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Measurement of the 2H(d,2He)2n reaction at Ed = 171 MeV and implications for
the neutron-neutron scattering length
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A measurement of the 2H(d,2He)2n charge-exchange reaction at Ed = 171 MeV has been performed in order
to study the interaction of the di-neutron system. Spectroscopy of the neutron-neutron final-state interaction
with a resolution of about 115 keV (FWHM) was achieved by measuring the momentum of 2He at forward
scattering angles. In the experiment the two protons of the unbound 2He are momentum analyzed with a
magnetic spectrometer and detected with the same detector. A simple reaction theory is employed in order to
obtain information about the neutron-neutron interaction from the measured cross section data. The validity of
the impulse approximation for the d → 2He transition at intermediate energies is discussed and compared to the
Watson-Migdal theory of the proton-proton final-state interaction. Predictions of the impulse approximation for
the analog transition d → 2n are confronted with experimental data. A procedure to extract the neutron-neutron
scattering length ann from this comparison is presented. The result is compatible with the recommended value of
ann = −18.6(±0.4) fm.
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I. INTRODUCTION

The (d, 2He) reaction at intermediate energies
(Ed >∼ 100 MeV) has been recognized as a viable and
powerful probe to study nuclear structure and few-body
dynamics [1]. By definition, 2He is the singlet S state (1S0) of
the unbound di-proton system. The term (d,2He), thus, refers
to a kinematical regime, where the two correlated protons
have a low relative energy εpp (εpp <∼1 MeV). Since projectile
d (Jπ = 1+, T = 0) and ejectile 2He (Jπ = 0+, T = 1)
are connected by a Gamow-Teller (GT) transition, (d,2He)
induces exclusively isovector spin-flip excitations, and at
forward scattering angles the transition connecting target and
residual nucleus is highly selective owing to the dominance of
the Vστ NN interaction, as shown e.g., in Ref. [2]. Assuming
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a one-step reaction mechanism, this allows a straight-forward
interpretation in terms of the impulse approximation (IA).
Unpolarized (d,2He) reaction experiments were carried out
investigating primarily GT and spin-dipole response in nuclei,
as, e.g., described in Refs. [3,4]. Experiments with a polarized
deuteron beam were performed for the same purpose (see,
e.g., Ref. [5]) together with studies of the quasi-free region [6]
and the �-resonance [7]. Note that the pioneering works
employing polarized deuterons were spawned by a potential
use of the (d,2He) reaction in a deuteron polarimeter [8].

A particular interesting situation arises if deuterium is used
as a target. In analogy to the projectile-ejectile transition d →
2He, the GT transition operator equally prepares the di-neutron
system in a 1S0 state. The transition strength of d → 2n (1S0)
as function of the internal neutron-neutron energy εnn can
then be mapped out with high precision using (d,2He) as a
spectroscopic tool. Therefore, the 2H(d,2He)2n reaction is one
of the rare possibilities to study the elusive di-neutron system.
As will be shown below, 2H(d,2He)2n represents a means to
infer the neutron-neutron scattering length ann, although the
neutron-neutron system is observed in incomplete kinematics.
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There have been similar endeavors to obtain ann through the
2H(n,p) 2n reaction [9–12], but the interpretation of the spectra
was limited by the poor energy resolution of about 1 MeV. Note
that the isobaric analogue transitions to the 1S0 configuration
of pp and np have been investigated in a similar way. For
instance, Burzynski et al. measured 2H(p, p′)d∗ at forward
angles and extracted anp = (−24.7 ± 0.4) fm [13].

Since it is at present not possible to conduct any direct
measurements of ann using free neutron-neutron collisions,
all current values of ann are extracted from multiparticle
reactions. Indirect information about ann has been gained from
the following processes:

π− + d → γ + n + n, (1)

n + d → p + n + n. (2)

Three independent studies with the electromagnetic probe
[reaction (1)] have been performed at the Paul Scherrer
Institut [14,15] and at the Los Alamos Meson Physics Facility
(LAMPF) [16]. In Ref. [14] only the γ spectrum was measured,
while the later experiments detected the γ and one neutron
[15,16]. Reaction (1) has the advantage that it involves only
two strongly interacting particles in the exit channel. The
extracted values for ann agreed well, giving an average value
of (−18.59 ± 0.40) fm [17]. A study at Triangle Universities
Nuclear Laboratory with the hadronic reaction [Eq. (2)]
yielded ann = (−18.7 ± 0.6) fm [18]. This value and that from
the pion-capture experiment at LAMPF [16] constitute the
“recommended” ann value (−18.6 ± 0.4) fm [17]. This value
has to be further corrected for the magnetic interaction in
order to get the “pure” nuclear value aN

nn. Referring to Miller
et al. [19] this correction varies between −0.35 and −0.33
fm. Note that the experiments of reaction type (2) are difficult
to perform and require elaborate models to compare with.
The experimental procedures and details of the analyses have
recently gained renewed importance, since the Bonn neutron
group has published its results of a new study of ann with
neutron induced d breakup [Eq. (2)]. The extracted value
is ann = (−16.27 ± 0.4) fm and ann = (−16.06 ± 0.35) fm,
if the data are normalized to quasi-free scattering [20,21].
These values clearly disagree with the values cited above and
imply a different interpretation of charge symmetry breaking
(CSB). Note that the results agree with the recommended nn
effective-range parameter of before 1978 [22].

A rather clean way to measure ann would be [22,23]

µ− + d → n + n + νµ, (3)

as the final state is not distorted by strong or electromagnetic
interactions with a third particle. Considering today’s experi-
mental techniques and those of the near future, a measurement
of reaction (3) is impossible. Reference [23] gives a detailed
account of the experimental and theoretical features of muon
capture on light nuclei.

Since the above-mentioned experiments show conflicting
results for ann, there is need for a new type of experiment. It is
argued in this work that the following reaction offers a novel
way to obtain ann:

d + d → 2He + n + n, (4)

where 2He is measured at forward scattering angles and at
an incident intermediate energy, where the GT transition is
strong.

This article is structured as follows. We start with a
general discussion of the (d,2He) reaction mechanism (Sec. II),
keeping in mind that d → 2He has to be treated analogously
to the mirror transition d → 2n. Experimental details are
given in Sec. III and the data analysis is described in
Sec. IV. In Sec. V the data are treated in leading order IA to
obtain ann.

II. FEATURES OF THE (d,2He) REACTION

A. Charge-exchange reactions

Scattering at intermediate energies with nuclear probes or
light ions is regarded to proceed as a direct, one-step reaction.
In the impulse approximation it is assumed that effects of
the nuclear medium in the target can be neglected at large
incident energies compared to the Fermi energy of the nucleons
in the target. The interaction between projectile and target
nucleons is then modelled by an effective interaction, which
is taken to be the free NN tF matrix. A tF matrix interaction,
which is often used for the description of nuclear reactions,
is the effective interaction of Franey and Love [24,25].
With these assumptions, the transition amplitude has the
form [26]

T DW
f i ( �kf , �ki) =

∫
d3q D(�kf , �ki, �q ) Uα

f i(�q )ρβ
p ,

(5)
α = τ, στ, T ; β = τ, στ,

where �q = �kf − �ki , and the interaction-weighted nuclear
responses (nuclear transition potentials) are given by [26]

U τ
f i(�q ) = tCτ (�q )ρ τ

f i(�q ), �S = 0, (6)

U στ
f i (�q ) = tCστ (�q )ρ στ

f i (�q ), �S = 1, (7)

UT
f i(�q ) = tTστ (�q )ρ στ

f i (�q ), �S = 1. (8)

The nuclear transition potentials are defined for non-spin-
flip transitions (�S = 0) and spin-flip transitions (�S = 1),
where the latter consists of a central part (C) and a tensor part
(T). The terms tCτ , tCστ , and tTστ refer to the isovector non-spin-
flip part, isovector spin-flip part, and tensor part, respectively,
of the effective interaction [24,25]. Target transition densities
are defined according to the relation [26]

ρ στ
f i (�q ) = 〈�f |

A∑
j=1

ei �q·�rj �σ (j )�τ (j )|�i〉, (9)

where |�i/f 〉 are the initial (i) and final (f) state, respectively.
The sum in the above equations runs over all nucleons of the
target. For non-spin-flip transitions (ρ τ

f i) the spin operator
�σ (j ) is replaced by the identity operator. The projectile
transition density is given accordingly [26,27]:

ρβ
p = 〈p′| ∑k ei �q·�rk �k|p〉, �k = �τk, �σk �τk for β = τ, στ,

(10)
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where p denotes the projectile and p′ the ejectile. D(�kf , �ki, �q )
is the projectile/ejectile distortion function defined by [26,27]

D(�kf , �ki, �q ) = 1

(2π )3

∫
d3rp χ∗

f (�kf , �rp) e−i �q·�rp χi(�ki, �rp).

(11)
The distorted waves χf/i describe the relative motion of
projectile and target before and after the charge-exchange
event. Note that D(�kf , �ki, �q ) = δ(�q − �ki + �kf ) in the plane-
wave approximation (PWA).

B. Final-state interaction of the (d,2He) reaction

The reaction mechanism of the (d,2He) reaction is dis-
cussed in the framework of the impulse approximation.
For a description in the distorted-wave Born approximation
(DWBA) we refer to Ref. [28].

A feature of the (d,2He) probe is that the interaction of
the projectile can be assumed to take place between the target
nucleons and one constituent of the projectile (the neutron),
while the other part (the proton) continues undisturbed. Since
projectile and ejectile are connected by a Gamow-Teller
transition, only the transition densities ρ στ

f i (�q ) and ρ στ
p (�q )

contribute to the transition amplitude of Eq. (5). Thus, in
the case of the (d,2He) reaction the (complex) structure
of projectile and ejectile enhances the selectivity of the
probe compared to the simple spectator-model, i.e., the (n,p)
reaction. It is helpful to note that the projectile → ejectile
transition resembles the inverse process of the weak proton
capture, which mediates hydrogen burning in the sun:

p + p → 2He → d + e+ + νe. (12)

Obviously the (d,2He) reaction is complicated by having
three particles in the final state. It is generally assumed that the
ejectile is first produced in a particle unstable state, which will
subsequently decay. The sequential process proceeds through
the formation of the intermediate state 2He and the subsequent
decay into two protons [29]:

d + A → 2He + B → p + p + B. (13)

The relative energy between the two protons is given by the
expression

εpp = 1
2µ1−2v

2
1−2 = [E1 + E2 − 2

√
E1 E2 cos �1−2],

(14)
where E1 and E2 are the laboratory energies of the two protons,
�1−2 = �pp is their relative angle, and µ1−2 is the reduced
mass of the di-proton system [1]. Concerning Eq. (13), we
consider only experiments which are kinematically complete,
i.e., the horizontal and vertical angles of both protons are
detected along with their energies E1 and E2. That allows, in
addition to εpp, the determination of the scattering angle �2He

and the total kinetic energy (TKE) E2He = E1 + E2. Note that
Ed = E2He + Ex + Erecoil + Q, where Ed is the energy of
the incoming deuteron and Ex is the excitation energy in the
residual nucleus (Ex = εnn in this work). A projection of the
data on TKE means that all events are normalized to εpp =
0. Because the limited angular and momentum acceptance
of the spectrometer in the experiment has a bearing on the

shape of the so-obtained excitation energy spectra, a theoretical
treatment of the sequential breakup is essential. To a large
extent, this is governed by phase-space considerations. The
phase-space factor for breakup of 2He in the B+2He system
can be written as [29]

ρ(εpp) = pB−12 µB−12 p1−2 µ1−2 d�B−12 d�1−2/(2πh̄)3,

(15)
where momenta are denoted by p and reduced masses
designated by µ. The relative motion of the two protons in
the di-proton system is indicated by the index 1 − 2, and the
index B − 12 refers to the motion of residual nucleus B relative
to the center of mass of the two protons. The triple differential
cross section for a sequential process now reads (ε = εpp) [29]

d3σ

d�B−12 d�1−2 dε
= µiµB−12

(2πh̄2)2

kB−12

ki

|Tf i |2 µ1−2 p1−2

(2πh̄)3
.

(16)
The projectile transition density defined in Eq. (10) can be
written as

ρ στ
p (�q ) = 〈�2He|

2∑
j=1

ei �q·�rj �σ (j )τ+(j )|�d〉. (17)

Deuteron charge-exchange reactions and the solar weak
proton-capture defined in Eq. (12) can be described on the
same footing through the matrix element in the above equation.
Detailed information is furnished in Refs. [30,31]. The matrix
element in Eq. (17) can be factorized into spin and spatial
parts. After reduction, the spin part MS is chosen such that
M(GT) = 6 [30]. The spatial component of the transition
amplitude, which contains the dependence on εpp, is given
by the overlap of the two-nucleon wave functions |�2He〉 and
|φd〉 [32]

ρ στ
p (�q, εpp) = MS〈�2He(εpp)|

∑
j

ei �q·�rj |�d〉. (18)

Because the above equation deals with nearly spherical wave
functions, only the radial dependence has to be considered. The
S-wave part of the deuteron wave function can be approximated
by an analytic expression [33]

�d (r) = (e−0.232 r − e−1.202 r )/r. (19)

A better approximation is provided by calculations with
modern nucleon-nucleon potentials. In this work the Argonne
v18 potential is used [34]. As modern NN potentials exactly
reproduce the deuteron density distribution, calculations with
the Nijmegen potential, Reid soft core potential, etc., all lead
to the same results. The scattering wave function �2He = �pp

depends on the separation r of the two nucleons and their
relative momentum k = p1−2,

�NN = eiδ(k)[F0(k r) cos δ(k) + G0(k r) sin δ(k)]/(k r),

for NN = pp, (20)

�NN = eiδ(k)[sin(k r) cos δ(k) + cos(k r) sin δ(k)]/(k r),

for NN = nn, np. (21)

F0 and G0 are the regular and irregular S-wave Coulomb wave
functions. Equation (21) refers to the case of an uncharged
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FIG. 1. Square of the calculated transition amplitudes including
the appropriate phase-space factor for the d → 2He transition. The
solid curves indicate the FSI model of Watson and Migdal [36,37]
and the impulse approximation model of Phillips [32], respectively.
The latter distribution is also predicted by the DWBA code ACCBA

at forward angles [28]. Filled circles represent the outcome of a
2H(3He, t)2p reaction measurement at ≈0◦ using a 74 MeV 3He
beam [38]. The maximum energy εpp observed in this experiment is
about 2.7 MeV. The respective distributions are not to scale in the
vertical direction.

ejectile. It will be needed for the discussion of the 2H(d,2He)2n

reaction and is listed here to illustrate the effect of the Coulomb
force in the exit channel. In the limit of k → 0, the NN phase-
shift δ(k) is related to the scattering length aNN and the effective
range rNN by [35]

C2 k cot δ(k) + h(η)/R = −1/aNN + 1
2 rNNk2. (22)

To complete the definitions, R = 28.8 fm, η = e2/(h̄v1−2),
C2 = 2πη/(e 2πη − 1), and h(η) = −ln η + Re �′(1 + iη)/
�(1 + iη) [35]. For NN = np, nn the Coulomb penetration
factor C2(η) = 1 and h(η) = 0.

The integral in Eq. (18), which reflects the overlap of �NN

and �d , has to be calculated numerically. Figure 1 depicts the
theoretical prediction for the pp final-state interaction (FSI)
defined in Eqs. (15) and (17) as calculated by Phillips [32], who
was the first to develop a model of deuteron charge-exchange
reactions at forward angles. At εpp → 0 the FSI is determined
by the decreasing phase space [ρ(εpp) ∝ √

εpp]. Since the
overlap |〈�pp|�d〉|2 has a maximum at εpp ≈ 300 keV, the
term ρ(εpp) |〈�pp|�d〉|2 has a maximum at about 0.5 MeV.
Several experiments have been performed to study the pp FSI
with charge-exchange reactions.

Cross section and polarization transfer measurements of the
2H(p, n)2p reaction at forward angles have been performed
at IUCF [39] (Ep = 160 MeV) and RCNP [40] (Ep =
346 MeV). However, these measurements suffer from a poor
energy resolution. A 2H(3He, t)2p experiment at �lab ≈ 0◦
and E3He = 74 MeV is reported in Ref. [38]. Figure 1 also
shows the excitation energy spectrum from this experiment.
The shape of the measured distribution is in good agreement
with the IA prediction.

A competing final-state interaction model, successfully ap-
plied in meson production reactions [41], has been introduced
by Migdal and Watson [36,37]. This approach assumes that
the final-state two-particle interaction alone is responsible for
the internal energy distribution of the ejectile intermediate
state. The following expression describes the corresponding
transition amplitude for an X → pp S-wave FSI [35,42]:

∣∣T pp

f i

∣∣2 = C2(η)

C4(η)εpp + (h̄2/mp)
[−a−1

pp − h(η)
/
R + γpεpp

]2 ,

(23)

where γp = remp/(2h̄2). The resulting distribution for
ρ(εpp)|Tf i |2 is displayed in Fig. 1, too. Compared to the
IA calculation the FSI enhancement of the Watson-Migdal
approach is broader and the fall-off shallower at higher εpp.
Note that without FSI the corresponding distribution would
have a

√
εpp dependency. Migdal defines three conditions as

prerequisite for the use of his model. Two of them are fulfilled
in (d,2He) reactions: the primary cross section is determined by
a short-range interaction and the unbound two-particle system
is considered at low relative energies. However, the (d,2He)
reaction obviously does not comply with the last condition,
which states that the FSI must be strong and attractive. As the
di-proton is generated from a deuteron configuration, where
proton and neutron spend a considerable part of time outside
the range of mutual interaction (Rd ≈ 4.3 fm), contributions
of the strong interaction (short range) are suppressed and the
influence of the long-range Coulomb force is relatively strong.
It is obvious from Fig. 1 that the Watson-Migdal FSI disagrees
with the experimental finding of Ref. [38]. For reactions
at high momentum transfer, however, the last condition is
met in good approximation [41]. Okamura points out that
in the case of (d,2He) the IA approach of Phillips gives a
good description of the FSI for scattering angles �2He ≈ 0◦
and the Watson-Migdal theory an adequate description for
�2He > 15◦ [28]. A coherent treatment of the (d,2He) reaction
at forward scattering angles is therefore given by an IA (q ≈ 0)
calculation of all partial transition densities.

A convention for (d,2He) reaction cross sections, often used
in experiments probing the spin-isospin response of nuclei, is
that 2He is equivalent to the pp FSI interaction up to ε = εpp =
1 MeV,

dσ

d�
[(d,2 He)] =

∫ εmax

εmin

dε

∫
4π

d�1−2
d3σ

d�dε d�1−2
, (24)

with εmin = 0 and εmax = 1 MeV.

Note that in some publications the right-hand side of the
above equation contains an additional factor 1/2 accounting
for the indistinguishability of two protons. This factor is
not necessary when the 2He wave function |�2He〉 is by
construction antisymmetric or both protons are detected in
an experiment. Confining εpp to 1 MeV ensures that the
di-proton system has indeed a 1S0 configuration. This has
been confirmed in an experiment where analyzing powers
for 1H(d, 2p)n (Ed = 200 MeV) were determined [8]. A
P state has zero amplitude at εpp = 0 MeV and only rises
slowly to values of a few percent at about 1 MeV [7]. The
integration in Eq. (24) bears on the term p1−2 · ρστ

p (�q, εpp) of
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FIG. 2. Excitation energy spectrum of the 6Li(d,2He)6He reaction
at forward scattering angles. The cross section within the inter-
val −0.35 MeV � Ex � 0.35 MeV, indicated by the dashed lines,
has been downscaled by a factor 100. See Ref. [47] for further
details.

Eqs. (16) and (17) reducing the projectile transition density for
d → 2He to a form which is equivalent to Eq. (10). Hence,
the (d, 2He) reaction can be regarded as (n,p)-type reaction
with a quasi-bound ejectile.

An additional reaction channel in (d,2He) might be given
by deuteron breakup and a subsequent charge exchange from
the incident continuum to the final scattering state [28,43]. In
fact, cross sections for deuteron breakup at forward scattering
angles can be several magnitudes larger than the respective
(d,2He) cross sections. Since the dependence of the breakup
cross section on the atomic number Z is approximately
quadratic, the reaction channel mentioned above can be
neglected for 2H(d,2He). We refer to Ref. [43] for a DWBA
description which incorporates coupling to the continuum.
Further information about the (d,2He) reaction mechanism
with special emphasis to polarization observables is furnished
in works of Bugg and Wilkin [44–46].

In order to substantiate the validity of the impulse ap-
proximation for d → 2N (N = n,p), a similar transition is
discussed: the ground state transition 6Li → 6He (Jπ

i =
1+, J π

f = 0+). In a simple model the target 6Li can be regarded
as cluster of an α-particle and a deuteron. Since the GT strength
within the α-particle is Pauli blocked, GT transitions from 6Li
must proceed through its deuteron component giving B(GT) =
2. Hence, the 6Li(d, 2He) reaction can be approximated as the
2H(d,2He) reaction with an α-particle as spectator. Actually
the GT strength is quenched [B(GT+) = 1.59] and 6He is a
Borromean system, but this has little impact on the features of
the reaction considered here. A measurement of the 6Li(d,2He)
reaction has been carried out with a self-supporting lithium
foil (99% enrichment 6Li) at scattering angles close to 0◦
[47,48]. The outcome for �c.m. < 1◦ is shown in Fig. 2.
The excitation energy spectrum is dominated by the strong
ground-state transition. Cross sections for excitations with
�L > 0 are about two orders of magnitude lower [47]. This
clearly demonstrates that (d,2He) at q ≈ 0 fm−1 on light nuclei
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FIG. 3. Zero-degree spectrum of a (d,2He) reaction measurement
using a deuterated polyethylene foil (CD2). The spectrum represents
about half of the data which were taken at �BBS = 0◦. The spectrum
has not been corrected for the limited detection probability for 2He.
The kinematics of 2H(d,2He)2n was assumed for the recoil correction.
The energy resolution is about 115 keV (FWHM).

selectively excites Gamow-Teller states, if such transitions are
favored by nuclear structure.

III. EXPERIMENT

The measurements were performed at the AGOR facil-
ity of KVI Groningen employing the magnetic Big-Bite
Spectrometer (BBS) [49] in conjunction with the ESN-
detector [50,51]. Unpolarized deuterons were accelerated by
the superconducting cyclotron AGOR up to Ed = 171 MeV.
Measurements have been performed at spectrometer angles
�BBS = 0◦, 3◦, 5◦, 8◦. A deuterated polyethylene foil (CD2)
with an areal density of 7.2 mg/cm2, which contained deu-
terium together with carbon and hydrogen, was used as target.
Reference measurements with a self-supporting carbon target
(natural enrichment) were carried out alternatingly in the same
beam period. The primary beam was stopped in a Faraday cup
located inside the BBS. Details of the experimental procedure
are described in Ref. [52]. In order to provide the energies
E1 and E2 and the vertical and horizontal angles, respectively,
outgoing protons were momentum analyzed with the BBS
and detected in coincidence at the focal-plane with the ESN-
detector. The major building blocks of the ESN-detector are
a focal-plane detection system (FPDS), which consists of two
vertical drift chambers (VDCs), and a focal-plane polarimeter
(FPP) consisting of four multiwire proportional chambers
(MWPCs). In addition, two scintillator planes, which form
the basis of the trigger system, are mounted at the entrance
and exit of the FPP. The track reconstruction efficiency of the
FPDS has been evaluated to be about 96%. This value stays
constant over the entire focal plane, as has been shown in
singles experiments with protons, deuterons, and α-particles,
respectively. Since the entries at a certain energy E2He in the
spectra (see, e.g., Figs. 2 and 3) are composed of proton pairs
which intercept the focal plane within a considerable range,
possible minor inhomogeneities of the efficiency average out.
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IV. DATA ANALYSIS AND RESULTS

A. Energy spectra

The analysis of data from (d,2He) reaction experiments
with the BBS+ESN setup is detailed in Ref. [52]. This section,
therefore, deals only with some peculiarities of the data anal-
ysis regarding a CD2 target. First, the accidental background,
which stems from random coincidences of protons from the
deuteron breakup, is considered. Since the target contains
components with rather low Z, the accidental background is
not a limiting factor. The prompt-to-random ratio is about
11 : 1 for �c.m. < 1◦. In accordance with Ref. [52] the
contribution of accidental coincidences is subtracted from the
raw spectra yielding excitation energy spectra which are free
of experimental background. Second, the responses from 1H,
2H, and 12C are widely separated by their respective Q-values.
This is a distinctly advantageous situation, because the energy
(E2He or εnn) can be calibrated in an independent way and with
high precision. For the fundamental process 1H(d,2He)n the
deuteron is dissociated. Thus, the Q-value corresponds to the
deuteron binding energy Eb(d) = 2.224 MeV. The reaction
2H(d,2He)2n has a Q-value of −4.449 MeV, because two
deuterons are dissociated. For the ground state transition of
12C(d,2He)12B, which is discussed in Ref. [2], the Q-value
is −14.811 MeV. There are no other contaminating reactions
between the hydrogen peak and the carbon peak.

An example of a raw spectrum measured at �BBS = 0◦
is shown in Fig. 3. The 1H(d,2He)n reaction marks the high
energy side of the spectrum. The response of 2H(d,2He)2n

extends from its high-energy edge (E2He ≈ 167.0 MeV) to the
ground state transition 12C →12B (E2He ≈ 156.6 MeV). The
scale of the energy axis, which was derived from calibration
of the momentum deviation δ = �p/p using single protons or
light ions, is in agreement with the above mentioned calibration
procedure using the 1H, 2H, and 12C components. That one
is, however, slightly more difficult to evaluate, because the
projection on E2He depends on the recoil correction which in
turn depends on the kinematics of the reaction. The estimate
for the accuracy of E2He is 35 keV over the full excitation
range of about 10 MeV, which was centered in the middle
of the focal plane. An energy resolution �E of 115 keV
(FWHM) was obtained, which was deduced from the neutron
peak of the 1H(d,2He)n reaction. Measurements at �BBS = 0◦
were performed with dipole field settings B = 0.5905 T,
B = 0.5957 T, and B = 0.6115 T. The resulting spectra
agreed after acceptance corrections within the statistical
errors.

B. Momentum dependence of dσ/d�

Differential cross sections were obtained according to
Eq. (24). Due to the limited momentum acceptance and limited
solid angle of the BBS, not all correlated protons from 2He
are detected. A simulation software accounts for the reduced
detection probability for 2He by correcting the experimental
energy spectra accordingly. The main ingredients of the
simulation software are the matrices for beam transport within
the BBS and a model for the proton-proton FSI. The former

has been evaluated by means of sieve-slit measurements
using various reactions [53,54]. The latter introduces a model
dependence of differential cross sections of the (d,2He)
reaction. This issue will be discussed in Sec. IV C.

The three cross section measurements at �BBS = 0◦ were
averaged with their respective statistical weights. Angle
bins were defined for 0◦ < �c.m. � 1◦ and 1◦ < �c.m. � 2◦.
As fewer statistics was available for the measurements at
larger spectrometer angles, each of the �BBS = 3◦, 5◦, 8◦
measurements was projected into one angle bin. Problems with
the beam current integration occurred during the measurement
at �BBS = 3◦, so the cross section of this setting is normalized
to the ground state transition 12C →12B. The response of the
d → 2n transition up to internal energies of about 3.1 MeV
was subdivided in four bins of about equal integrated strength.
Figure 4 shows the measured differential cross section as
function of the scattering angle for the four energy bins. The
angular distributions were calculated with the DWBA code
ACCBA [28]. Note that the reaction 2H(d,2He)2n requires a
fully microscopic calculation (see Sec. VI). An optical model,
which describes entrance and exit channels, is not well defined
for such a light system. However, as ACCBA is the only
available reaction code for (d,2He), it was used for DWBA
and plane-wave Born approximation (PWBA) calculations.
The spectroscopic amplitude Sph for the transition of a 0s1/2

proton to a 0s1/2 neutron was arbitrarily set to 1. A Jπ
i = 1+ to

Jπ
f = 0+ transition was assumed. For the DWBA calculation

the optical model parameters for the (d,2He) reaction on 12C
were taken [2,55]. Calculated cross sections were scaled to
match the measured data (see Fig. 4). As can be seen from
Fig. 4, there is little difference between DWBA and PWBA
calculations. The falloff at larger scattering angles is slightly
more pronounced than in the case of PWBA. By and large, both
calculations agree with the data. For the first two energy bins
(εnn < 1.06 MeV), the calculations slightly underestimate the
falloff of dσ/d�. This effect is reversed for the last energy bin
(1.78 MeV < εnn < 3.1 MeV). The four angular distributions
considered here support the assumption, that 2H(d,2He)2n

proceeds through a GT+ transition.
The momentum transfer q of the response of 2H(d,2He)2n

plotted in Fig. 3 ranges between 0.05 and 0.18 fm−1.
An extrapolation to q = 0 was performed according to the
equation

dσ (q = 0)

d�
= σcalc(q = 0)

σcalc(�, q)

dσexp(�, q)

d�
(25)

using the cross section data σexp at the most forward angles
(0◦ − 1◦). Because the cross-section ratio for finite q and q = 0
depends mainly on the kinematics and the momentum profile
of tCστ , PWBA calculations and DWBA calculations yield the
same corrections for the transformation to q = 0. Figure 5
demonstrates the extrapolation for εnn < 3.5 MeV.

C. Proton-proton final-state interaction

The transition d → 2He, which has already been discussed
above, is now confronted with the data of the present
experiment. The excitation of the pp system is measured
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FIG. 4. (Color online) Angular distribution of dσ/d�. The
strength distribution for 2H(d,2He)2n depicted in Figs. 3 and 5 has
been divided into energy intervals of nearly equal integrated strength.
Internal nn energies εnn up to about 3.1 MeV were taken into account.
Semi-microscopic calculations with the code ACCBA are indicated
with solid curves. Optical model parameters for 12C(d,2He) were
taken for the DWBA calculation. Note that the DWBA code has no
predictive power for the absolute strength within the intervals, and
the corresponding scaling factors for DWBA and PWBA calculations
are scaled to match the experimental cross sections.

according to Eq. (14) up to about 1 MeV with the (d,2He) mode
of the BBS+ESN setup. Figure 6 displays the experimental
data for d → 2He. Just as in Fig. 1, the predictions of
the Watson-Migdal FSI and the IA-FSI are both plotted
(Fig. 6 left). The distributions of the two final-state interaction
models are also corrected for the acceptance of the BBS to
allow a direct comparison with the experimental data. This
can be more clearly seen in the right diagram of Fig. 6,
where the experimental data are shown together with model
distributions that incorporate the acceptance of the BBS and
the limited energy resolution. Note that the reduced two-track
efficiency for two-track distances �X <∼ 5 mm [52] has not
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FIG. 5. (Color online) Extrapolation of the cross section mea-
sured at 0◦ < �c.m. � 1◦ to q = 0. The ratio σ (q = 0)/σ (q) has been
determined by means of a DWBA calculation with the code ACCBA.

been incorporated. This only slightly affects the shape of
the εpp distribution shown in Fig. 6. Due to the particular
kinematics of the 2H(d,2He) reaction the di-proton acceptance
of the BBS is even more limited (εpp < 0.8 MeV) than in other
(d,2He) studies performed so far (A � 6). The strength of
the model distributions has been normalized to the integrated
strength of the experimental data up to εmax = 0.8 MeV. In
correspondence with the equivalent reaction 2H(3He, t), which
was discussed in Sec. II B, the d → 2He transition is in
agreement with the IA-FSI model. The Watson-Migdal FSI
underestimates the pp response at lower internal energies
(0.1 MeV <∼ εpp <∼ 0.2 MeV) and overestimates the strength
for εpp >∼ 0.4 MeV. Therefore, the di-proton acceptance correc-
tions, which are applied to the 2H(d,2He)2n spectra, assumed
the IA-FSI model.

V. IMPULSE APPROXIMATION DESCRIPTION OF
2H(d,2He)2n AND THE NEUTRON-NEUTRON

SCATTERING LENGTH

From a formal point of view, reaction (4) belongs to
the category of hadron-induced d-breakup processes and is
therefore related to reaction (2). On the other hand it resembles
reaction (3), because the (d,2He) reaction mimics electron-
capture as discussed in Refs. [2,4]. Note that the momentum
transfer in muon-capture processes is higher (q ≈ 0.5 fm−1)
than for electron capture, but the reaction mechanism is other-
wise similar. A common feature of reactions (4), (3), and (1)
is that they can be described in the impulse approximation
[56,57].

A discussion regarding the measurement of ann with the
“fundamental” reaction 2H(n,p)2n can be found in Ref. [22].
Relevant aspects of reaction (4) are

(i) The final state consists of four hadrons, which seems
to make the reaction more difficult than the reactions
discussed above. However, it was shown in Sec. II that
2He can be treated as quasi-bound particle especially for
the low ε region. That leaves three strongly interacting
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particles in the final state. The (d,2He) reaction is used
as spectroscopic tool for the di-neutron system.

(ii) As only the internal energy of the di-neutron system εnn

is known and relative angles, etc. remain unobserved,
reaction (4) measures 2n in incomplete kinematics.

(iii) Because the momentum transfer to the di-neutron system
is small in a measurement at � ≈ 0◦ (q ≈ 0.1 fm−1), the
probability for a transfer of angular momentum �L > 0
is low (q r ≈ 10−1). As a result, the 1S0 configuration
is significantly enhanced over configurations of higher
partial waves.

(iv) The kinematics of the reaction (Ed ≈ 170 MeV) is chosen
such that εnn, εpp � Ed . The adiabatic approximation
should therefore be valid to good approximation, i.e., the
time scale for interactions within 2He and 2n is long
compared to the time scale of the scattering process.
Hence, the internal excitation of 2He and 2n is assumed
to be unaffected by the interaction between ejectile and
residual di-nucleon system. A similar argument holds for
effects of three-nucleon forces.

(v) The initial state consists of two identical bosons. Con-
sequently, the transition amplitude Tf i has to be symmet-
rized in a strict formal treatment. It is not the aim of this
work to provide such a description. Phenomenological
arguments are used instead. The transition amplitude
Tf i(π − �,� + π ) for a central collision, i.e., the pro-
cess at maximum momentum transfer, is small compared
to the corresponding transition amplitude Tf i(�,�) for
the GT-type process. The exchange term, which accounts
for the interchange d ↔ d, can, therefore, be neglected to
good approximation. Only even partial waves contribute
now to the entrance channel due to the symmetry of
the projectile-target system. This reduces the number of
possible spin couplings in the reaction and thus leads
to an enhanced selectivity of (d,2He) as probe for GT
response.

The transition amplitude in leading order IA now has the
form

T DW
f i ( �kf , �ki) =

∫
d3qD(�kf , �ki, �q ) tCστ (�q )ρστ

p (�q )ρστ
f i (�q ),

(26)
where ρστ

p (�q ) has been defined in Eq. (17) and ρστ
f i (�q ) is

the corresponding transition density with |�2He〉 substituted
by |�nn〉. The radial part of this wave function was given
in Eq. (21). As target and projectile consist of two loosely
bound nucleons and the momentum transfer imparted to them
is small, the distortion function D can be approximated by the
plane-wave limit δ(�q − �ki + �kf ) (see Sec. II A). Cross sections
for 2He are defined according to Eqs. (16) and (24). The triple
differential cross section for the 2He + n + n residual system
is then defined like its equivalent B + p + p, substituting ε by
εnn in Eq. (16). Neglecting spin degrees of freedom, a simple
scaling between cross section and response of the nn system
is derived

d2σ

d�(nn − 2He) dεnn

∝ √
εnn

∣∣∣∣
∫

d3r�∗
nn(�r, ann)ei �q·�r�d (�r)

∣∣∣∣
2

. (27)

In principle the D-wave contribution of the deuteron (PD ≈
5%) could be transformed by a GT+ transition to a D-state
configuration of the nn system. It is, however, argued that just
like a P-wave contribution the D state of the nn system resides
at higher relative energies and is negligible at εnn <∼ 2 MeV.
Further, a DWBA calculation with ACCBA shows that the
inclusion of the deuteron D wave for d → 2He enhances the
cross section for 2H(d,2He)2n by about 0.1%. The strength of
the analog D-wave contribution for d → 2n should be similar.
The D-wave configuration of the exit channel of 2H(d,2He)2n

is therefore expected to be small. Transitions mediated by
the tensor force tTστ , which have a �L �= 0 character, are also
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FIG. 7. Comparison of IA calculations with data from the
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boundary of the data which were considered in the fits. Calculations
have been performed in lowest order impulse approximation with
ann = −15.5 fm (a), ann = −18.6 fm (b), and ann = −22.0 fm
(c) and are indicated as solid curves.

expected to be small compared to the corresponding transitions
of the central part tCστ and will therefore also be neglected in
the following discussion.

Equation (27) only describes a phase-space weighted GT+
strength function for 2H(d,2He)2n, and the scattering length
ann is extracted through a fit of Eq. (27) to the measured
cross section spectrum. The interval of εnn considered in the
comparison is defined according to the following arguments.
At internal energies εnn → 0 the nn response is forced to 0 by
the decreasing phase space (∝√

εnn) and is also determined
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FIG. 8. Goodness of fit of IA calculations and experimental
data (q = 0). The quantity χ 2/ν (ν = degrees of freedom) was
computed taking into account the statistical errors of the data.
The fitting procedure has been performed for εnn < 0.3 MeV (top
left), εnn < 0.5 MeV (top right) εnn < 1.0 MeV (bottom left), and
εnn < 1.5 MeV (bottom right). The arrows indicate a confidence level
(CL) of 95% at the position of the corresponding χ2/ν. Note that for
the extraction of ann a systematic error was assumed which is not
incorporated in this figure.

by the experimental energy resolution. So the beginning of
the rising edge (see Fig. 5) contains almost no information
about ann. The most sensitive region for ann is the maximum
of the nn response, as can be seen from Eq. (22). Thus,
good resolution is of significant importance. We assumed the
region of interest to start at an internal energy εnn where the
corresponding cross section reaches 90% of the maximum
cross section. The lower boundary for the comparison is
therefore set to εnn = 0.065 MeV, thereby cutting off the nn
distribution at low energies. When considering higher internal
energies (εnn >∼ 0.1 MeV), the term (1/2) rnn k2 of the effective
range expansion [Eq. (22)] eventually determines the falloff of
the nn response. For energies εnn >∼ 1.0 MeV higher orders of k
may start to play a role and the experimental spectrum may also
contain small contributions from P and D waves. There is, of
course, no sharp boundary that marks the end of the validity of
Eqs. (27) and (22). Therefore, four different kinds of fits with
upper boundaries at 0.3 MeV, 0.5 MeV, 1.0 MeV, and 1.5 MeV,
respectively, are performed. The calculated distributions were
projected into energy bins of 25 keV width in accordance with
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the binning of experimental spectra. As already mentioned
above, the absolute strength of the nn distribution is a free
parameter in the fit. The fitting algorithm minimizes the
reduced chi square χ2/ν (ν = number of degrees of freedom)
[58]. The experimental spectrum to be fitted is the q → 0
extrapolated spectrum of Eq. (27). Figure 7 shows three fits
for εnn < 1 MeV with ann = −15.5 fm, −18.6 fm, −22.0 fm
as examples. The IA prediction with ann = −15.5 fm does not
reproduce the measured distribution of the nn response. The
calculated distributions with ann = −18.6 fm, −22.0 fm agree
with the experimental outcome (χ2/ν ≈ 1).

Several χ2/ν distributions are displayed in Fig. 8. Fits were
done for ann between −15.5 and −22.0 fm in steps of 0.5 fm.
Additional fits were performed for the recommended value of
ann (−18.6 fm) and for the result of the Bonn experiment
(−16.3 fm) (both indicated at the appropriate positions).
Independent of the upper boundary (εnn < 0.3 MeV, 0.5 MeV,
1.0 MeV, 1.5 MeV) the fits yield χ2/ν ≈ 1 for ann ≈ −20 fm.
The quality of the fits significantly deteriorates for
−ann <∼17 fm. We note that the diagrams in Fig. 8 change only
slightly when the experimental spectrum at 0◦ < �c.m. � 1◦
is compared with IA calculations that incorporate a finite
momentum transfer q in Eq. (27), indicating the small extent
of the reaction model dependence. However, a lowering of the
present low-energy cut on εnn causes an overall upward shift
of the χ2/ν distributions of Fig. 8, because the steep gradient
of the low energy edge leads to a mismatch of calculation and
data.

In order to give a value for ann and a corresponding
uncertainty from the experimental data, a 2% systematic
error for the relative cross section (εnn < 1.5 MeV) is
estimated. This error also accounts for a possible contribu-
tion of non-1S0 configurations in this region. Following a
conservative approach, the systematic error is included in
the fit, which results in a shift of the distributions of Fig. 8
to smaller χ2/ν. Fits are assumed to be acceptable, if the
chi-square probability function P(χ2) � 5%. Applying this
criterion to all upper boundaries considered above yields ann <

−18.3 fm. We note that the present experiment gives a lower
limit for ann in a range that has clearly been ruled out
previously.

VI. CONCLUSIONS AND OUTLOOK

The result of the present work agrees with the recommended
value for ann (−18.6 fm) [17]. In light of the above result a
value of −16.3 fm, as measured by the Bonn group [20],
seems improbable. The corresponding χ2/ν is 4.5 for ann =
−16.3 fm (εnn < 1.0 MeV).

The analysis of the 2H(d,2He)2n reaction in terms of ann

employed a rather simple model. The extraction of ann should
be further improved with more elaborated reaction models.
Such a model is, e.g., the refinement of the IA description
used in this work. An example of this kind of model is
discussed in Ref. [13] for 2H(p, p′)d∗. Alternatively, rigorous
three-nucleon or four-nucleon calculations could be employed
to predict the shape of the εnn distribution. Reference [59]
presents rigorous three-nucleon calculations of n + d breakup

reactions and confronts the calculated distributions with
measured proton spectra at forward angles (11.0 MeV < En <

62.8 MeV). A further discussion is published in Ref. [60],
where also the effects of three-nucleon forces on the high-
energy proton spectra of 2H(n,p)2n experiments have been
considered. We refer to Refs. [61,62] for an overview of
modern three-nucleon and four-nucleon calculations incor-
porating also the magnetic moment interaction between
nucleons.

It is stressed that the present work employed the impulse
approximation in lowest order, which is a quite simple
approach. Although it was argued that this theory gives an
adequate description for similar reactions, e.g., 6Li(d,2He), a
rigorous calculation is indispensable for a precise extraction
of ann. The focus of this work is to provide the data of the
2H(d,2He)2n reaction, to demonstrate the selectivity of the
probe (d,2He), and to show that, in principle, the neutron-
neutron scattering length can be obtained from the measured
cross section data.1

Note that fully microscopic calculations of the d + d

entrance channel at intermediate energies are needed for the
CSB experiment d + d → 4He + π0 as well [62,63].

Uncertainties regarding the reaction mechanism could be
reduced, if the 2H(t, 3He)2n reaction at intermediate ener-
gies is measured. Similar to 2H(n,p)2n and 2H(d,2He)2n,
the forward-angle 3He spectra are dominated by the
1S0 configuration. This experiment can be performed at
the National Superconducting Cyclotron Laboratory at
Michigan State University, where a resolution of about
160 keV for (t,3He) charge-exchange reactions has been
demonstrated [64].

It has been pointed out that some of the difficulties in the
theoretical analyses could be overcome, if analog reactions
leading to the nn,np, and pp FSI are analyzed with the same
model [65]. This implies for the 2H(d,2He)2n reaction that
high-resolution data of (p, p′)-type reactions and (p, n)-type
reactions at intermediate energies be available. A viable option
to improve the quality of the (p, n)-type data is a 2H(3He, t)2p

measurement at RCNP (E3He ≈ 450 MeV) or KVI (E3He ≈
185 MeV).

Another subject that can be tackled by means of (d,2He)
reaction experiments addresses a fundamental issue of quan-
tum mechanics. The question, if present quantum mechanics
is a complete theory, has been originally asked in the seminal
paper of Einstein, Podolsky and Rosen [66]. In order to furnish
experimental data involving entangled fermions, a feasibility
experiment to study spin correlations in hadronic systems has
been performed with the (d,2He) mode of the BBS+ESN
setup [67]. Singlet-spin proton pairs were generated in
1H(d,2He) and 12C(d,2He)12B (g.s.) charge-exchange reac-
tions. Measured left/right asymmetries of secondary proton
scattering on a carbon analyzer, which was placed within
the FPP [68], form the experimental correlation function.
This function can be tested with the prediction of quan-
tum theory and confronted with inequalities, e.g., Bell-type

1The experimental data are available from the corresponding author
(D.F.) on request.
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inequalities, which local-hidden-variables models must satisfy
[67,69].

VII. SUMMARY

The reaction 2H(d,2He)2n has been measured at forward
angles and interpreted in terms of the impulse approximation.
It was shown that the reaction can be decomposed into the
mirror transitions d → 2He and d → 2n, which in turn
can be described by the overlap of their respective wave
functions and a trivial phase-space factor. The neutron-neutron
scattering length ann is obtained by comparing the measured
cross section as a function of εnn with corresponding model
calculations. Employing a simple theory, it turned out that
ann � −18.3 fm (95% CL), i.e., aN

nn � −18.6 fm [19]. In the
hypothetical case that the electromagnetic interaction could
be switched off, the interaction between two neutrons in the
1S0 state would, thus, be more attractive than the interaction

between two protons. This finding can guide and constrain
models of charge symmetry breaking and phenomenological
descriptions of the nucleon-nucleon force. It is noted that
the result of the present experiment is in line with most
of the recent experiments which obtained a value for ann

[15,16,18].
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[17] R. Machleidt and I. Šlaus, J. Phys. G 27, 69 (2001).
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