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Generalized Grodzins relation
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A relation connecting the spin dependence of the energies E(I + 2) of the members of the rotational ground-state
band with the E2 reduced transition probabilities B(E2; (I + 2)1 → I1) is derived based on the Bohr Hamiltonian.
This relation generalizes the Grodzins relation from the 2+

1 state to all members of the ground-state band.
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I. INTRODUCTION

Phenomenological models play an important role in the
analysis of the experimental data. They are especially useful if
it becomes possible to derive on their basis relations between
observables that do not include free parameters. A well-known
example of such a relation is the Grodzins relation between
the excitation energy of the first 2+ state and the B(E2; 2+

1 →
0+

1 ) [1,2]. This relation shows that the γ -ray E2 transition
probabilities from the first 2+ states of even-even nuclei to
the ground states are approximately inversely proportional
to E(2+

1 ). The aim of the present paper is to generalize the
Grodzins relation from the 2+

1 state to all members of the
ground-state band for nuclei which are well deformed or at
least deformed and have a quasirotational ground band. This
will be done using a sum rule approach. It is well known that
such nuclei are well described by the Bohr Hamiltonian [3].
Thus we will base the following discussion of the sum rule on
the Bohr Hamiltonian:

Ĥ = T̂ + V (α), (1)

where

T̂ = − h̄2

2B

∑
µ

(−1)µ
∂2

∂α2µ∂α2−µ

, (2)

B is a mass coefficient, V is a potential energy depending on
α2µ only, and α2µ is the collective quadrupole variable which
is proportional to the quadrupole moment operator Q2µ,

Q2µ = 3

4π
ZeR2

0α2µ ≡ qα2µ. (3)

Using Eqs. (1)–(3) we obtain by straightforward calculations
the following basic commutation relation:

(−1)µ[[H,Q2µ],Q2−µ] = −h̄2q2

B
. (4)

II. SUM RULES

Relation (4) allows us to derive sum rules. We introduce a
basis of the eigenstates of the Hamiltonian (1) |InM〉, where
I is the angular momentum, M is its projection on the z axis of

the laboratory frame, and where n is a set of all other quantum
numbers which are necessary to characterize the eigenstates.
Then we obtain a sum rule by taking an average of the relation
(4) and by using a full set of the intermediate states:

∑
I ′n′

[E(In) − E(I ′n′)]
1

(2I + 1)
|〈In‖Q2‖I ′n′〉|2

= − 5h̄2q2

2B
. (5)

Here, E(In) is the eigenvalue of the Hamiltonian (1):
Ĥ |InM〉 = E(In)|InM〉. We analyze the consequences of the
relation (5) by taking the average with a state with quantum
numbers In belonging to the ground state band |Igr〉. Since we
are going to consider only near-deformed or well-deformed
nuclei, we restrict the summation in Eq. (5) by the states of the
ground, β, and γ bands. Then we obtain

∑
I ′
gr

[E(Igr ) − E(I ′
gr )]

1

(2I + 1)
|〈Igr‖Q2‖I ′

gr〉|2

+
∑
I ′
β

[E(Igr ) − E(I ′
β)]

1

(2I + 1)
|〈Igr‖Q2‖I ′

β〉|2

+
∑
I ′
γ

[E(Igr ) − E(I ′
γ )]

1

(2I + 1)
|〈Igr‖Q2‖I ′

γ 〉|2

= − 5h̄2q2

2B
. (6)

The last two equations are the main sum rule result. The
next point is to evaluate these equations approximately. To
understand the relative importance of the different terms in
the left-hand side of Eq. (6) let us consider this relation in
the limit of the strongly deformed nucleus whose rotational
energies are strictly proportional to I (I + 1) and for which the
β and γ vibrations are harmonic. In this case

E(Igr ) = h̄2

2�I (I + 1), (7)

E(Iβ) = h̄

√
Cβ

B
+ h̄2

2�I (I + 1), (8)
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E(Iγ ) = h̄

√
Cγ

B
+ h̄2

2� [I (I + 1) − 4], (9)

where � is the moment of inertia and the wave functions of
the states of the ground, β, and γ bands are

�gr (IM) = NgrD
I
M0(�) exp

(
−1

2

(β−β0)2

h̄/
√

BCβ

−1

2

γ 2

h̄/
√

BCγ

)
,

(10)

�β(IM) = NβDI
M0(�)(β − β0)

× exp

(
−1

2

(β − β0)2

h̄/
√

BCβ

− 1

2

γ 2

h̄/
√

BCγ

)
, (11)

�γ (IM) = Nγ

[
DI

M2(�) + DI
M−2(�)

]
γ

× exp

(
−1

2

(β − β0)2

h̄/
√

BCβ

− 1

2

γ 2

h̄/
√

BCγ

)
, (12)

where Ngr ,Nβ , and Nγ are the normalization coefficients,
DI

MK (�) is a Wigner function, Cβ (Cγ ) is a stiffness coefficient
of the β (γ ) oscillations, and β0 is an equilibrium deforma-
tion. In the harmonic approximation the quadrupole moment
operator takes the form

Q2µ = q

(
D2

µ0β0 + D2
µ0(β − β0) + γ

1√
2

(
D2

µ2 + D2
µ−2

))
.

(13)
Using Eqs. (10)–(13) after straightforward calculations which
can be done analytically, we obtain

〈Igr‖Q2‖I ′
gr〉2 = q2β2

0 (2I + 1)
(
CI ′0

I020

)2
, (14)

〈Igr‖Q2‖I ′
β〉2 = q2 h̄

2
√

BCβ

(2I + 1)
(
CI ′0

I020

)2
, (15)

〈Igr‖Q2‖I ′
γ 〉2 = q2 h̄√

BCγ

(2I + 1)
(
CI ′2

I022

)2
. (16)

Above CI ′K
I02K is the Clebsch-Gordan coefficient. The relations

(14)–(16) express the Alaga rules for the E2 transitions
within the ground-state rotational band or between the states
belonging to different rotational bands. Using Eqs. (10)–(13)
we can derive also the following expressions:

1

(2I + 1)

∑
I ′
β

|〈Igr‖Q2‖I ′
β〉|2 = q2〈Igr‖(β − β0)2‖Igr〉

= q2 h̄

2
√

BCβ

(17)

and
1

(2I + 1)

∑
I ′
γ

|〈Igr‖Q2‖I ′
γ 〉|2 = q2〈Igr‖γ 2‖Igr〉

= q2 h̄√
BCγ

(18)

from which it is seen that the factor h̄/2
√

BCβ describes the
mean square fluctuations of β around the equilibrium value β0,
and the factor h̄/

√
BCγ describes the mean square fluctuations

of γ around γ = 0.

Substituting Eqs. (7)–(16) into Eq. (6) we obtain

∑
I ′
gr

h̄2

2� [I (I + 1) − I ′(I ′ + 1)]β2
0

(
CI ′0

I020

)2

+
∑
I ′
β

(
− h̄

√
Cβ

B
+ h̄2

2� [I (I + 1) − I ′(I ′ + 1)]

)

× h̄

2
√

BCβ

(
CI ′0

I020)2 +
∑
I ′
γ

(
−h̄

√
Cγ

B
+ h̄2

2� [I (I + 1)

− I ′(I ′ + 1) + 4]

)
h̄√
BCγ

(
CI ′2

I022

)2 = −5h̄2

2B
. (19)

All sums in Eq. (19) can be calculated exactly after substitution
of algebraic expressions for the Clebsch-Gordan coefficients.
The final result is

� = 3Bβ2
0

(
1 + h̄

2β2
0

√
BCβ

+ h̄

3β2
0

√
BCγ

)
, (20)

where

h̄

2
√

BCβ

= 〈gr|(β − β0)2|gr〉 (21)

and

h̄√
BCγ

= 〈gr|γ 2|gr〉. (22)

Thus, the second and third terms in Eq. (20) represent the
ratios of the amplitudes of the β and γ fluctuations near the
equilibrium values to β0:

� = 3Bβ2
0

(
1 + 〈gr|(β − β0)2|gr〉

β2
0

+ 〈gr|γ 2|gr〉
3β2

0

)
. (23)

In deformed nuclei these ratios are small and we obtain by
neglecting their contributions the following relation:

� = 3Bβ2
0 , (24)

which is the expression for the moment of inertia in the Bohr-
Mottelson model. The last result (24) can be obtained directly
from Eq. (19) if we neglect in the second and third terms
in the left-hand side of Eq. (19) a rotational contribution to
the energy differences which is small in comparison with a
vibrational one.

We will now consider a situation when the Alaga rules are
not satisfied perfectly, however, nuclei under consideration are
deformed. In this case we can neglect as above the rotational
contributions into the energy differences in the second and
third terms in the left-hand side of Eq. (6). It is necessary
to mention that the neglected terms are angular momentum
dependent and increase as angular momentum increases. At
the same time these terms have both positive and negative
signs. For this reason, it is difficult to estimate their effect on
the validity of the approximation which neglect the rotational
contribution into the energy differences considered above.

If the rotational contributions into the γ -transition energies
between β, γ bands and the ground band is relatively small,
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we neglect them and obtain
∑
I ′
gr

[E(Igr ) − E(I ′
gr )]

1

(2I + 1)
|〈Igr‖Q2‖I ′

gr〉|2

− h̄

√
Cβ

B

1

(2I + 1)

∑
I ′
β

|〈Igr‖Q2‖I ′
β〉|2 − h̄

√
Cγ

B

1

(2I + 1)

×
∑
I ′
γ

|〈Igr‖Q2‖I ′
γ 〉|2 = −5h̄2q2

2B
. (25)

Substituting Eqs. (17) and (18) into Eq. (25) and taking into
account that in Eq. (25) I ′

gr = Igr ± 2, we obtain

[E(I + 2) − E(I )]
1

(2I + 1)
|〈I‖Q2‖I + 2〉|2 − [E(I )

−E(I − 2)]
1

(2I + 1)
|〈I‖Q2‖I − 2〉|2 = h̄2q2

B
.

(26)

Since only states of the ground band are presented in Eq. (26),
the notation gr is omitted there.

Using a definition of the reduced transition probabilities
B(E2) we can rewrite Eq. (26) as

[E(I + 2) − E(I )][2(I + 2) + 1]B(E2; I + 2 → I )

− [E(I ) − E(I − 2)](2I + 1)B(E2; I → I − 2)

= h̄2q2

B
(2I + 1). (27)

III. GENERALIZED GRODZINS RELATION

The relation (27) is a finite differences equation whose
solution is the searched-for generalization of the Grodzins
relation:

[E(I + 2) − E(I )]B(E2; I + 2 →I ) = h̄2q2

2B

(I + 2)(I + 1)

(2I + 5)
.

(28)
Using the expression for the square of the Clebsch-Gordan
coefficient (CI0

I+2020)2 we can present Eq. (28) as

[E(I + 2) − E(I )]B(E2; I + 2 →I )

= h̄2q2

3B
(2I + 3)

(
CI0

I+2020

)2
. (29)

These Eqs. (28) and (29) are the generalization of the Grodzins
relation from the 2+

1 state to all members of the ground state
band. This generalization of the Grodzins relation is the main
result of this paper.

One can directly derive this relation for the rigid rotor. In
this case one finds for the transition energy the relation

E(I + 2) − E(I ) = h̄2

� (2I + 3) = h̄2

3Bβ2
0

(2I + 3), (30)

and the E2 reduced transition probabilities B[E2; (I + 2)1 →
I1] are

B(E2; I + 2 → I ) = q2β2
0

3

2

(I + 2)(I + 1)

(2I + 3)(2I + 5)
. (31)

By taking the product we indeed recover Eq. (28). Thus
there is an easy derivation for the generalized Grodzins relation
in the case of the axially symmetric rigid rotor. In many cases
the energies and the B(E2)’s of the axially symmetric rigid
rotor have been tested empirically. Thus we can claim that
the generalization of the Grodzins relation is also empirically
checked for the axially symmetric rigid rotor.

We note that there are many nuclei for which the rigid
rotor formula does not describe the energies of the rotational
band, however. In this case a number of generalizations of the
I (I + 1) dependence have been suggested. We mention in
particular the Bohr-Mottelson expansion in a power series
in I (I + 1) [3], the variable moment of inertia model
[4,5], the Lipas factor [6,7], the Ejiri expansion in powers
of I [8], and the soft rotor [9]. Also the recently pro-
posed confined Beta-soft rotor model [10] provides analyt-
ical expressions for the ground-band energies of deformed
nuclei with 2.9 < R4/2 < 3.33. These generalizations have
been proven to be quite successful for the energies of
the ground band of quasirotational nuclei. The generalized
Grodzins formula gives to each of these models a predicted
spin dependence of the E2 reduced transition probabilities
B[E2; (I + 2)1 → I1]. These predictions have to be checked.

An alternative and parameter free form of this relation is
found by putting in Eq. (28) I = 0. We obtain

E
(
2+

1

)
B

(
E2; 2+

1 → 0+
1

) = h̄2q2

5B
. (32)

With this result we can rewrite Eq. (28) as

[E(I + 2) − E(I )]B(E2; I + 2 → I )
(2I + 5)

(I + 1)(I + 2)

= 5

2
E

(
2+

1

)
B

(
E2; 2+

1 → 0+
1

)
. (33)

This—parameter free—relation connects the spin dependence
of the transition energies [(E(I + 2) − E(I )] of the members
of the quasirotational ground-state band with the E2 reduced
transition probabilities B[E2; (I + 2)1 → I1]. We note that
Eq. (33) has the form of a plot. Namely, the rhs of this
equation is a constant and is independent of the spin I. We want
to discuss now the range of applicability of the generalized
Grodzins relation, which we have derived from the Bohr
Hamiltonian. There were two crucial assumptions: (1) the mass
parameter B was taken as a constant and (2) it was assumed that
the rotational energies are small compared to the vibrational
energies of the β and γ band. This means E(2+

1 ) < 0.1E(2+
2 ).

These are strong assumptions which restrict the applicability
of the relation. In particular, it does not work for the vibrator
or the γ unstable Jean-Wilets rotor. But it presumably works
for nuclei with an R(4/2) = E(4)/E(2) � 2.9. We note that
the assumed constancy of the mass parameter B with spin is a
strong assumption. One can consider the success of the X(5)
model of Iachello [11] and of the CBS rotor [10] as a test of
this assumption for the strongly deformed nuclei.

IV. CONCLUSIONS

Summing up, we have suggested energy-weighted sum
rules for the B(E2) for nuclei with a quasirotational
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ground-state band. These truncated sum rules were derived
based on the Bohr Hamiltonian. We also used the assumption
that the rotational contribution to the γ -transition energies
between the β, γ bands and the ground band is small compared
to the vibrational contribution. These relations are parameter
free and they allow us to calculate the spin dependence of the
B(E2)’s of the ground band from the energies of the ground
band. One can consider these relations as a generalization of
the Grodzins relation to higher spins.

ACKNOWLEDGMENTS

The authors express their gratitude to R. F. Casten,
A. Dewald, K. Lister, and N. V. Zamfir for useful dis-
cussions. This work was supported in part by DFG under
Contract No. Br799/12-1 and by the U.S. NSF under Grant
No. PHY-0245018. R.V.J. thanks the Alexander von Humboldt
foundation for support. P.v.B thanks the Argonne National
Laboratory for hospitality.

[1] L. Grodzins, Phys. Lett. 2, 88 (1962).
[2] S. Raman, C. W. Nestor Jr., and P. Tikkanen, At. Data Nucl. Data

Tables 78, 1 (2001).
[3] A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin,

Reading, MA, 1975), Vol. II.
[4] M. A. J. Mariscotti, G. Sharff-Goldhaber, and B. Buck, Phys.

Rev. 178, 1864 (1969).
[5] G. Sharff-Goldhaber and J. Weneser, Phys. Rev. 98, 212 (1955).
[6] P. Holmberg and P. O. Lipas, Nucl. Phys. A117, 552 (1968).

[7] R. F. Casten, Nuclear Structure from a Simple Perspective, 2nd
ed. (Oxford University Press, New York/Oxford, 2000).

[8] H. Ejiri, M. Ishihara, M. Sakai, K. Katori, and T. Inamura,
J. Phys. Soc. Jpn. 24, 1189 (1968).

[9] P. von Brentano, N. V. Zamfir, R. F. Casten, W. G. Rellergert,
and E. A. McCutchan, Phys. Rev. C 69, 044314 (2004).

[10] N. Pietralla and O. M. Gorbachenko, Phys. Rev. C 70, 011304(R)
(2004).

[11] F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).

044305-4


