
PHYSICAL REVIEW C 71, 044307 (2005)

Radiative strength functions in 93−98Mo
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Radiative strength functions (RSFs) in 93−98Mo have been extracted using the (3He,αγ ) and (3He,3He′γ )
reactions. The RSFs are U shaped as function of γ energy with a minimum at around Eγ = 3 MeV. The
minimum values increase with neutron number because of the increase in the low-energy tail of the giant electric
dipole resonance with nuclear deformation. The unexpected strong increase in strength below Eγ = 3 MeV, here
called soft pole, is established for all 93−98Mo isotopes. The soft pole is present at all initial excitation energies
in the 5−8-MeV region.
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I. INTRODUCTION

The γ decay of nuclei at high excitation energy tends to
follow certain statistical rules. The dominating γ -transition
driving factors are the number of accessible final states and
the γ -ray transmission coefficient. The largest uncertainties
are connected to the latter factor. In the description of this
factor Blatt and Weisskopf [1] included an E2L+1

γ dependency,
where L is the angular momentum transfer in the transition.
In their definition of the radiative strength function (RSF),
this simple energy dependence was divided out. With such
a definition, the single-particle RSF (Weisskopf ) estimates
become independent of γ -ray energy. Various concepts of
RSFs and γ decay in the continuum are outlined in the reviews
of Bartholomew et al. [2,3].

It has been well known that the RSF is not at all constant
but shows an additional Ex

γ dependency with x = 1−2 for
γ energies in the 4−8-MeV region. Axel [4] argued that
this feature is because of the collective giant electric dipole
resonance (GEDR), which represents the essential mechanism
for the γ decay. However, the situation is more complex.
Further studies [5–7] reveal fine structures in the RSF, which
are commonly called pygmy resonances. This name does not
refer to specific structures: the E1 pygmy resonance in the
Eγ = 5−7 MeV region of gold to lead nuclei could be because
of neutron skin oscillations [8], whereas bumps in the 3-MeV
region of rare earth nuclei are now determined to be of M1
character [9,10]. The electromagnetic character and measured
strength of the latter pygmy resonance is compatible with the
scissors mode [11]. Recently [12,13], the RSF picture of iron
isotopes has been further modified by the observation of an
anomalous increase in strength at γ energies below 4 MeV.
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It is clear that in the present situation, new experimental results
are urgently needed.

The stable molybdenum isotopes are well suited as targets
for the study of nuclear properties when going from spherical
to deformed shapes. In this work we perform a systematic
analysis of the RSFs of the six 93−98Mo isotopes. The
RSFs depend on the dynamic properties of electric charges
present within these systems (Z = 42). Because the nuclear
deformation varies from spherical shapes (β ∼ 0) at N = 51 to
deformed shapes (β ∼ 0.2) at N = 56, we expect to observe
effects because of shape changes. Furthermore, these nuclei
reveal weak GEDR tails at low Eγ , making them interesting
objects in the search for other weak structures in the RSF.

The Oslo Cyclotron group has developed a sensitive tool
to investigate RSFs for Eγ below the neutron binding energy
Sn. The method is based on the extraction of primary γ -ray
spectra at various initial excitation energies Ei measured in
particle reactions with one and only one charged ejectile.
From such a set of primary γ spectra, nuclear level densities
and RSFs can be extracted [14–16]. The level density reveals
essential nuclear structure information such as thermodynamic
properties and pair correlations as functions of temperature.
These aspects of the molybdenum isotopes will be presented in
a forthcoming work. Various applications of the Oslo method
have been described in Refs. [17–21].

II. EXPERIMENTAL METHOD

The particle-γ coincidence experiments were carried out at
the Oslo Cyclotron Laboratory for 93−98Mo using the CACTUS
multidetector array. The charged ejectiles were detected with
eight particle telescopes placed at an angle of 45◦ relative to
the beam direction. An array of 28 NaI γ -ray detectors with
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a total efficiency of ∼15% surrounded the target and particle
detectors.

In the present work, results from eight different reactions
on four different targets are discussed. Results from two of
those reactions have been reported earlier. The beam energies
for the different reactions are given in parentheses:

1. 94Mo(3He,αγ )93Mo (new, 30 MeV)
2. 94Mo(3He,3He′γ )94Mo (new, 30 MeV)
3. 96Mo(3He,αγ )95Mo (new, 30 MeV)
4. 96Mo(3He,3He′γ )96Mo (new, 30 MeV)
5. 97Mo(3He,αγ )96Mo (reported in [12,21], 45 MeV)
6. 97Mo(3He,3He′γ )97Mo (reported in [12,21], 45 MeV)
7. 98Mo(3He,αγ )97Mo (new, 45 MeV)
8. 98Mo(3He,3He′γ )98Mo (new, 45 MeV).

The targets were self-supporting metal foils enriched to
∼95% with thicknesses of ∼2 mg/cm2 . The experiments were
run with beam currents of ∼2 nA for 1–2 weeks. The reaction
spin windows are typically I ∼ (2−6)h̄.

The experimental extraction procedure and the assumptions
made are described in Refs. [14,16] and references therein. For
each initial excitation energy Ei , determined from the ejectile
energy and reaction Q value, γ -ray spectra are recorded. Then
the spectra are unfolded using the known γ -ray response
function of the CACTUS array [22]. These unfolded spectra
are the basis for making the first-generation (or primary) γ -ray
matrix [23], which is factorized according to the Brink-Axel
hypothesis [4,24] as follows:

P (Ei,Eγ ) ∝ ρ(Ei − Eγ )T (Eγ ). (1)

Here, ρ is the level density and T is the radiative transmission
coefficient.

The ρ and T functions can be determined by an iterative
procedure [16] through the adjustment of each data point of
these two functions until a global χ2 minimum of the fit to
the experimental P (Ei,Eγ ) matrix is reached. It has been
shown [16] that if one solution for the multiplicative functions
ρ and T is known, one may construct an infinite number of
other functions, which give identical fits to the P matrix by the
following:

ρ̃(Ei − Eγ ) = A exp[α(Ei − Eγ )] ρ(Ei − Eγ ), (2)

T̃ (Eγ ) = B exp(αEγ )T (Eγ ). (3)

Consequently, neither the slope (α) nor the absolute values of
the two functions (A and B) can be obtained through the fitting
procedure.

The parameters A and α can be determined by normalizing
the level density to the number of known discrete levels at low
excitation energy [25] and to the level density estimated from
neutron-resonance spacing data at the neutron binding energy
Sn [26]. The procedure for extracting the total level density ρ

from the resonance energy spacing D is described in Ref. [16].
Here, we will discuss only the determination of parameter B
of Eq. (3), which gives the absolute normalization of T . For
this purpose we utilize experimental data on the average total
radiative width of neutron resonances at Sn 〈�γ 〉.

We assume here that the γ decay in the continuum is
dominated by E1 and M1 transitions. For initial spin I and

parity π at Sn, the width can be written in terms of the
transmission coefficient by the following [27]:

〈�γ 〉 = 1

2ρ(Sn, I, π )

∑
If

∫ Sn

0
dEγ BT (Eγ )

× ρ(Sn − Eγ , If ), (4)

where the summation and integration run over all final levels
with spin If , which are accessible by γ radiation with energy
Eγ and multipolarity E1 or M1.

A few considerations have to be made before B can
be determined. Methodical difficulties in the primary γ -ray
extraction prevents determination of the functions T (Eγ )
in the interval Eγ < 1 MeV and ρ(E) in the interval E >

Sn − 1 MeV. In addition, T (Eγ ) at the highest γ energies,
above Eγ ∼ Sn − 1 MeV, suffers from poor statistics. For the
extrapolation of ρ we apply the back-shifted Fermi gas level
density as demonstrated in Ref. [20]. For the extrapolations
of T we use an exponential form. As a typical example, the
extrapolations for 98Mo are shown in Fig. 1. The contribution
of the extrapolations of ρ and T to the calculated radiative
width in Eq. (4) does not exceed 15% [18]. The experimental
widths 〈�γ 〉 in Eq. (4) are listed in Table I. For 94Mo,
this width is unknown and is estimated by an extrapolation
based on the 96Mo and 98Mo values.

The total radiative strength function for dipole radiation
(L = 1) can be calculated from the normalized transmission
coefficient T by the following:

f (Eγ ) = 1

2π

T (Eγ )

E3
γ

. (5)

The RSFs extracted from the eight reactions are displayed in
Fig. 2. As expected, the RSFs do not seem to show any odd-
even mass differences. The results obtained for the (3He,α)
and (3He,3He′) reactions populating the same residual nucleus
reveal very similar RSFs. Also for 96Mo two different beam
energies have been applied, giving very similar RSFs. Thus,
the observed energy and reaction independency gives further
confidence in the Oslo method.

III. DESCRIPTION OF THE RADIATIVE
STRENGTH FUNCTIONS

An inspection of the experimental RSFs of Fig. 2 reveals
that the RSFs are increasing functions of γ energy for Eγ >

3 MeV. This indicates that the RSFs are influenced by the tails
of the giant resonances. As follows from previous work, the
main contribution (about 80%) is because of the electric dipole
resonance (GEDR). The magnetic resonance (GMDR) and the
isoscalar E2 resonance are also present in this region.

If the GEDR is described by a Lorentzian function, one
will find that the strength function approaches zero in the limit
Eγ → 0. However, the 144Nd(n,γα) reaction [29] strongly
suggests that fE1 has a finite value in this limit. Kadmenskiı̆,
Markushev, and Furman (KMF) have developed a model [30]
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FIG. 1. Measured level density ρ (upper
panel) and radiative transmission coefficient T
(lower panel) for 98Mo. The straight lines are
extrapolations needed to calculate the normaliza-
tion integral of Eq. (4). The triangle in the upper
panel is based on resonance spacing data at Sn.

describing this feature for the electric dipole RSF:

fE1(Eγ , T ) = 1

3π2h̄2c2

0.7σE1�
2
E1

(
E2

γ + 4π2T 2
)

EE1
(
E2

γ − E2
E1

)2 . (6)

The temperature T depends on the final state f and for
simplicity we adapt the schematic form

T (Ef ) = √
Uf /a, (7)

where the level density parameter is parametrized as a =
0.21A0.87 MeV−1. The intrinsic energy is estimated by
Uf = Ef − C1 − Epair with a back-shift parameter of C1 =
−6.6A−0.32 MeV [31]. The pairing energy contribution Epair

is evaluated from the three-point mass formula of Ref. [33].
Although the KMF model has been developed for spherical

nuclei, it has been successfully applied to 56,57Fe and several

rare earth nuclei [13,18–20] assuming a constant temperature
parameter T in Eq. (6) (i.e., one that is independent of excitation
energy). In this work we assume that the temperature depends
on excitation energy according to Eq. (7), which gives an
increase in the RSF at low γ energy [20].

The GMDR contribution to the total RSF is described
by a Lorentzian. This approach is in accordance with nu-
merous experimental data obtained so far [26]. However,
the experimental data scatter and the resonance parameter
values are uncertain. This is also true for the E2 resonance.
The Lorentzian description of the M1 and E2 contributions
are given in Ref. [17]. The resonance parameters for the
E1,M1, and E2 resonances are taken from the compilations of
Refs. [26,32] and are listed in Table I.

The enhanced RSF at low γ energies has at present no
theoretical explanation. Recently, the same enhancement has

TABLE I. Parameters used for the radiative strength functions. The data are taken from Ref. [26]. The
E1 resonance parameters for the even Mo isotopes are based on photo absorption experiments [32], and the
parameters for the odd Mo isotopes are derived from interpolations.

Nucleus EE1 σE1 �E1 EM1 σM1 �M1 EE2 σE2 �E2 〈�γ 〉
(MeV) (mb) (MeV) (MeV) (mb) (MeV) (MeV) (mb) (MeV) (meV)

93Mo 16.59 173.5 4.82 9.05 0.86 4.0 13.91 2.26 4.99 160(20)
94Mo 16.36 185.0 5.50 9.02 1.26 4.0 13.86 2.24 4.98 170(40)a

95Mo 16.28 185.0 5.76 8.99 1.38 4.0 13.81 2.22 4.97 135(20)
96Mo 16.20 185.0 6.01 8.95 1.51 4.0 13.76 2.21 4.96 150(20)
97Mo 16.00 187.0 5.98 8.92 1.58 4.0 13.71 2.19 4.95 110(15)
98Mo 15.80 189.0 5.94 8.89 1.65 4.0 13.66 2.17 4.93 130(20)

aEstimated from systematics.
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FIG. 2. Normalized RSFs for 93−98Mo. The filled and open circles
represent data taken with the (3He,α) and (3He,3He′) reactions,
respectively. The filled triangles in 93,95Mo are estimates of E1 RSF
of hard primary γ rays [28] . The solid and dashed lines are fits to the
RSF data from the two respective reactions (see text).

been observed in the iron isotopes [12,13]. We call this
structure a soft pole in the RSF and choose a simple power law
parametrization given by the following:

fsoftpole = 1

3π2h̄2c2
AE−b

γ , (8)

where A and b are fit parameters and Eγ is given in
MeV.

Previously, a pygmy resonance around Eγ ∼ 3 MeV has
been reported in several rare-earth nuclei [18–20]. The electro-
magnetic character of the corresponding RSF structure is now
established to be of M1 type [9,10] and is interpreted as the
scissors mode. Deformed nuclei can in principle possess this
collective motion, and, for example, 98Mo with a deformation
of β ∼ 0.18, could eventually show some reminiscence of
the scissors mode. Data on 94Mo [34] and 96Mo [35] show
a summed M1 strength to mixed symmetry 1+ states around
∼3.2 MeV on the order of ∼0.6µ2

N . This is about one order
of magnitude lower than the M1 strength observed in well-
deformed rare-earth nuclei using the present method. This M1
strength is deemed too weak to cause a visible bump in our
RSFs above 3 MeV.

We conclude that a reasonable composition of the total RSF
is as follows:

f = κ(fE1 + fM1 + fsoftpole) + E2
γ fE2, (9)

where κ is a normalization constant. Generally, its value
deviates from unity for several reasons; the most important
reasons are theoretical uncertainties in the KMF model and
the evaluation of B in Eq. (4). We use κ,A, and b as free
parameters in the fitting procedure, and the results for the
eight reactions are summarized in Table II.

In Fig. 3 the various contributions to the total RSF of 98Mo
are shown. The main components are the GEDR resonance
and the unknown low-energy structure. We observe that the
E1 component exhibits an increased yield for the lowest γ

energies because of the increase in temperature T. However,
this effect is not strong enough to explain the low-energy
upbend.

Figure 2 shows the fit functions for all reactions and
gives qualitative good agreements with the experimental data.
The fitting parameters κ,A, and b are all similar within the
uncertainties. It should be noted that the soft pole parameters

TABLE II. Soft pole fitting parameters and integrated strenghts. The B values are only lower estimates (see
text).

Reaction κ A b B(E1↑) B(M1↑) B(E2↑)
(mb/MeV) (e2 fm2 ) (µ2

N ) (103e2 fm4)

(3He,α)93Mo 0.44(4) 0.37(7) 2.6(3) 0.021(5) 1.9(4) 14(3)
(3He,3He′)94Mo 0.36(2) 0.48(5) 2.5(2) 0.023(3) 2.1(3) 16(2)
(3He,α)95Mo 0.39(2) 0.48(6) 2.6(2) 0.024(4) 2.2(3) 16(2)
(3He,3He′)96Mo 0.36(1) 0.60(4) 3.2(2) 0.022(2) 2.0(2) 16(1)
(3He,α)96Mo 0.32(4) 0.47(14) 2.7(6) 0.019(7) 1.7(6) 13(4)
(3He,3He′)97Mo 0.38(3) 0.47(7) 2.4(3) 0.025(5) 2.3(4) 16(3)
(3He,α)97Mo 0.45(5) 0.30(10) 2.2(5) 0.020(8) 1.9(7) 13(5)
(3He,3He′)98Mo 0.52(4) 0.22(7) 2.1(5) 0.018(7) 1.6(6) 12(4)
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FIG. 3. Experimental radiative strength function of 98Mo com-
pared to a model description, including GEDR, GMDR, and the
isoscalar E2 resonance. The empirical soft pole component is used
to describe the low energy part of the RSF.

coincide with the description of the 57Fe nucleus [13] having
A = 0.47(7) mb/MeV and b = 2.3(2).

The RSFs for Eγ > 3 MeV when going from N = 51 to 56
increase by almost a factor of 2 and this can be understood from
the corresponding evolution of nuclear deformation. Following
the onset of prolate deformation the GEDR will split into two
parts, where 1/3 of its strength is shifted down in energy and
2/3 up. Photoneutron cross sections [32] show no splitting into
two separate bumps; however, the observed increase in width
�E1 as a function of neutron number (see Table I) supports
the idea of a splitting, which is a well-known feature in other
more deformed nuclei. Figure 2 demonstrates that the adopted
widths describe very well the variation of the RSF strength as
function of mass number.

To investigate whether the prominent soft pole structure
is present in the whole excitation energy region, we have per-
formed the following test. Assuming that the level density from
Eq. (1) is correct, we can estimate the shape of the strength
functions starting at various initial excitation energies using
the following:

f (Eγ ,Ei) = 1

2π

N (Ei)P (Ei,Eγ )

ρ(Ei − Eγ )E3
γ

. (10)

Actually, f (Eγ ,Ef ) would have been the proper expression
to investigate, but because of technical reasons we chose
f (Eγ ,Ei), which is equivalent to investigating f (Eγ ,Ef )
because in our method Ef and Ei are uniquely related
by Ef = Ei − Eγ . One problem is that the normalization

FIG. 4. RSFs for 96,98Mo at various initial excitation energies.
The soft pole is present for all Ei . The solid lines display the RSFs
obtained in Fig. 2.

constant is only roughly known through the following estimate:

N (Ei) =
∫ Ei

0 dEγ ρ(Ei − Eγ )T (Eγ )∫ Ei

0 dEγ P (Ei,Eγ )
, (11)

with Ei < Sn. However, for the expression f (Eγ ,Ei) we
are interested only in the shape of the RSFs, and an exact
normalization is therefore not crucial. The evaluation assumes
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that eventual temperature-dependent behavior of the RSF is
small compared to the soft pole structure.1

In Fig. 4, the RSFs for 96,98Mo are shown at various initial
energies Ei . For comparison, the figure also includes the global
RSFs (solid lines) obtained with the Oslo method (Fig. 2).
Within the error bars the data support that the soft pole is
present in all the excitation bins studied.

The origin of the soft pole cannot be explained by any
known theoretical model. One would therefore need to know
the γ -ray multipolarity as guidance for theoretical approaches
to this phenomenon. Rough estimates of the reduced strength
can be obtained from the following:

B(XL↑) = 1

8π

L (2L + 1) [(2L + 1)!!]2

L + 1
(h̄c)2L+1

×
∫ 3 MeV

1 MeV
dEγ fXL(Eγ ). (12)

In the evaluation, we have integrated the soft pole between
1 and 3 MeV. Thus, the estimates listed in Table II for the
reactions studied give only a lower limit for the respective
B(XL↑) values. The correct result will of course depend on
the functional form of fsoftpole(Eγ ) below 1 MeV; however,
no experimental data exist in this region and any assumption
here would be highly speculative. There seems to be no
clear dependency of the B values on mass number or nuclear
deformation.

With the assumptions above, we get in the case of an E1 soft
pole an average B(E1↑) value of 0.02 e2 fm2, which is 0.07%
of the sum rule for the GEDR. Assuming an M1 soft pole,
we get roughly B(M1↑) ∼ 2.0µ2

N , which is 3−4 times larger
than the observed strength to mixed symmetry 1+ states around
3 MeV [34,35]. Provided the soft pole has E2 multipolarity
we obtain finally a B(E2↑) value around 15000 e2 fm4,
which is 5–15 times larger than the ones for the excitation to the

1Simulations using the KMF model with fixed temperature in
the T ∼ 0.8 MeV region indicate a maximum 20% effect from
temperature dependence of the RSF.

first excited 2+ states in the even molybdenum isotopes. Thus,
we cannot exclude any of these multipolarities, since neither
of them would yield unreasonably high transition strengths.
Moreover, we would like to point out that the observed soft
pole resides on top of the tails of giant resonances. Thus,
the transition strength included in the soft pole has to be
added to the strength in the giant resonance tail of the correct
multipolarity to give the summed transition strength.

IV. SUMMARY AND CONCLUSIONS

As expected, the observed RSFs reveal very similar shapes
because they all refer to isotopes with the same nuclear charge.
When going from N = 51 to 56 the RSF increases by almost
a factor of two for Eγ > 3 MeV, which can be understood
from the change of nuclear deformation. With the onset of
deformation, the increasing resonance GEDR width �E1 is
responsible for the increasing strength.

An enhanced strength at low γ energies is observed, which
is equally strong for all isotopes and excitation energies
studied. A similar enhancement has also been seen in the
iron isotopes. The multipolarity of the soft pole radiation is
unknown and there is still no theoretical explanation for this
very interesting phenomenon.
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