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Lattice gas models derived from effective field theory
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We start from a low-energy effective field theory for interacting fermions on the lattice and expand in the hopping
parameter to derive the nearest-neighbor interactions for a lattice gas model. In this model, the renormalization
of couplings for different lattice spacings is inherited from the effective field theory, systematic errors can be
estimated a priori, and the breakdown of the lattice gas model description at low temperatures can be understood
quantitatively. We apply the lattice gas method to neutron matter and compare with results from a recent quantum
simulation.
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I. INTRODUCTION

Lattice gas models play an important role in many
areas of physics from fluid mechanics [1–3] to quantum
computing [4,5], alloy mixing [6,7], and nuclear physics.
In nuclear physics, phenomenological lattice gas models
have been used to model multifragmentation in heavy ion
collisions and the thermodynamics of symmetric and asym-
metric nuclear matter at nonzero temperature [8–16]. In
this study, we attempt to broaden the scope of the lattice
gas approach as applied to interacting fermions at nonzero
temperature. We build a connection between lattice gas
models and low-energy effective field theory on the lattice.
While our main interest concerns interacting nucleons, our
approach to lattice gas models should apply to systems
such as trapped Fermi gases near a Feshbach resonance
[17–22], where similar effective field theory descriptions are
applicable.

For most applications of lattice gas models in nuclear
physics, the coefficients of interactions are treated as adjustable
parameters tuned to make the model realistic. Also, the
lattice spacing is often chosen so that the completely filled
lattice corresponds with normal nuclear matter density, ρN ≈
0.17 fm−3. While one cannot argue with the successes of this
phenomenological approach, there remain some fundamental
questions. How do we know which interactions are needed
to describe the important low-energy physics? How can we
determine the coefficients of the interactions directly from
binding energies and/or few-body scattering data? How can
we do simulations at different lattice spacings while keeping
the low-energy physics the same?

In the full quantum theory, these questions are answered by
effective field theory. In the low-energy limit, power counting
schemes organize the interactions in order of importance [23–
26]. Over the past few years, effective field theory methods
have been used to study two- and three-nucleon systems at
low energy [27–29]. There has also been recent progress in
applying effective field theory to many-body nuclear lattice
simulations [30–32]. In this approach, operator coefficients
in the effective lattice Lagrangian are matched to few-body
scattering data, and the renormalization group describes
how the operator coefficients depend on the lattice spacing.
The resulting lattice action can then be simulated using

standard lattice Monte Carlo methods to produce many-body
results.

In this study, we attempt to bring lattice gas models into the
framework of effective field theory. We make this connection
by means of a spatial hopping parameter expansion. Starting
from any effective field theory of interacting fermions, we
show how to construct the rules for a corresponding lattice gas
model. We discuss the convergence of the hopping parameter
expansion as well as the uses and limits of the lattice gas
approach. In particular, we clarify why it can describe a
“classical” phase transition but not a truly “quantum” phase
transition.

As an example, we consider low-energy neutron matter and
compare it with recent quantum simulation results [32] for
the energy per neutron as a function of density. In [32], it
was shown that lattice effective field theory calculations for
the equation of state for dilute neutron matter agree with the
variational calculations of Friedman and Pandharipande [33]
at temperatures of 4 and 8 MeV. Phenomenologically this
is interesting since the equation of state for dilute neutron
matter plays an important role in both the structure and
evolution of neutron stars [34,35] and neutrino trapping in
supernovae [36–38]. Furthermore, dilute neutron matter is
also theoretically interesting for the reason that it lies very
close to an important scaling limit. The neutron scattering
length is ann � −18 fm, which implies that kF |ann| � 1 for
densities ρ > 10−4ρN . Here, kF is the Fermi momentum. On
the other hand, the effective range for neutron scattering is
rnn � 2.8 fm. So if the density is small, ρ < 0.1ρN , then
kF |rnn| is a small parameter, and neutron matter is close to the
limit in which kF |ann| → ∞ and kF |rnn| → 0. In this limit,
dimensional analysis implies that the energy per particle and
the superfluid gap both have to be proportional to the free
particle Fermi energy
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F

2m
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The determination of these two dimensionless parameters ξ

and ζ is a nonperturbative problem that spans several branches
of physics. Recently, it has been probed experimentally in cold,
dilute gases of fermionic atoms tuned to be near a Feshbach
resonance [17–20,39].
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II. HOPPING EXPANSION

Let us consider nf species of fermions and any operator V̂

built up from the annihilation and creation operators. Let |θ〉
denote the eigenstates of V̂ ,

V̂ (â†, â)|θ〉 = V (θ )|θ〉. (2)

Next we consider a tensor product space that represents the
fermions at two different locations. For the moment, we single
out one particular species j and define the Hamiltonian

Ĥj = V̂ (â†, â) ⊗ 1 + 1 ⊗ V̂ (â†, â) − ε[â†
j ⊗ âj + âj ⊗ â

†
j ].

(3)

Let us define the matrix element

z
θ1,θ2
j (β) = [〈θ1| ⊗ 〈θ2|] exp[−βĤj ][|θ1〉 ⊗ |θ2〉]. (4)

If we expand in βε, we find

z
θ1,θ2
j (β) = exp{−β[V (θ1) + V (θ2)]} · [

1 + β2ε2f
θ1,θ2
j (β)

]
+O[(βε)4], (5)

where

f
θ1,θ2
j (β) =

∑
θ ′,θ ′′

[
|〈θ ′|âj |θ1〉|2|〈θ ′′|â†

j |θ2〉|2
+|〈θ ′|â†

j |θ1〉|2|〈θ ′′|âj |θ2〉|2

]

×F {β[V (θ ′) + V (θ ′′) − V (θ1) − V (θ2)]} (6)

and

F (x) = e−x − 1 + x

x2
, F (0) = 1

2
. (7)

We now generalize this result to a general three-dimensional
periodic lattice Hamiltonian with nearest-neighbor hopping
and single-site interactions,

Ĥ =
∑


n
V̂ [â†(
n), â(
n)] − 1

2m

∑

n

∑
j=1,nf

∑
l=1,2,3

× [â†
j (
n)âj (
n + l̂) + â

†
j (
n)âj (
n − l̂)]. (8)

In the following, we use dimensionless lattice parameters. If a
is the lattice spacing, then the dimensionless mass parameter
and inverse temperature are

m = mphysa, (9)

β = 1

Tphysa
. (10)

Let |�〉 be a configuration of fermion states at each lattice
site,

|�〉 =
⊗


n
|θ (
n)〉. (11)

Let us define

z(β,�) = 〈�|e−βĤ |�〉. (12)

After applying the hopping corrections in (5) for each lattice
site, fermion species, and dimension, we find

z(β,�) = exp

{
−β

∑

n

V [θ (
n)]

}∏

n

∏
j=1,nf

∏
l=1,2,3

×
[

1 +
(

β

2m

)2

f
θ(
n+l̂),θ(
n)
j (β)

]
+ O

[(
β

2m

)4
]

.

(13)

We have assumed that the lattice is longer than three sites in
each dimension. If the lattice were three sites long in some
dimension then there would be terms at O[( β

2m
)3] which wind

around the lattice.
We can introduce a chemical potential by adding −µN̂ to

Ĥ , where N̂ is the total fermion number operator. In order to
compute

z(β,µ,�) = 〈�|e−β(Ĥ−µN̂)|�〉, (14)

we can use the same expression in (13) if we redefine

V̂ → V̂ − µ
∑

j

â
†
j âj . (15)

By summing over all configurations �, we now have an
approximation to the grand canonical partition function,

ZG = Tr [e−β(Ĥ−µN̂ )] =
∑
�

z(β,µ,�)

≈
∑
�

exp

{
−β

∑

n

V [θ (
n), µ]

} ∏

n

∏
j=1,nf

∏
l=1,2,3

×
[

1 +
(

β

2m

)2

f
θ(
n+l̂),θ(
n)
j (β)

]
. (16)

We note the similarity to a 2nf -state Ising model. The only
differences are the nonexponential factors and the temperature
dependence in the interactions. One could write everything in
exponential form using

1 +
(

β

2m

)2

f
θ(
n+l̂),θ(
n)
j (β) ≈ exp

[(
β

2m

)2

f
θ(
n+l̂),θ(
n)
j (β)

]
.

(17)

For weakly coupled systems, either form will do. However,
we find that for very strongly coupled systems, the exponen-
tiated form produces larger O[( β

2m
)4] errors than the original

expression.

III. CONVERGENCE AND LONG-RANGE ORDER

The spatial hopping parameter expansion can be extended
to higher orders. At order O[( β

2m
)n], one must consider all

n-step paths which are connected and form closed loops. On
an L3 lattice where L is even, all closed paths must have an
even number of steps. In that case, only even powers of β

2m
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are nonzero. When L is odd, there are winding paths that
give nonzero contributions for odd powers greater than or
equal to L. A similar expansion was used to derive the zone
determinant expansion in [40], where the parameter β

2m
was

identified as a localization length in lattice units for a given
fermion.

As the temperature increases, the hopping parameter ex-
pansion converges more quickly. However, if the temperature
is too high, then the relevant physics may be at momenta too
high for the chosen lattice spacing. The momentum cutoff
scale on the lattice is 	a = πa−1. The temperature must
therefore lie well below the kinetic energy associated with this
cutoff scale,

Tphys � 	2
a

2mphys
. (18)

In order to have a sensible effective theory, we need

1

π2
� β

2m
. (19)

If we combine this with the condition for convergence of the
spatial hopping parameter expansion, we get

1

π2
� β

2m
= 1

2mphysTphysa2
� 1. (20)

Let us consider as an example T ≈ 20 MeV, roughly the
temperature for the liquid-gas transition in symmetric nuclear
matter. For a well defined lattice gas model based on a
hopping parameter expansion, (20) tells us that the lattice
spacing must lie in the range from about 1 to 3 fm. This
is enough to probe a wide range of densities, including the
saturation density ρN ≈ 0.17 fm−3. Therefore, it seems possi-
ble to describe the phase transition at several different lattice
spacings.

While a lattice gas model may describe long-range particle
density ordering in a liquid-gas transition, it cannot describe
long-range order associated with “off-diagonal” operators.
By off-diagonal operator, we mean operators which do not
commute with the single-site operator V̂ . In our lattice gas
model formalism, these operators are quite different from
diagonal operators, such as the particle density operator, which
commute with V̂ . We can compute the correlation functions
of diagonal operators simply by computing the eigenvalues
associated with each configuration state |�〉. But in order to
compute the correlation functions of off-diagonal operators,
we need to consider entirely new hopping paths connecting one
operator to another. It is clear that any long-range correlations
would have to be built by hand from arbitrarily long paths in
our hopping parameter expansion.

Therefore, we expect the lattice gas model approach to be
ineffective for any truly “quantum” phase transition. Long-
range order in a quantum phase transition becomes possible
only when the quantum wave functions of individual particles

TABLE I. V (θ, µ).

0 ↑ ↓ ↑↓
0 m − µ + 3

m
m − µ + 3

m
2(m − µ + 3

m
) + C

TABLE II. f
θ1,θ2
↑ (β).

0 ↑ ↓ ↑↓
0 0 1

2 0 F (−βC)

↑ 1
2 0 F (βC) 0

↓ 0 F (βC) 0 1
2

↑↓ F (−βC) 0 1
2 0

overlap. Hence, the localization length β

2m
must be greater

than the interparticle spacing in lattice units, and so therefore
β

2m
>∼ 1.

IV. APPLICATION TO NEUTRON MATTER

We now apply our hopping parameter expansion to an
effective field theory for dilute neutron matter on the lattice.
We focus on low energies and densities where the relevant
momenta are smaller than the pion mass, and we use an
effective field theory with only neutrons. We work with the
lowest order effective Lagrangian which contains a neutron
contact interaction that is adjusted to produce the physical
1S0 scattering length. Our lattice Hamiltonian with chemical
potential included has the form

Ĥ − µN̂

=
(

m − µ + 3

m

) ∑

n

∑
j=↑,↓

â
†
j (
n)âj (
n)

+C
∑


n
â
†
↑(
n)â↑(
n)â†

↓(
n)â↓(
n) − 1

2m

×
∑


n

∑
j=↑,↓

∑
l=1,2,3

[â†
j (
n)âj (
n + l̂)

+ â
†
j (
n)âj (
n − l̂)]. (21)

We will use the labels θ = 0,↑,↑,↑↓ to represent the various
zero-, one-, and two-neutron states on a single site. In Table I,
we list V (θ, µ) for the various neutron states.

In Table II, we list f
θ1,θ2
↑ (β) for the various neutron states

on nearest-neighbor sites, and in Table III, we list f
θ1,θ2
↓ (β).

V. RESULTS

We have run lattice gas model simulations for both free
and interacting neutron matter. The value for the interaction
coefficient C is set by comparing with experimental data

TABLE III. f
θ1,θ2
↓ (β).

0 ↑ ↓ ↑↓
0 0 0 1

2 F (−βC)

↑ 0 0 F (βC) 1
2

↓ 1
2 F (βC) 0 0

↑↓ F (−βC) 1
2 0 0
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TABLE IV. Interaction coefficient C for different lattice spacings.

a−1 (MeV) C (MeV−2 )

50 −8.01 × 10−5

60 −6.73 × 10−5

70 −5.81 × 10−5

80 −5.10 × 10−5

from nucleon-nucleon scattering. We sum all nucleon-nucleon
scattering bubble diagrams on the lattice, locate the pole in
the scattering amplitude, and compare with Lüscher’s formula
relating scattering lengths and energy levels in a finite periodic
box [32,41,42]. The results are shown in Table IV.

We compute the energy per neutron E/A as a function of
neutron density. The total number of neutrons A and average
energy E are computed using

A = 1

β

∂

∂µ
ln ZG, (22)

E = − ∂

∂β
ln ZG − (m − µ)A. (23)

The results for T = 8 MeV are shown in Fig. 1. In Fig. 2, we
show a similar plot from a full quantum lattice simulation [32].
The lattice volumes for our lattice gas models are chosen to be
the same as those for the corresponding simulations in [32]. In
both plots we use the abbreviation fc for free continuum results,
f for free lattice results, and s for lattice simulation results. In
Fig. 2, results for bubble chain diagrams calculations are also
included and labeled with b. In addition to these abbreviations,
we also use the shorthand labels shown in Table V for various
combinations of spatial and temporal lattice spacings. For the
lattice gas model, however, the temporal lattice spacing at is
set to zero.

In Fig. 3, we show results at T = 4 MeV for the lattice gas
model, and in Fig. 4 we show the full quantum simulation at
T = 4 MeV.
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FIG. 1. Lattice gas model results for energy per neutron versus
density at T = 8 MeV.
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FIG. 2. Full quantum effective field theory results for energy per
neutron versus density at T = 8 MeV.

TABLE V. Shorthand labels for various lattice spacings.

a−1 (MeV) a−1
t (MeV) Label

50 24 0
60 32 1
60 48 2
70 64 3
80 72 4
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FIG. 3. Lattice gas model results for energy per neutron versus
density at T = 4 MeV.

TABLE VI. Hopping parameters for various lattice spacings.

a−1 (MeV) 50 60 70 80

β

2m
for T = 8 MeV 0.17 0.24 0.33 0.43

β

2m
for T = 4 MeV 0.33 0.48 0.65 0.85
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FIG. 4. Full quantum effective field theory results for energy per
neutron versus density at T = 4 MeV.

For each of the temperatures and spatial lattice spacings, we
show the corresponding spatial hopping parameter in Table VI.

As discussed in the previous section, the lattice gas model
cannot describe the superfluid transition in neutron matter
since this requires long-range ordering associated with neutron
pairing. There may be some indication of this already in the
T = 4 MeV data shown in Fig. 3. The points at higher density
show considerable deviation from the full quantum simulation
results in Fig. 4. Nevertheless, we see that the lattice gas
results agree quite well with the quantum simulations when
the spatial hopping parameter is less than about 0.4. This is a
bit surprising considering that the computational cost for the
lattice gas model simulation is several hundred times less than
the quantum simulation.

VI. SUMMARY

Starting from a low-energy effective field theory for
interacting fermions on the lattice, we derive the nearest-
neighbor interactions for a lattice gas model by expanding in
the spatial hopping parameter. Unlike most phenomenological
approaches, we derive equivalent lattice gas models at different
lattice spacings and determine coefficients directly from
binding energies and/or few-body scattering data. We also give
an estimate of the systematic errors and discuss the limits of the
lattice model approach in describing long-range ordering. As
a concrete example, we apply the effective field theory lattice
gas approach to low-energy neutron matter and compare with
results from a recent quantum simulation. Despite the very low
computational cost, essentially the same as that for a 2nf -state
3D Ising model, we find good agreement with full quantum
simulation results when the hopping parameter is not too large.

In our approach, temperature-dependent interactions are
naturally introduced into the lattice gas model. These are
necessary to reproduce the physics of the full quantum theory
at different temperatures. To our knowledge, neutron matter
at this density and temperature has never been previously
described using a lattice gas model. We hope that the broader
application of lattice gas models as well as the connection
with effective field theory will prove useful in the study of
other many-body fermion systems at nonzero temperature.
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