$ 3488.3 974.34 974 $2563.0(3)^a$ $3.8(10)$ 4337.7 1774.69 $103,697,974$ $2587.1(4)^b$ $3.6(9)$ 4375.1 1787.6 $813,974,1788$ $2633.0(4)^c$ $2.6(5)$ 4685.9 2053.88 $279,383,697,974$ $2665.0(6)^c$ $1.9(4)$ 4439.6 1774.69 $103,697,974$ $2695.0(8)^a$ $0.6(2)$ 4748.9 2053.88 $383,697,974$ $2703.4(7)^a$ $1.2(4)$ 4375.1 1671.34 $697,974$ $2710.9(7)^a$ $2.3(7)$ 4382.2 1671.34 $697,974$ $2717.0(9)^a$ <0.5 4382.2 165.30 $691,974$ $2777(1)^a$ <0.3 4584 1787.6 $813,1787$ $289.2(7)^a$ $1.7(5)$ 4604.6 1774.69 $103,697,974$ $2829.2(7)^a$ $1.7(5)$ 4604.6 1774.69 $103,697,974$ $2912.0(5)^c$ $3.5(5)$ 3887.1 974.34 974 $2919.0(8)^a$ $1.6(5)$ 4305.3 974.34 974	2477.0(3) ^a	2.3(9)	4585.2	2108.05	437,697,974,1134
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2513.9(6) ^a	1.7(9)	3488.3	974.34	974
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2563.0(3) ^a	3.8(10)	4337.7	1774.69	103,697,974
$2633.0(4)^c$ $2.6(5)$ 4685.9 2053.88 $279,383,697,974$ $2665.0(6)^c$ $1.9(4)$ 4439.6 1774.69 $103,697,974$ $2695.0(8)^a$ $0.6(2)$ 4748.9 2053.88 $383,697,974$ $2703.4(7)^a$ $1.2(4)$ 4375.1 1671.34 $697,974$ $2710.9(7)^a$ $2.3(7)$ 4382.2 1671.34 $697,974$ $2717.0(9)^a$ <0.5 4382.2 1665.30 $691,974$ $2762.7(8)^a$ $0.4(2)$ 4433.5 1671.34 $697,974$ $2797(1)^a$ <0.3 4584 1787.6 $813,1787$ $2801(1)^a$ <0.3 4467.7 1665.30 $691,974$ $2829.2(7)^a$ $1.7(5)$ 4604.6 1774.69 $103,697,974$ $2912.0(5)^c$ $3.5(5)$ 3887.1 974.34 974 $2919.0(8)^a$ $1.6(5)$ 4305.3 974.34 974	2587.1(4) ^b	3.6(9)	4375.1	1787.6	813,974,1788
$2665.0(6)^c$ $1.9(4)$ 4439.6 1774.69 $103,697,974$ $2695.0(8)^a$ $0.6(2)$ 4748.9 2053.88 $383,697,974$ $2703.4(7)^a$ $1.2(4)$ 4375.1 1671.34 $697,974$ $2710.9(7)^a$ $2.3(7)$ 4382.2 1671.34 $697,974$ $2717.0(9)^a$ <0.5 4382.2 1665.30 $691,974$ $2762.7(8)^a$ $0.4(2)$ 4433.5 1671.34 $697,974$ $2797(1)^a$ <0.3 4584 1787.6 $813,1787$ $2801(1)^a$ <0.3 4467.7 1665.30 $691,974$ $2829.2(7)^a$ $1.7(5)$ 4604.6 1774.69 $103,697,974$ $2912.0(5)^c$ $3.5(5)$ 3887.1 974.34 974 $2919.0(8)^a$ $1.6(5)$ 4305.3 974.34 974	2633.0(4) ^c	2.6(5)	4685.9	2053.88	279,383,697,974
$2695.0(8)^a$ $0.6(2)$ 4748.9 2053.88 $383,697,974$ $2703.4(7)^a$ $1.2(4)$ 4375.1 1671.34 $697,974$ $2710.9(7)^a$ $2.3(7)$ 4382.2 1671.34 $697,974$ $2717.0(9)^a$ <0.5 4382.2 1665.30 $691,974$ $2762.7(8)^a$ $0.4(2)$ 4433.5 1671.34 $697,974$ $2797(1)^a$ <0.3 4584 1787.6 $813,1787$ $2801(1)^a$ <0.3 4467.7 1665.30 $691,974$ $2829.2(7)^a$ $1.7(5)$ 4604.6 1774.69 $103,697,974$ $2912.0(5)^c$ $3.5(5)$ 3887.1 974.34 974 $2919.0(8)^a$ $1.6(5)$ 4305.3 974.34 974	2665.0(6) ^c	1.9(4)	4439.6	1774.69	103,697,974
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2695.0(8) ^a	0.6(2)	4748.9	2053.88	383,697,974
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2703.4(7) ^a	1.2(4)	4375.1	1671.34	697,974
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2710.9(7) ^a	2.3(7)	4382.2	1671.34	697,974
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2717.0(9) ^a	< 0.5	4382.2	1665.30	691,974
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2762.7(8) ^a	0.4(2)	4433.5	1671.34	697,974
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2797(1) ^a	< 0.3	4584	1787.6	813,1787
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2801(1) ^a	< 0.3	4467.7	1665.30	691,974
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2829.2(7) ^a	1.7(5)	4604.6	1774.69	103,697,974
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2912.0(5) ^c	3.5(5)	3887.1	974.34	974
$3329(2)^a$ <0.5 4305.3 974.34 974	2919.0(8) ^a	1.6(5)	4584	1665.30	691,974
	3329(2) ^a	<0.5	4305.3	974.34	974

E_{γ} (keV)	Ι	E_i (keV)	E_f (keV)	Coincidences (keV)
3351(1) ^a	0.8(5)	4325.2	974.34	974
3407(2) ^a	0.5(2)	4382.2	974.34	974
3459(1) ^a	1.3(7)	4433.5	974.34	974
3558.0(5) ^a	2.7(6)	4533.0	974.34	974
3610(2) ^a	0.7(4)	4584	974.34	974
3700(2) ^a	0.3(2)	4674	974.34	974

TABLE I. (Continued.)

^a γ -ray line was not previously reported.

 ${}^{b}\gamma$ -ray line was not reported in this placement.

^cPreviously unplaced.

TABLE II. Level populated in ¹³²Te and their γ -ray decay. Intensities (normalized to $I_{974} \equiv 1000$) are given for γ -ray transitions depopulating the levels. Assigned spin values are also given.

E_i (keV)	J_i^{π}	E_{γ} (keV)	Ι	E_f (keV)	J_f^π
974.34(10) 1665.30(14) ^a	2 ⁺ (2 ⁺)	974.34(10) 690.96(10) 1665.3(2)	1000(50) 20(3) 0.2(1)	0.0 974.34 0.0	$0^+ 2^+ 0^+$
1671.34(14) 1774.69(16) 1787.6(2) ^a	4+ 6+ (2+)	697.0(1) 103.36(8) 813.25(10) 1787.6(3)	873(40) 611(131) 23(1) 16(1)	974.34 1671.34 974.34 0.0	2^+ 4^+ 2^+ 0^+
1925.23(17) 2053.88(16)	(7) ⁻ (5) ⁻	150.54(7) 279.09(9) 382.65(9)	436(61) 5.3(2) 74(4)	1774.69 1774.69 1671.34	$6^+ \\ 6^+ \\ 4^+$
2108.05(18)	(3,4)	436.72(8) 1133.8(2)	14(1) 34(2)	1671.34 974.34	4^+ 2 ⁺
2191.93(22) ^a 2248.9(2) ^a	(2 ⁺)	138.05(8) 1274.6(2) 2248.8(6)	6.5(9) 5.0(5) 0.3(2)	2053.88 974.34 0.0	$(5)^{-}\ 2^{+}\ 0^{+}$
2363.7(2) ^a	(2+)	1389.5(2) 2363.5(3)	1.2(7) 3.6(4)	974.34 0.0	$2^+_{0^+}$
2410.6(2) 2422.3(2)		635.9(1) 368.49(9) 496.96(8)	62(3) 24(2) 48(3)	1774.69 2053.88 1925.23	6 ⁺ (5) ⁻ (7) ⁻
2487.9(2)	(3,4)	379.9(1) 700.1(3) 816.56(10) 822.6(1) 1513.6(1)	$3.7(4) \\ 0.6(1) \\ 68(4) \\ 3.4(3) \\ 12.4(12)$	2108.05 1787.6^{a} 1671.34 1665.30^{a} 974.34	$(3,4) (2^+) 4^+ (2^+) 2^+$
2517.4(2) ^a 2553.2(2) ^a		1543.1(2) 445.09(8) 881.8(1)	1.4(6) 7(1) 9(1)	974.34 2108.05 1671.34	2+ (3,4) 4 ⁺
2576.9(3) ^a		384.93(9) 523.24(10)	2.7(6) 4(1)	2191.93ª 2053.88	(5)-
2601.8(3) ^a		237.8(4) 493.7(4) 814.2(3) 930.3(3) 936.5(2)	$\begin{array}{c} 0.8(6) \\ 0.4(2) \\ 0.6(3) \\ 6.6(11) \\ 4.3(5) \end{array}$	2363.7 ^a 2108.05 1787.6 ^a 1671.34 1665.30 ^a	$(2^+) (3,4) (2^+) 4^+ (2^+)$

E_i (keV)	J_i^{π}	E_{γ} (keV)	Ι	E_f (keV)	J_f^π
2608.2(2) ^a		500.1(2) 821(1) 936.9(2)	3.3(5) <0.2	2108.05 1787.6 ^a	(3,4) (2^+) 4^+
		1633.9(2)	7(1)	974.34	2^{+}
2665.2(3) ^a		611.36(9)	19(1)	2053.88	(5)-
2763.6(3) ^a	(3,4+)	399.9(9)	0.8(2)	2363.7ª	(2+)
		655.7(3) 1098 3(2)	1.9(6) 1.7(4)	2108.05 1665 30ª	(3,4) (2^+)
2764 37(15)	(4.5)	276 45(7)	1.7(4)	2487.0	(2)
2704.37(13)	(4,5)	353.69(8)	19(1)	2407.5	(3,4)
		989.67(11)	91(6)	1774.69	6+
		1093.04(11)	28(2)	1671.34	4+
2854.5(3) ^a		301.4(4)	0.4(2)	2553.2ª	
		443.7(3)	0.7(2)	2410.6	
		1079.77(12)	2.6(4)	1774.69	6^{+}
		1183.3(3)	6.4(6)	1671.34	4+
2884.8(3)		776.7(2)	5(1)	2108.05	(3,4)
		1213.55(12)	14(1)	1671.34	4^+
		1219.6(6)	0.2(1)	1665.30ª	(2+)
2917.9(4) ^a		1252.6(4)	0.8(2)	1665.30 ^a	(2^+)
		1246.6(4)	0.7(2) 3.3(7)	1671.34	4+ 2+
		1945.5(4)	5.5(7)	974.34	2.
$2967.4(2)^{a}$		1042.1(1)	74(4)	1925.23	(7)-
2971.5(3)*		560 9(2)	1.4(9)	2008.2	
		1196 7(2)	2.5(5) 9.5(7)	1774 69	6+
		1300.2(2)	4.4(5)	1671.34	$\frac{3}{4^{+}}$
3015.1(3) ^a		406.75(10)	1.6(6)	2608.2ª	
		907.0(4)	1.4(4)	2108.05	(3,4)
		1227.7(9)	< 0.2	1787.6 ^a	(2^+)
		1240.1(6)	3(1)	1774.69	6^{+}
		1343.6(3)	2.0(5)	1671.34	4+
		2040.8(6)	0.9(3)	974.34	2+
3091.7(2)		124.2(2)	1.2(4)	2967.4ª	-
		1166.46(13)	22(1)	1925.23	$(7)^{-1}$
3210.4(4) ^a		325.6(3)	2.0(6)	2884.8	
3211.1(3)	(4,5)	356.78(9)	2.8(5)	2854.5ª	(2.4)
		/23.5(4)	2.3(5)	2487.9	(3,4)
		1436 45(14)	13.4(16)	1774 69	(3,4) 6 ⁺
		1539.6(3)	4.8(14)	1671.34	0 4 ⁺
3234 8(3) ^a		143 0(3)	0.7(3)	3091 7	
3231.0(3)		569.6(5)	3.4(5)	2665.2ª	
		812.54(10)	4.8(6)	2422.3	
		1181.0(2)	9(1)	2053.88	(5)-
		1309.46(13)	12(1)	1925.23	(7)-
3241.1(5) ^a		273.7(4)	2.3(7)	2967.4ª	
3254.8(4) ^a		737.3(2)	1.2(8)	2517.4 ^a	
3261.0(3) ^a		293.62(7)	18(1)	2967.4ª	
3305.9(3)		214.22(9)	6(1) 0(1)	3091.7	
		228.22(9) 1380 7(2)	9(1) 10(1)	2907.4" 1925.23	$(7)^{-}$
		1300.7(2)	10(1)	1743.43	(/)

TABLE II. (Continued.)

TABLE II.	(Continued.)
-----------	--------------

E_i (keV)	J_i^π	E_{γ} (keV)	Ι	E_f (keV)	J_f^π
3335.5(3) ^a		243.7(2) 670.3(3) 1281.8(3) 1410.2(2)	2.3(8) 0.9(4) 2.2(14) 8(1)	3091.7 2665.2 ^a 2053.88 1925.23	$(5)^{-}$ (7)^{-}
3350.5(3) ^a		383.2(2) 1425.3(2)	9(1) 5.6(7)	2967.4ª 1925.23	(7)-
3429.4(3) ^a 3478.1(3) ^a		1321.3(2) 172.2(2) 510.96(8) 1055.96(11) 1553.1(2)	$ \begin{array}{c} 1.1(3) \\ 2.6(6) \\ 10.9(14) \\ 4.8(9) \\ 7(1) \end{array} $	2108.05 3305.9 ^a 2967.4 ^a 2422.3 1925.23	(3,4) (7) ⁻
3488.3(4) ^a		1380.8(3) 2513.9(6)	1.6(4) 1.7(9)	2108.05 974.34	(3,4) 2 ⁺
3519.1(3) ^a		552.0(2) 1108.5(2)	3.0(5) 2.5(6)	2967.4ª 2410.6	
3525.1(4) ^a 3562.5(3)	(4+)	1114.5(3) 591.09(9) 798.2(5) 1151.85(16)	1.3(9) 3.3(7) 0.3(2) 21(1) 0.9(4)	2410.6 2971.5 ^a 2764.37 2410.6 2108.05	(2.4)
3593.1(3) ^a		257.61(8) 287.1(3) 501.3(2) 927.9(4) 1170.9(2) 1667.9(2)	$\begin{array}{c} 3.5(5) \\ 1.4(10) \\ 2.4(6) \\ 3.2(6) \\ 13.8(30) \\ 17.9(19) \end{array}$	2108.05 3335.5 ^a 3305.9 ^a 3091.7 2665.2 ^a 2422.3 1925.23	(3,4)
3629.4(3) ^a		657.6(3) 1076.2(2) 1219.0(5) 1521.2(4) 1854.3(3)	$ \begin{array}{c} 1.1(4) \\ 1.7(10) \\ < 0.5 \\ 1.4(4) \\ 2.5(5) \end{array} $	2971.5 ^a 2553.2 ^a 2410.6 2108.05 1774.69	(3,4) 6 ⁺
3660.3(3) ^a 3693.7(4) ^a		1238.01(2) 1271.4(3) 1766 9(3)	4.3(5) 2.1(9)	2422.3 2422.3 1925 23	(7)-
3710.3(4) ^a 3722.3(5) ^a		449.3(1) 1120.7(4) 1358.6(4)	4.2(3) 0.5(2) 0.6(4)	3261.0 ^a 2601.8 ^a 2363.7 ^a	(2+)
3821.1(4) ^a 3858.1(2) ^a		1056.7(3) 2071(1) 2187(1)	1.4(4) <0.2 0.6(3)	2764.37 1787.6 ^a 1671.34	(4,5) (2 ⁺) 4 ⁺
3887.1(2) ^a		1523.5(3) 2100(1) 2222(1) 2912.0(5)	1.2(8) <0.2 0.5(2) 3.5(5)	2363.7 ^a 1787.6 ^a 1665.30 ^a 974.34	(2^+) (2^+) (2^+) 2^+
3891.6(3) ^a		1126.5(3) 1338.8(3) 1480.1(4) 2116.1(4)	0.9(4) <1 0.6(2) 1.5(4)	2764.37 2553.2ª 2410.6 1774.69	(4,5) 6 ⁺
3942.1(3) ^a		730.9(3) 1087.76(13) 1531.6(3)	2.4(6) 2.7(6) 1.3(3)	3211.1 2854.5 ^a 2410.6	(4,5)
		1890(1)	0.6(3)	2053.88	(5)-

TABLE II.	(Continued.)
-----------	--------------

E_i (keV)	J_i^π	E_{γ} (keV)	Ι	E_f (keV)	J_f^π
3994.8(4) ^a		688.8(2)	3.1(5)	3305.9ª	
		733.0(3)	1.0(3)	3261.0ª	
		1027.4(2)	4.3(7)	2967.4 ^a	
4001.6(4) ^a		695.9(2)	3.1(5)	3305.9ª	
		740.5(1)	6.0(6)	3261.0 ^a	
		760.4(2)	2.0(8)	3241.1ª	
		1034.2(2)	3.9(6)	2967.4ª	
4002.1(3) ^a		1579.8(2)	3.0(10)	2422.3	
4054.9(4) ^a		2280.2(5)	2.1(5)	1774.69	6+
		2383.6(3)	3.3(14)	1671.34	4+
4055.4(3) ^a		844.1(2)	1.6(4)	3211.1	(4,5)
		1200.9(13)	0.6(4)	2854.5ª	
		1291.0(8)	0.2(1)	2764.37	(4,5)
		1502.3(2)	1.5(5)	2553.2ª	
		1644.5(2)	9(1)	2410.6	
		1947.2(3)	1.8(5)	2108.05	(3,4)
4076.8(3) ^a		2022.9(6)	1.2(11)	2053.88	(5)-
4127.0(3) ^a		1574.0(2)	4.3(5)	2553.2ª	
		2018.8(5)	2.4(6)	2108.05	(3,4)
		2455(1)	<0.5	1671.34	4+
4173.8(5) ^a		1409.8(5)	0.5(3)	2764.37	(4,5)
		1763.2(4)	2.2(6)	2410.6	
4260.9(5) ^a		667.9(3)	0.7(3)	3593.1ª	
		782.5(4)	0.4(2)	3478.1ª	
		910.2(2)	1.2(4)	3350.5ª	
		955(1)	0.5(3)	3305.9 ^a	
		1169.2(3)	8(1)	3091.7	
		1293.3(3)	1.5(5)	2967.4 ^a	
4262.5(5) ^a		568.8(2)	1.6(4)	3693.7ª	
4305.3(3) ^a		1815.7(4)	0.8(3)	2487.9	(3,4)
		1894.6(4)	0.9(3)	2410.6	
		2197.2(5)	1.3(10)	2108.05	(3,4)
		3329(2)	<0.5	974.34	2^{+}
4325.2(3) ^a		3351(1)	0.8(5)	974.34	2^{+}
4337.7(4) ^a		2563.0(3)	3.8(10)	1774.69	6^{+}
4375.1(4) ^a		1887.2(4)	2.9(9)	2487.9	(3,4)
		2011.3(8)	<0.4	2363.7ª	(2^+)
		2126(2)	0.7(4)	2248.9ª	(2^{+})
		2587.1(4)	3.6(9)	1787.6 ^a	(2^{+})
		2703.4(7)	1.2(4)	1671.34	4+
4382.2(4) ^a		2710.9(7)	2.3(7)	1671.34	4+
		2717.0(9)	<0.5	1665.30 ^a	(2^{+})
		3407(2)	0.5(2)	974.34	2^{+}
4415.3(4) ^a		2166(2)	0.6(4)	2248.9 ^a	(2 ⁺)
		2307.4(7)	1.1(4)	2108.05	(3,4)
4433.5(8) ^a		2762.7(8)	0.4(2)	1671.34	4+
		3459(1)	1.3(7)	974.34	2^{+}
4439.6(7) ^a		2665.0(6)	1.9(4)	1774.69	6^{+}
4442.6(5) ^a		440.98(8)	14(1)	4001.6 ^a	
		849.5(1)	12(1)	3593.1ª	
		964.2(2)	7(1)	3478.1 ^a	
		1092.0(3)	1.8(6)	3350.5ª	

E_i (keV)	J_i^π	E_{γ} (keV)	Ι	E_f (keV)	J_f^π
		1136.66(18) 1181.6(3) 1351.05(15) 1475.0(3)	0.9(3) 1.3(4) 3.2(6) 1.5(5)	3305.9ª 3261.0ª 3091.7 2967.4ª	
4443.5(6) ^a		750.6(2) 2032.7(5)	1.4(4) 1.1(5)	3693.7ª 2410.6	
4467.7(1) ^a		2219(2) 2413.7(7) 2801(1)	<0.4 <0.5 <0.3	2248.9ª 2053.88 1665.30ª	(2^+) $(5)^-$ (2^+)
4468.8(3) ^a 4488.7(5) ^a		2360.7(5) 493.95(8) 1254.1(2) 1822.1(4)	$\begin{array}{c} 0.5(3) \\ 3.4(5) \\ 3.3(6) \\ 0.6(3) \end{array}$	2108.05 3994.8 ^a 3234.8 ^a 2665.2 ^a	
4490.3(5) ^a 4513.8(4) ^a		796.6(2) 921.1(2) 1207.64(18) 1422.0(2)	1.8(4) 2.8(7) 2.6(9) 5(1)	3693.7ª 3593.1ª 3305.9ª 3091.7	
4533.0(6) ^a		1924.8(8) 2284.2(5) 3558.0(5)	<0.4 <0.4 2.7(6)	2608.2ª 2248.9ª 974.34	(2^+) 2^+
4534.8(7) ^a 4584(2) ^a		841.1(4) 2797(1) 2919.0(8) 3610(2)	$0.9(3) \\ < 0.3 \\ 1.6(5) \\ 0.7(4)$	3693.7 ^a 1787.6 ^a 1665.30 ^a 974.34	(2 ⁺) (2 ⁺) 2 ⁺
4585.2(5) ^a		2221.5(9) 2477.0(3)	<0.5 2.3(9)	2363.7ª 2108.05	(2^+) (3,4)
4588.5(8) ^a		1238.0(6) 1353.95(16) 2166.0(8)	0.2(1) 7(1) 1.3(5)	3350.5ª 3234.8ª 2422.3	
4604.6(12) ^a		2181.5(9) 2194.0(8) 2829.2(7)	<0.4 1.2(5) 1.7(5)	2422.3 2410.6 1774.69	6+
4607.3(8) ^a		1014.25(11) 1129.0(2) 1301.4(3) 1346.3(2)	$ \begin{array}{c} 10(1) \\ 6(1) \\ 1.0(3) \\ 2.4(5) \end{array} $	3593.1 ^a 3478.1 ^a 3305.9 ^a 3261.0 ^a	
4654.1(6) ^a 4674(2) ^a 4685.9(5) ^a 4714.2(4) ^a		1988.9(4) 3700(2) 2633.0(4) 1453.2(3)	$ \begin{array}{c} 1.6(6) \\ 0.3(2) \\ 2.6(5) \\ 0.4(2) \end{array} $	2665.2ª 974.34 2053.88 3261.0ª	2+ (5) ⁻
4748.9(9) ^a 4890(2) ^a		2695.0(8) 2225(1)	0.6(2) 0.4(2)	2053.88 2665.2ª	(5)-

TABLE II. (Continued.)

^aLevel was not previously reported.

The new coincidence data show that all three γ rays have alternate placements within the level scheme. Figure 5 shows the present placement of the three transitions, 611, 1309, and 2280 keV; coincident spectra supporting these new placements are given in Figs. 6, 7, and 8, respectively. The intensities measured in the present work are very similar to the previous intensities, making it very unlikely that weak transitions of the same energies still exist in the old placements. Consequently, we removed the 3^- level at 2281 keV from the level scheme of 132 Te.

 (2_5^+) at 2364 keV. A new level at 2364 keV is identified on the basis of two depopulating transitions and four populating transitions. The level is observed to decay to the 2_1^+ state and 0_1^+ state via a 1389.5(2) keV line with intensity 1.2(7) and a 2363.5(3) keV line with intensity 3.6(4), respectively.

FIG. 2. Low-lying levels in ¹³²Te populated in the present work in ¹³²Sb β^- decay and their depopulating γ -ray transitions with energies in keV (uncertainties ±0.2 keV). For comparison, the left-hand side presents the previous [8] decay scheme.

III. DISCUSSION

 132 Te, with two protons and two neutron holes relative to the doubly magic 132 Sn nucleus, is an excellent case for comparison with shell-model calculations. Detailed shellmodel calculations on 132 Te were reported in Refs. [4,12]. Taking the model space for both protons and neutrons to be the 50-82 shell, Refs. [4] and [12] give relatively collective structures for the 2_1^+ and 2_2^+ states, while Ref. [12] also gives configurations for the yrast 4_1^+ and 6_1^+ levels, which are primarily proton $|g_{7/2}^2, J\rangle$ excitations. This interpretation is directly supported by the energy levels. A short-range residual interaction acting on a simple two-particle (e.g., $|g_{7/2}^2, J\rangle$) structure for all these yrast states would give a closely lying triplet of levels $2_1^+, 4_1^+, 6_1^+$ with $R_{4/2} \sim 1.2$. The fact that the

FIG. 3. Gated coincidence spectra providing evidence for a new level at 1665 keV. Note that the 1665 keV transition lies on the shoulder of a much stronger 1668 keV transition; therefore, coincidences with the 1668 keV line are also observed in the figure.

FIG. 4. Gated coincidence spectra providing evidence for a new level at 1788 keV. Spectra gated on the 2587 keV transition allegedly feeding the level at 1788 keV showing coincidences with 813 and 1788 keV depopulating transitions.

 2_1^+ energy is well below the 4_1^+ state ($R_{4/2} \sim 1.7$) supports the collective aspect of the 2_1^+ level.

The new levels at 1665, 1788, 2249, and 2364 keV are tentatively assigned as 2^+ . Since each of these levels is observed to decay only to the 0^+_1 and 2^+_1 states, spin assignments are restricted to 1^\pm or 2^+ , assuming *E*1, *M*1, or *E*2 deexcitation transitions. However, below about 3 MeV, 1^\pm levels are unlikely. Both the protons and neutrons are filling the single-particle orbitals of the 50-82 shell. Since positive parity orbits have $J_{\text{max}} = 7/2$ and the negative parity states must involve the $1h_{11/2}$ orbit, a two-particle 1^- configuration cannot be formed. Thus any 1^- level must have seniority $\nu \ge 4$ and

FIG. 5. Partial decay scheme of ¹³²Te showing the present placement of the three transitions (highlighted) at 611, 1309, and 2280 keV, which previously were reported to depopulate a 3⁻ level at 2281 keV. Included are only the levels and transitions relevant to the new placements. Each transition is labeled by its energy in keV and relative intensity.

FIG. 6. Spectra gated on the 383 and 611 keV transitions supporting the new placement of the 611 keV transition.

should be quite high lying. For the protons filling the bottom of the shell, a two-quasiparticle 1⁺ state can be formed with the configuration $|\pi 2d_{5/2} 1g_{7/2}\rangle$. Assuming a short-range residual interaction, this configuration would give a sequence of levels $6^+, 4^+, 2^+ (1^+, 3^+, 5^+)$ with the 6^+ lowest in energy and the odd-spin states degenerate at higher energies. For neutrons filling the top of the shell, the available configuration for a two-quasiparticle 1⁺ state is $|\nu 1d_{3/2} 2s_{1/2}\rangle$. Here spins of only 1^+ and 2^+ are permitted, and again assuming a short-range residual interaction, the 1⁺ would lie above the 2^+ in energy. Since all possible configurations place the 1[±] states high in

FIG. 7. Spectrum gated on the 1354 keV transition supporting the new placement of the 1309 keV transition.

FIG. 8. Spectra gated on the 103 and 2280 keV transitions supporting the new placement of the 2280 keV transition.

energy, we tentatively assign $J^- = 2^+$ to these new levels, although one of the higher states could be the $|\nu| 1d_{3/2} 2s_{1/2}$; $J = 1^+$ state mentioned above.

In an effort to reproduce the properties of the 2_1^+ state below and above N = 82 in Sn and Te nuclei, Terasaki *et al.* [4] used different densities of neutron single-particle levels below and above N = 82. The $E(2^+)$ and $B(E2; 0^+ \rightarrow 2^+)$ values are not symmetric adjacent to N = 82: both the 2_1^+ energy and $B(E2; 0^+ \rightarrow 2^+)$ value in ¹³²Te are higher than in ¹³⁶Te, contradicting simple systematics and general intuition about quadrupole collectivity. This anomalous behavior was explained [4] using an enhanced neutron pairing before the N = 82 magic gap in comparison with that above it. A comparison of all the 2^+ energies with those predicted [13] with the procedure outlined in Ref. [4] was made in Ref. [5] and is shown in Fig. 9. The agreement is quite good, with the theory predicting the correct number of low-lying 2^+ levels at approximately the observed energies.

The lowest negative parity states can also have a simple shell-model interpretation. The 5_1^- and 7_1^- states were described [8,12] as originating from two-neutron configurations. As an argument in favor of the neutron assignment for the 7_1^- state, Ref. [8] cited the extremely hindered *E*1 decay $7^- \rightarrow 6^+$ $[\nu 1h_{11/2}2d_{3/2} \rightarrow \pi(g_{7/2}^2)] \sim 10^{-9}$ W.u. [9].

FIG. 9. Comparison of experimental and theoretical [13] 2^+ state energies in 132 Te.

The neutron excitation nature of the 7^-_1 and 5^-_1 levels is supported by an overall analysis of the possible negative parity simple configurations. Negative parity excitations for both protons and neutrons must involve the $1h_{11/2}$ orbit. The positive parity partner of this orbit is for neutrons, either the $2d_{3/2}$ or the $3s_{1/2}$ orbits; and, for protons, the $2d_{5/2}$ and $1g_{7/2}$ orbits. Table III gives the multiplet sequences for these four configurations with a short-range attractive interaction [14]. The sequence 7⁻ to 5⁻ could correspond to the $|1h_{11/2}1g_{7/2}J\rangle$ proton configuration or the $|1h_{11/2}2d_{3/2}J\rangle$ neutron configuration. The first one would have a 9^- below the 7^- and 5^- . However, there is no evidence for a low-lying 9⁻ level, so the only possible simple configuration for the 7_1^- and 5_1^- levels is, indeed, the neutron excitation. This argument is consistent with the qualitative results of Ref. [12]. This type of configuration implies also the existence of nearly degenerate 6⁻ and 4⁻ levels. The level at 2422 keV was assigned 6⁻ [10] and is likely part of this multiplet. Again, this is consistent with Ref. [12].

Concerning the 3⁻ level, only the proton excitations $|1h_{11/2}2d_{5/2}J\rangle$ include this spin. Our new coincidence data

TABLE III. Negative parity multiplets and expected level ordering.

Configuration	J values	Multiplet levels in expected order of increasing energy ^a
Protons		
$1h_{11/2}2d_{5/2}$	3–8	3, 5, 7, (4, 6, 8)
$1h_{11/2}1g_{7/2}$	2–9	9, 7, 5, 3, (2, 4, 6, 8)
Neutrons		
$1h_{11/2}3s_{1/2}$	5,6	5,6
$1h_{11/2}2d_{3/2}$	4–7	7, 5, (4, 6)

^aAssuming a short-range, attractive residual interaction. Levels expected to be nearly degenerate are grouped in parentheses.

found no evidence for the previously reported 3^- state at 2281 keV. Based on observed depopulating transitions, the lowest energy candidate for a 3^- state is the level at 2488 keV, although spins of 3^+ and 4^\pm are also possible. This energy fits quite well with the octupole excitations in the region [15] as shown in Fig. 10 for both the isotopic and isotonic chains of 132 Te, where the 2488 keV level is labeled with a question mark. Included in Fig. 10 is the evolution of the 2_1^+ , 2_2^+ , 4_1^+ , and 3_1^- level energies. In the case of the 2_2^+ level, the smooth trends include the candidate at 1665 keV in 132 Te, which constitutes further support for this assignment.

IV. CONCLUSION

Levels in ¹³²Te were populated in β^- decay of a ¹³²Sb radioactive beam. Information obtained through highefficiency γ -ray coincidence spectroscopy led to a major revision of the decay scheme of ¹³²Te relative to the

- [1] D. C. Radford *et al.*, Eur. Phys. J. A **15**, 171 (2002).
- [2] D. C. Radford et al., Phys. Rev. Lett. 88, 222501 (2002).
- [3] C. J. Barton *et al.*, Phys. Lett. **B551**, 269 (2003).
- [4] J. Terasaki, J. Engel, W. Nazarewicz, and M. Stoitsov, Phys. Rev. C 66, 054313 (2002).
- [5] R. O. Hughes et al., Phys. Rev. C 69, 051303(R) (2004).
- [6] C. J. Gross *et al.*, Nucl. Instrum. Methods Phys. Res. A **450**, 12 (2000).
- [7] M. A. Caprio et al., Phys. Rev. C 66, 054310 (2002).
- [8] A. Kerek, P. Carle, and S. Borg, Nucl. Phys. A224, 367 (1974).

previously published work. The new 2^+ low-lying levels are interpreted in terms of the recent quasiparticle random-phase approximation (QRPA) calculations. A new 3_1^- level is also proposed.

ACKNOWLEDGMENTS

The work is supported by U.S. DOE Grant nos. DE-FG02-91ER-40609, DE-FG02-88ER-40417, and DE-FG02-91ER-40608. Research at the Oak Ridge National Laboratory is supported by the U.S. Department of Energy under Contract No. DE-AC05-000R22725 with UT-Battelle, LLC. We are especially grateful to Witek Nazarewicz and to J. Terasaki for discussions of the calculations in Ref. [4] and to J. Terasaki for providing detailed predictions [13] from those calculations that are not included in Ref. [4]. We thank B. Walters for informing us of Ref. [10] and P. Regan and E. Henry for useful discussions.

- [9] Yu. V. Sergeenkov, Nucl. Data Sheets 65, 277 (1992).
- [10] R. A. Meyer and E. A. Henry (unpublished; private communication).
- [11] J. Bryssinck et al., Phys. Rev. C 59, 1930 (1999).
- [12] J. Sau, K. Heyde, and R. Chery, Phys. Rev. C 21, 405 (1980).
- [13] J. Terasaki et al. (private communication).
- [14] R. F. Casten, Nuclear Structure from a Simple Perspective (Oxford University Press, New York, 2000).
- [15] R. H. Spear, At. Data Nucl. Data Tables 42, 55 (1989).