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The SD-pair shell model (SDPSM) is shown to reproduce approximately typical spectra, E2 transition strengths,
and wave functions of the U(5), SO(6), and SU(3) limits of the interacting boson model (IBM). Consequently,
the analysis confirms that the IBM has a sound shell-model foundation; it also demonstrates that the truncation
scheme adopted in the SDPSM is reasonable.
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I. INTRODUCTION

The discovery of low-lying collective modes, like vibrations
and rotations, as well as higher-lying ones like giant reso-
nances, etc., in the medium- and heavy-mass nuclei represents
a significant achievement. These modes can be tied to the
collective quadrupole motion of the constituent nucleons. An
interesting and challenging task in nuclear theory is to describe
these collective modes in terms of fermion degrees of freedom.
Since truly large-space shell-model calculations remain out of
reach, even with the best of modern computational facilities,
one has to evoke some type of truncation scheme. The
crucial issue is how to truncate a huge shell-model space
to a manageable and effective subspace so that calculations
within the subspace are both feasible and realistic, thereby
providing a sound understanding of the collective degrees of
freedom that are at play. The success of the interacting boson
model (IBM) [1] suggests that S and D pairs play a dominant
role in the spectroscopy of low-lying nuclear modes [2–4].
Although the size of the S-D subspace is typically only
102–103 and therefore not difficult to manage, the calculation
of matrix elements in a “realistic” S-D subspace is not
simple because the subspace is not closed under the action of
pair annihilation operators. This renders the usual coefficient
of fractional parentage (CFP) technique inapplicable. To
circumvent this difficulty, in the interacting boson model the
S and D fermion pair operators are treated approximately as s
and d bosons through a so-called Otsuka, Arima, and Iachello
(OAI) mapping procedure [5].

Studies focused on exploring the microscopic foundation
of the IBM using various mapping procedures have extended
over nearly two decades [4–15]. In these studies, the s and d
bosons are considered to correspond to collective S and D pairs
of valencelike nucleons [5–7,16]. By using the generalized
Wick theorem for fermion clusters [17], the nucleon-pair
shell model (NPSM) has been proposed for nuclear collective
motion in which collective nucleon pairs with various angular
momenta serve as the building blocks [18]. The NPSM has
the advantages that the normal and abnormal parity orbits can
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be treated on the same footing, which is flexible enough to
include the broken pair approximation [19], the pseudo SU(2)
or the favored pair model [20], and the fermion dynamical
symmetry model (FDSM) [21] as special cases; it also allows
various truncation schemes ranging from the truncation to
the S-D subspace up to the full shell-model space. Because
the computational time increases dramatically with the size
of the subspace, one normally truncates this shell-model
space for medium- and heavy-mass nuclei to the collective
S-D subspace. The latter is called the SD-pair shell model
(SDPSM). In the SDPSM, the Hamiltonian is diagonalized
exactly in the S-D space. It is the aim of this paper to study
whether the SDPSM can reproduce the vibrational, rotational,
and γ -unstable spectra corresponding to those of U(5), SU(3),
and SO(6) limits of the IBM.

The paper is organized as follows. Section II is devoted to
a brief review of the model. The results corresponding to the
three limiting cases are discussed in Sec. III–V. Section VI
gives a short summary of the results.

II. THE MODEL

Though the general model Hamiltonian can be treated
within the SDPSM [18], we use a simpler Hamiltonian to
see if the typical spectra in the IBM could be reproduced. The
Hamiltonian chosen is

H = Hπ + Hν + Hπν,

Hσ = Hσ (0) − GσS†(σ )S(σ ) − κσQ2
σ · Q2

σ ,

Hσ (0) =
∑
σa

εσanσa, σ = π, ν,

(1)
Hπν = −κQ2

π · Q2
ν,

S† =
∑

a

â

2

(
C†

a × C†
a

)0

0 , â = √
2a + 1,

Q2
µ =

√
16π/5

n∑
i=1

r2
i Y2µ(θiφi),
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where εσα,Gσ , κσ , and κ are the single-particle energy of
the αth level, the pairing interaction strength, the quadrupole-
quadrupole interaction strength among like nucleons, and the
quadrupole-quadrupole interaction strength between protons
and neutrons, respectively, which emphasizes pairing and
quadrupole-quadrupole interactions. The E2 transition opera-
tor is

T (E2) = eπQ2
π + eνQ

2
ν, (2)

where eν and eπ are the effective charges of the neutron and
proton, respectively.

The collective pairs Ar†
µ with r = 0, 2 and the angular

momentum projection µ built from many noncollective pairs
(C†

a × C
†
b)rµ in the single-particle levels a and b are

A
r†
µ =

∑
ab

y(abr)
(
C†

a × C
†
b

)r

µ
,

(3)
y(abr) = −θ (abr)y(bar), θ (abr) = (−)a+b+r ,

where y(abr) are structure coefficients. There are many ways
to determine the S and D pairs [4,6,7,9–16]. In this paper, as
an approximation, the S-pair structure coefficients are de-
termined as y(aa0) = √

2a + 1 va

ua
, where va and ua are the

occupied and unoccupied amplitudes for orbit a obtained
by solving the associated BCS equation. The D pair [22] is
obtained by using the commutator,

D† = 1
2 [Q2, S†] =

∑
ab

y(ab2)
(
C†

a × C
†
b

)2
. (4)

A nonorthonormal N-pair state is given by

A
JN †
MN

(ri, Ji) = A
JN †
MN

= (· · · ((Ar1† × Ar2†)J2Ar3†)J3

× · · · × ArN †)JN

MN
, (5)

with the convention that r1 ≡ J1, and r1 � r2 � . . . � rN .
For a given set of quantum numbers (r1r2 . . . rN : JNMN ),
not all sets of intermediate angular momenta J2 . . . JN−1

lead to independent or orthogonal basis states. To address
this over-completeness issue, for a given JN , we take the
independent sets formed by choosing the largest possible in-
termediate angular momentum values Ji . This choice reduces
the number of intermediate summations required and makes
it a relatively easy matter to identify the linearly independent,
but still nonorthogonal, many-pair basis states. For example,
for a configuration with four D pairs, the independent but
nonorthonormal basis vectors can be chosen as

|(D†)4(S†)N−4, J1J2J3 · · · JN 〉,
J1J2J3J4=2420, 2432, 2442, 2444, 2464, 2465, 2466, 2468.

(6)

A recursion formula for the overlap between two N-pair
states is

〈s1s2 · · · sN ; J ′
1 · · · J ′

N−1JN |r1r2 · · · rN ; J1 · · · JN 〉

= (Ĵ ′
N−1/ĴN )(−)JN+sN −J ′

N−1

1∑
k=N

∑
Lk−1···LN−1

HN (sN ) · · · Hk+1(sN )

×
[
ψkδLk−1,Jk−1〈s1 · · · sN−1; J ′

1 · · · J ′
N−1|r1 · · · rk−1, rk+1 · · · rN ; J1 · · · Jk−1Lk · · ·LN−1〉

+
1∑

i=k−1

∑
r ′
iLi ···Lk−2

〈s1 · · · sN−1; J ′
1 · · · J ′

N−1|r1 · · · r ′
i · · · rk−1, rk+1 · · · rN ; J1 · · · Ji−1Li · · ·LN−1〉

]
, (7)

where Ĵ = √
2J + 1,Hk(sN ) is essentially a Racah coeffi-

cient, ψk is a constant depending on the structure of the pairs
Ark† and AsN †, while r ′

i represents a new collective pair Ar ′
i†

with a new distribution function y ′(akair
′
i ) depending on the

structure of the pair Ark†, Ari† and AsN †, and the intermediate
quantum numbers Li · · · Lk−2Lk−1. The Li ′(i ′ = i, . . . , k −
2, k − 1) is the angular momentum of the first i ′ pairs in
the bra vector on the right-hand side of Eq. (7). Since the
right-hand side of Eq. (7) is a linear combination of overlaps for
N−1 pairs, all overlaps can be calculated recursively starting
from the simplest two-particle configuration. The details of the
model can be found in Refs. [18,23,24].

To show that the SDPSM can produce the limiting cases of
the IBM, the theory was applied to spectrum and E2 transition
rates. From [23,25–29] we know that explicit expressions for
wave functions expanded in terms of a linear combination of

the nonorthogonal (but normalized) multipair basis states are
helpful in providing a microscopic description of the states.
Thus, the wave functions for some cases were also studied and
the results are given below. The following shorthand notation
is used for the multipair states:∣∣(D†

π

)nπ
(
S†

π

)Nπ −nπ
(
D†

ν

)nν
(
S†

ν

)Nν−nν ; JM
〉

→ |(Dν)nν (Dπ )nπ ; JM〉, ∣∣(S†
π

)Nπ
(
S†

ν

)Nν ; JM
〉 → |S; JM〉.

We will also use brackets for those multipair basis states that
occur more than once and which are distinguished by the value
of intermediate angular momentum.

III. VIBRATIONAL LIMIT

To see whether the vibrational spectrum of the IBM can
be reproduced within the SDPSM, the proton-neutron coupled
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FIG. 1. The vibrational spectrum of the SDPSM. Some relative
B(E2) ratios are also shown with the effective charges fixed at eπ =
1.5 e and eν = 0.5 e.

system with a 2π -2ν pair was studied. We restricted ourselves
to the 50–82 shell with the same set of orbits taken for both
the protons and neutrons. The single-particle energies that we
used are from Ref. [30] with the same values used in both
the proton and neutron sectors, namely, 2.99, 2.69, 0.963, 0.0,
and 2.76 MeV for j = 1/2, 3/2, , 5/2, 7/2, and 11/2 levels,
respectively. The pairing interaction strengths for proton
and neutron were assumed, for simplicity, to be the same
with Gπ = Gν

∼= G = 0.3 MeV, and κπ = κν = 0. By fitting
E4+

1
/E2+

1
= 2.0, κ was fixed at 0.01 MeV/r4

0 with the oscilla-
tor length r0 = √

h̄/mω.
To show the vibrational pattern that we obtained, some

low-lying states divided by E2+
1

for normalization purposes
are presented in Fig. 1. As expected, the results show that the
states are grouped like those in the Uπ (5)⊗ Uν(5) symmetry in
the IBM-II [1]. For example, as shown in the left panel, the 2+

3
and 0+

2 states are degenerate with the 4+
1 state. Figure 1 also

shows that these groups are equally spaced, which is a typical
feature of the U(5) limit in the IBM.

Wave functions for a few important states are given in
Table I, which shows that the 0+

1 state is almost a pure S-pair
state with an S-pair component equal to 0.9926; both 2+

1 and
2+

2 states are one-D-pair states, but the two components in
the 2+

1 state are coherent with the same phase, while they are
incoherent with the opposite phase for the 2+

2 state; the 4+
1 , 2+

3 ,
and 0+

2 states are all basically two-D-pair states; and the 6+
1

state is a three-D-pair state. In addition to the spectrum, the
E2 transition can be used to probe the collectivity of low-lying
states. The relative B(E2) ratios for some low-lying states are
also presented in Fig. 1, which indicates that the strong E2
transitions occur between states with Dn and those with Dn−1

in agreement with the detailed structure of the wave functions.
For instance, the two-D-pair states, 4+

1 , 2+
3 , and 0+

2 , mainly
deexcite to the one-D-pair 2+

1 state, which is a typical feature in
the vibrational limit. The B(E2) ratios are 1.29, 0.94, and 1.14

for B(E2;4+
1 →2+

1 )
B(E2;2+

1 →0+
1 )

,
B(E2;2+

2 →2+
1 )

B(E2;2+
1 →0+

1 )
, and B(E2;0+

2 →2+
1 )

B(E2;2+
1 →0+

1 )
, respectively.

One can also see that the E2 transition from the 2+
2 to the

2+
1 state is depressed since the 2+

2 state is also a one-D-pair

state with B(E2;2+
2 →2+

1 )
B(E2;2+

1 →0+
1 )

= 0.03.

IV. γ -UNSTABLE LIMIT

From the periodic chart, one can deduce that nuclei that
display an SO(6) spectrum lie close to the end of the shell, at
least in the neutron sector. 132Ba, which is a 3π -3ν̄ pair system,
is an example. Therefore, to explore whether the γ -unstable
spectrum can be realized in the SDPSM, we considered the
same system as in the vibrational limit in the 50–82 shell, with
the same set of orbits taken for both the protons and neutrons.
The single-particle energies were also taken to be the same as
those used in the vibrational limit. As discussed in Ref. [31],
since the SO(6) nuclei in the 50–82 shell are those with a
valence neutron number close to the end of the shell, neutron
pairs in this case were treated as two neutron-hole pairs, and

TABLE I. Main components of selected eigenstates for the vibrational and γ -soft cases. Only components with amplitudes larger than 0.2
are shown.

U(5) State S Dν Dπ DπDν D2
ν D2

π D2
πDν D2

νDπ D2
νD

2
π

0+
1 0.9926

0+
2 0.5914 0.5774 0.5774

2+
1 0.7044 0.7044

2+
2 0.6933 −0.6933

2+
3 0.5096 0.6017 0.6017

4+
1 0.5668 0.5781 0.5781

6+
1 0.7010 0.7010

SO(6) 0+
1 0.8967 −0.5972

0+
2 −0.4979 0.4979 −0.5395 0.5395

2+
1 −0.6747 0.6747 −0.2586 0.2586

2+
2 0.3233 0.3233 −0.6516 0.3718 0.3718

4+
1 −0.6786 0.5252 0.5252

6+
1 −0.7029 0.7029
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FIG. 2. The γ -unstable spectrum. Some relative B(E2) ratios
are also shown with the effective charges fixed at eπ = 1.5 e and
eν = 0.5 e.

a negative κ parameter was used in [31]. With the pairing
strength fixed as Gπ = Gν

∼= G = 0.2 MeV and κπ = κν = 0,
the κ was fixed to be −0.06 MeV/r4

0 by fitting the energy ratio
E4+

1
/E2+

1
= 2.5. The excitation energies divided by E2+

1
are

given in Fig. 2, which shows that the 2+
2 state is lower than the

4+
1 and 0+

2 states, and the 0+
2 state is higher than the 4+

1 and 2+
2

states. Clearly, the level patterns of the γ -unstable spectrum
for the SOπ (6) ⊗ SOν(6) symmetry in the IBM-II [1] are well
reproduced in the SDPSM.

Wave functions for a few important states in this case
are also given in Table I, which shows that the multi-D-pair
components are mixed more strongly with each other than in
the vibrational limit. In the ground state, the pure S-pair and
DπDν components are dominant with amplitudes 0.8967 and
−0.5972, respectively. Furthermore, in the γ -unstable case,
the 2+

1 , 4+
1 , and 6+

1 states are one-, two-, and three-D-pair
states, respectively, while the 2+

2 state is essentially a two-D-
pair state. Table I also shows that the 0+

2 state in the γ -unstable
case is mainly three-D pairs. E2 transitions for some important
low-lying states are also shown in Fig. 2. Again, the E2
transitions are consistent with the detailed structure of the wave
functions; namely, strong E2 transition occurs between states
with a Dn configuration and those with a Dn−1 configuration.

The relative B(E2) ratio B(E2;4+
1 →2+

1 )
B(E2;2+

1 →0+
1 )

= 1.183 and 1.0 between

the 6+
1 and the 4+

1 states; the 2+
2 state mainly deexcites to the

2+
1 state with a ratio 1.22, while it is forbidden from deexciting

to the 0+
1 state because the D-pair number difference between

the two states is 2. Figure 2 also shows that the E2 transition
between the 0+

2 state and the 2+
2 state is dominant over that

between the 0+
2 and 2+

1 states, which is another typical feature
of the γ -unstable limit of the corresponding IBM theory. Other

results include the B(E2;0+
2 →2+

2 )
B(E2;2+

1 →0+
1 )

= 0.88, while the ratio is 0.02

between the 0+
2 and 2−

1 states.

V. ROTATIONAL LIMIT

To see whether the rotational limit of the IBM can be
realized within the SDPSM, a pure quadrupole-quadrupole

TABLE II. Energy ratios EJ+
1
/E2+

1
.

J = 4 J = 6 J = 8 J = 10 J = 12

(A) 3.33 6.96 11.88 18.06 25.48
(B) 3.18 6.41 10.58 15.55 21.17
(C) 3.31 6.87 11.63 17.53 24.51
IBM-SU(3) 3.33 7.0 12.0 18.25 26.0

interaction with κπ = κν = 1
2κ was used in the 3π -3ν pair

system of the gds shell. In this case, we assume the single-
particle energy levels are degenerate with

H = − 1
2κ

(
Q2

π + Q2
ν

) · (
Q2

π + Q2
ν

)
. (8)

Though a more sophisticated Hamiltonian can also be adopted,
the Hamiltonian (8) is suitable to emphasize the quadrupole-
quadrupole interaction in this limiting case. The S-pair struc-
ture coefficient was fixed by y(aa0) = â( N

a−N
)1/2, where a

is defined as a = a + 1/2 and N is the number of like-
nucleon pairs; the D pair was determined by commutator
(4). The energy ratios of the ground band for this system are
shown in row (A) of Table II for the quadrupole-quadrupole
interaction strength fixed as κ = 0.01 MeV/r4

0 . Some low-
lying states are shown in Fig. 3, in which the levels are arranged
into bands. It is clear, as shown in Ref. [3], that the rotational
level pattern can be reproduced very well in the SDPSM [1]
for this case. From Fig. 3, one can also see that the 2+

3 and 2+
4

bands are lower than the 2+
5 band, the so-called γ band of the

Bohr-Mottelson model. If we switch on the L · L term with
another parameter, the rotational level pattern will obviously
improve. To track the rotational pattern more closely, we also
show the energies of the ground, 1+

1 , 0+
2 , and 2+

5 bands plotted
as a function of J (J + 1) in Fig. 4. The linearity of the results
shows that these bands vary with J (J + 1), a clear signature of
their rotational character. Also note that the 0+

2 and 2+
5 bands

are almost degenerate, which is close to what occurs in the
SU(3) limit of the IBM.

It is interesting to compare the wave functions of the
rotational limit with those of the vibrational and γ -unstable
limits. A few important states are presented in Table III.
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tem in the SDPSM.
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The results show that all the states in the rotational limit are
mixtures of multi-D-pair components, and the contribution
from each component is more or less the same. Hence, no
component can be ignored. The results clearly show that
strong deformation leads to strong mixture of the multi-D-pair
components in the SDPSM.

Some relative B(E2) ratios for this limit are listed in
Table IV. The results clearly show that interband transitions
are much stronger than intraband transitions. For example,
B(E2;4+

1 →2+
1 )

B(E2;2+
1 →0+

1 )
= 1.346, while it is almost zero from the 2+

2

to the 2+
1 and the 0+

2 to the 2+
1 states with B(E2;2+

2 →2+
1 )

B(E2;2+
1 →0+

1 )
=

0.009 and B(E2;2+
2 →2+

1 )
B(E2;2+

1 →0+
1 )

= 0.001. These are comparable to the
corresponding typical E2 transitions in the rotational limit.

Similar calculations to those for the gds shell were per-
formed for the 50–82 shell, and the results are given in row
(B) of Table II. It is clear that the rotational level pattern cannot
be as well reproduced in this case because the particles in the
h11/2 intruder level cannot couple with those in the normal

parity levels to form the positive parity pairs as discussed in
Ref. [32].

The mean field and the pairing interactions in (2) were
neglected in reproducing the rotational spectrum previously
because, as is known, these terms tend to reduce the deforma-
tion. To explore their effect, the gds shell was also investigated
with the full Hamiltonian given in (2). The single-particle
energies used in the vibrational and γ -unstable limit were
also used here except εh11/2 = 2.76 MeV was replaced by
εg9/2 = 0 MeV, since in the real case g9/2 lies lowest in the
gds shell. For simplicity, we set Gπ = Gν = 0.3 MeV and
2κπ = 2κν = κ = 0.5 MeV/r4

0 . The results for the ground-
state band are given in row (C) of Table II, which shows
that the rotational level pattern can still be realized approx-
imately, even with the inclusion of realistic single-particle
energies and the pairing interactions, under the condition that
the quadrupole-quadrupole interaction remains the dominant
interaction.

VI. SUMMARY

In summary, the vibrational, γ -unstable, and rotational
spectra corresponding to the U(5), SO(6), and SU(3) limiting
cases in the IBM can indeed be reproduced in the nucleon-pair
shell model truncated to an S-D subspace (SDPSM). The
analysis not only shows that the IBM has a sound shell-model
foundation, but also confirms that the truncation scheme
adopted in the SD-pair shell model seems reasonable as long
as the Hamiltonian is reasonably chosen even when realistic
single-particle energies are taken into consideration. The
results suggest the value of further analysis using the SDPSM
to see whether shape phase transitions could be described
in terms of the nucleon degrees of freedom. Refs. [33,34]
show that there are critical point symmetries such as X5

and E5 predicted from the Bohr Hamiltonian. It should
be an interesting exercise to describe such critical point
phenomena within the framework of the SDPSM with its
fermion foundation.

TABLE III. Main components of some eigenstates in the rotational limit of the system with Nπ = Nν = 3. Only components with
amplitude larger than 0.25 are shown.

State S Dν Dπ DπDν D2
ν D2

π D2
πDν D2

νDπ D2
νD

2
π D3

νDπ D3
πDν D2

πD3
ν D3

πD2
ν D3

πD3
ν

0+
1 0.3801 0.6489 0.3787 0.3787 0.4127 0.4127 0.3786 0.3349 0.3349

(0.2705)
(0.3679)

0+
2 −0.3406 0.3680 0.3680 −0.6714 −0.4080 −0.4080−0.4225

(0.4003)
2+

1 0.3680 0.3680 0.3840 0.3675 0.3675 0.2586
(0.3361) (0.3361)

2+
2 −0.4974 0.4974 0.3306 0.2852 −0.2852 −0.2617 0.2617

(−0.3306) 0.2794 −0.2794
4+

1 0.4918 0.3074 0.3074 0.3189 0.3189 0.3080 0.2558 0.2558
(0.3065) (0.3065) (0.3080)

6+
1 0.5058 0.5058 0.3307 0.2839 0.2839 0.2648 0.2648

(0.3307)
(0.2961)
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TABLE IV. A part of relative B(E2) ratios in the rotational spectrum for the system with Nπ =
Nν = 3. The effective charges were fixed as eπ = 3eν = 1.5 e.

J+
i

→J+
f

2+
1 →0+

1

J+
i

→J+
f

3+
1 →1+

1

J+
i

→J+
f

2+
6 →0+

2

J+
i

→J+
f

4+
5 →2+

5

4+
1 → 2+

1 1.346 4+
2 → 2+

2 1.112 4+
6 → 2+

6 1.129 5+
4 → 3+

4 1.003

6+
1 → 4+

1 1.319 6+
2 → 4+

2 1.163 6+
6 → 4+

6 1.026 6+
5 → 4+

5 1.556

8+
1 → 6+

1 1.138 5+
1 → 3+

1 1.439 8+
6 → 6+

6 0.707 7+
4 → 5+

4 1.049

2+
2 → 2+

1 0.009 7+
1 → 5+

1 1.356 8+
5 → 6+

5 1.323

0+
2 → 2+

1 0.001 8+
2 → 6+

2 0.933
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