
PHYSICAL REVIEW C 71, 044001 (2005)

Pressure inequalities for nuclear and neutron matter

Dean Lee
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA

(Received 9 August 2004; published 18 April 2005)

We prove several inequalities using lowest-order effective field theory for nucleons which give an upper bound
on the pressure of asymmetric nuclear matter and neutron matter. We prove two types of inequalities, one based
on convexity and another derived from shifting an auxiliary field.
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I. INTRODUCTION

In the effective field theory description of low-energy
nuclear matter, nucleons are treated as point particles rather
than composite objects. While much of the work in the
community has focused on few-body systems, there has also
been recent interest in lattice simulations of bulk nuclear
matter using effective field theory [1–6]. In parallel with this
computational effort, effective field theory was also recently
used to prove inequalities for the correlation function of two-
nucleon operators in low-energy symmetric nuclear matter [7].
It was shown that the S = 1, I = 0 channel must have the
lowest energy and longest correlation length in the two-
nucleon sector. These results were shown to be valid at nonzero
density and temperature and could be checked in effective
field theory lattice simulations. The proof relied on positivity
of the Euclidean functional integral measure and is similar in
spirit to several quantum chromodynamics (QCD) inequalities
proved using quark-gluon degrees of freedom [8–16].

In this work we prove several new inequalities using
effective field theory which give an upper bound on the
pressure of asymmetric nuclear matter and neutron matter. We
prove two types of inequalities, one based on convexity and
one derived from shifting an auxiliary Hubbard-Stratonovich
field. We consider two general types of systems, one with two
fermion species and an SU(2) symmetry and another with four
fermion species and an SU(2) × SU(2) symmetry. The results
we prove are quite general. In addition to nuclear and neutron
matter, our inequalities apply to systems of cold, dilute gases
of fermionic atoms [17–21] which can be described by the
same lowest-order effective field theory.

II. LOWER BOUND

Before deriving pressure upper bounds, we first state a
general lower bound for the pressure. The result is simple and
perhaps obvious, but the derivation is useful to help set our
notation. Consider any system in thermodynamic equilibrium
that is invariant under a symmetry group S. Let µ be a
symmetric chemical potential which preserves the group S.
Let µ3 be an asymmetric chemical potential which breaks S
and flips sign µ3 → −µ3 under some element of S. This means
that the pressure P is an even function of µ3.

Our condition of thermodynamic equilibrium requires that
the system is stable and not further separating into regions with

more widely different values of µ3. This implies the convexity
condition,

∂2P (µ,µ3)

∂µ2
3

� 0. (1)

Combining this with the fact that P is even in µ3, we derive
the lower bound

P (µ,µ3) � P (µ, 0). (2)

This lower bound holds for all the systems we consider here.

III. TWO FERMION STATES—SU(2)

We consider an effective theory with two species of
interacting fermion fields and an SU(2) symmetry. Let n be a
doublet of fermion fields which we can regard as neutron spin
states,

n =
[↑

↓
]

. (3)

We can write the lowest-order Lagrange density in Euclidean
space in two equivalent forms,

LE = −n̄

[
∂4 −

�∇2

2mN

+ (
m0

N − µ − µ3σ3
)]

n − 1

2
Cn̄nn̄n,

(4)
and

LE = −n̄

[
∂4 −

�∇2

2mN

+ (
m0′

N − µ − µ3σ3
)]

n

−1

2
C ′n̄�σn · n̄�σn, (5)

where

C ′ = − 1
3C. (6)

We use �σ to represent Pauli matrices acting in spin space. µ is
the symmetric chemical potential while µ3 is the asymmetric
chemical potential. We assume the interaction is attractive so
that

C < 0, C ′ > 0. (7)
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FIG. 1. Sum over two-particle bubble diagrams.

A. Two-body operator coefficients

We can calculate C using a lattice regulator for various
lattice spacings, which denote as alattice. For simplicity we
take the temporal lattice spacing to be zero. We must sum all
two-particle scattering bubble diagrams, as shown in Fig. 1,
and locate the pole in the scattering amplitude. We then use
Lüscher’s formula for energy levels in a finite periodic box
[5,22,23] and tune the coefficients to give the physically
measured scattering lengths. From Lüscher’s formula there
should be a pole in the two-particle scattering amplitude with
energy

Epole = 4πascatt

mNL3
+ · · · , (8)

where ascatt is the scattering length. We can write the sum over
bubble diagrams as a geometric series. In order to produce a
pole at this energy we must have

1

mNC
= 1

4πascatt
− lim

L→∞
1

alatticeL3

×
∑
�k �=0

1

6 − 2 cos 2πk1
L

− 2 cos 2πk2
L

− 2 cos 2πk3
L

,

(9)

where alattice is the lattice spacing, and the sum is over integer
values k1, k2, k3 from 0 to L − 1. Solving for C gives

C 	 1

mN

(
1

4πascatt
− 0.253

alattice

) . (10)

For any chosen temperature and neutron density there
is a corresponding maximum value for the lattice spacing,
alattice. The requirements are that the kinetic energy for the
highest momentum mode must exceed the temperature, and
the lattice spacing must be less than the interparticle spacing.
We therefore have

a−1
lattice 
 (

a−1
lattice

)
min = max[π−1

√
2mNT , ρ1/3]. (11)

This sets an upper bound for the absolute value for the scale-
dependent coupling C,

|C| � |C|max ≡ 1

mN

∣∣∣ 1
4πascatt

− 0.253
(
a−1

lattice

)
min

∣∣∣ . (12)

This result will be useful for the shifted-field inequalities
derived later.

B. Convexity inequality

The grand canonical partition function is given by

ZG(µ,µ3) =
∫

DnDn̄ exp (−SE)

=
∫

DnDn̄ exp

(∫
d4x LE

)
, (13)

where we use the expression (4) for LE ,

LE = −n̄

[
∂4 −

�∇2

2mN

+ (
m0

N − µ − µ3σ3
)]

n − 1

2
Cn̄nn̄n.

(14)
Using a Hubbard-Stratonovich transformation [24,25], we can
rewrite ZG as

ZG ∝
∫

DnDn̄Df exp

(∫
d4x Lf

E

)
, (15)

where

Lf

E = − n̄

[
∂4 −

�∇2

2mN

+ (
m0

N − µ − µ3σ3
)]

n

+ Cf n̄n + 1

2
Cf 2. (16)

Let us define M as the matrix for the part of Lf

E bilinear in
the neutron field,

M = −
[
∂4 −

�∇2

2mN

+ (
m0

N − µ − µ3σ3
)] + Cf. (17)

We observe that M has the block diagonal form,

M =
[

M(µ + µ3) 0
0 M(µ − µ3)

]
, (18)

where

M(µ) = −
[
∂4 −

�∇2

2mN

+ (
m0

N − µ
)] + Cf . (19)

Since M is real valued, det M must also be real.
Integrating over the fermion fields gives us

ZG(µ,µ3) ∝
∫

DnDn̄Df exp

(∫
d4x Lf

E

)

=
∫

D� det M

=
∫

D� det M(µ + µ3) det M(µ − µ3), (20)

where D� is the positive measure

D� = Df exp

(
1

2
C

∫
d4x f 2

)
. (21)

Using the Cauchy-Schwarz inequality we find∣∣∣∣
∫

D� det M(µ + µ3) det M(µ − µ3)

∣∣∣∣
�

∫
D� |det M(µ + µ3) det M(µ − µ3)|
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�

√∫
D� [det M(µ + µ3)]2

√∫
D� [det M(µ − µ3)]2.

(22)

We can now compare the asymmetric partition function to the
symmetric partition function at chemical potentials µ + µ3

and µ − µ3,

ZG(µ,µ3) �
√

ZG(µ + µ3, 0)
√

ZG(µ − µ3, 0). (23)

We now use the thermodynamic relation,

ln ZG = PV

kBT
, (24)

where P is the pressure, V is the volume, and T is the
temperature. We find the upper bound

P (µ,µ3) � 1
2 [P (µ + µ3, 0) + P (µ − µ3, 0)]. (25)

C. Shifted-field inequality

We start again with the grand canonical partition function

ZG(µ,µ3) =
∫

DnDn̄ exp (−SE)

=
∫

DnDn̄ exp

(∫
d4x LE

)
. (26)

This time we use the other expression (5) for LE ,

LE = −n̄

[
∂4 −

�∇2

2mN

+ (
m0′

N − µ − µ3σ3
)]

n

− 1

2
C ′n̄�σn · n̄�σn. (27)

We can rewrite the grand canonical partition function using
three Hubbard-Stratonovich fields,

ZG ∝
∫

DnDn̄D �φ exp

(∫
d4x L �φ

E

)
, (28)

where

L �φ
E = −n̄

[
∂4 −

�∇2

2mN

+ (
m0′

N − µ − µ3σ3
)]

n

+ iC ′ �φ · n̄�σn − 1

2
C ′ �φ · �φ. (29)

Let M0 be the neutron matrix without the µ3σ3 term,

M0 = −
[
∂4 −

�∇2

2mN

+ (
m0′

N − µ
)] + iC ′ �φ · �σ . (30)

We note that

σ2M0σ2 = M∗
0, (31)

where M∗
0 is the complex conjugate of M0. This means that M0

is either singular, in which case det M0 = 0, or has the same
eigenvalues as M∗

0. In all cases det M0 is real. Furthermore the
fact that σ2 is antisymmetric means that the real eigenvalues
of M0 are doubly degenerate, and so det M0 � 0 [26].

We now concentrate on the part of L �φ
E that contains µ3

and φ3,

− 1
2C ′φ2

3 + iC ′φ3n̄σ3n + µ3n̄σ3n. (32)

We can rewrite this as

−1

2
C ′φ′2

3 − iµ3φ
′
3 + iC ′φ′

3n̄σ3n + 1

2

µ2
3

C ′ (33)

where

φ′
3 = φ3 − i

µ3

C ′ . (34)

The original contour of integration for φ′
3 is off the real axis,

but we can deform the contour onto the real axis. For notational
convenience we now drop the prime on φ′

3 and have

L �φ
E = −n̄

[
∂4 −

�∇2

2mN

+ (
m0′

N − µ
)]

n

+ iC ′ �φ · n̄�σn − 1

2
C ′ �φ · �φ − iµ3φ3 + 1

2

µ2
3

C ′ . (35)

The neutron matrix is now M0, which we have shown has
a non-negative determinant. The complex phase is contained
entirely in the local expression −iµ3φ3.

We now have

ZG ∝
∫

D� exp

{∫
d4x

[
−iµ3φ3 + 1

2

µ2
3

C ′

]}

= exp

(
V µ2

3

2C ′kBT

)∫
D� exp

(
−iµ3

∫
d4x φ3

)
, (36)

where D� is the normalized positive measure

D� = D �φ det M0 exp
(− ∫

d4x V( �φ)
)

∫
D �φ det M0 exp

(− ∫
d4x V( �φ)

) (37)

with

−V( �φ) = − 1
2C ′ �φ · �φ. (38)

Using Eq. (24) we find

P (µ,µ3) − P (µ, 0)

= kBT

V
ln

[
exp

(
V µ2

3

2C ′kBT

)∫
D� exp

(
−iµ3

∫
d4x φ3

)]

= µ2
3

2C ′ + kBT

V
ln

[∫
D� exp

(
−iµ3

∫
d4x φ3

)]
. (39)

So we conclude that

P (µ,µ3) � P (µ, 0) + µ2
3

2C ′ . (40)

This upper bound is unusual in that it relates physical observ-
ables independent of the cutoff scale to the scale-dependent
coupling C ′. By taking the lattice spacing as large as possible,
we have

C ′ = 1
3 |C|max, (41)
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where |C|max was defined in Eq. (12), and therefore

P (µ,µ3) � P (µ, 0) + 3µ2
3

2 |C|max
. (42)

As a rough estimate of the quantities involved, we note that
for ρ ∼ 0.1ρN and T < 10 MeV, |C|max is about 3 fm2 .

As C ′ decreases the upper bound in Eq. (40) increases. But
at the same time the tightness of the bound becomes poorer as
complex phase oscillations due to the term

exp

[∫
d4x

(
−1

2
C ′φ2

3 − iµ3φ3

)]
(43)

become more significant. The average phase for our functional
integral is given by

〈phase〉 =
∫

D� exp

(
−iµ3

∫
d4x φ3

)

= exp

[
V

kBT

(
P (µ,µ3) − P (µ, 0) − µ2

3

2C ′

)]
. (44)

Given an estimate of the pressure difference, this relation
can be used to predict the feasibility of a numerical simulation
using this representation of the functional integral. In cases
where the phase problem is not too severe we can use
hybrid Monte Carlo to generate Hubbard-Stratonovich field
configurations according to the relative probability weight
det M0. The phase of the configuration can then be included as
an observable using the local expression −iµ3φ3. This local
expression for the phase could increase algorithmic speed by
several orders of magnitude. The only known way to compute
the phase of matrix determinants is LU decomposition, an
algorithm which writes a matrix as a product of lower and
upper triangular matrices. The number of operations for LU
decomposition scales as N3, where N is the dimension of the
matrix. For an L4 lattice the scaling is thus L12.

IV. FOUR FERMION STATES—SU(2) × SU(2)

We now consider an effective theory with four species of
interacting fermions and an SU(2) × SU(2) symmetry. Let N

be a quartet of fermion states, which we can regard as nucleon
fields,

N =
[

p

n

]
⊗

[↑
↓

]
. (45)

We use p(n) to represent protons(neutrons) and ↑(↓) to
represent up(down) spins. We use �τ to represent Pauli matrices
acting in isospin space and �σ to represent Pauli matrices acting
in spin space. We assume exact isospin and spin symmetry in
the absence of symmetry-breaking chemical potentials, and so
the symmetry group is SU(2)I × SU(2)S .

In the nonrelativistic limit and below the threshold for pion
production, we can write the lowest-order terms in the effective

Lagrangian in two equivalent ways,

LE = −N̄

[
∂4 −

�∇2

2mN

+ (
m0

N − µ
)]

N − 1

2
CS(N̄N )2

− 1

2
CT N̄ �σN · N̄ �σN − 1

3!
C3(N̄N )3 − 1

4!
C4(N̄N )4,

(46)

or

LE = −N̄

[
∂4 −

�∇2

2mN

+ (
m0′

N − µ
)]

N − 1

2
C ′

S(N̄N )2

− 1

2
C ′

UN̄ �τN · N̄ �τN − 1

3!
C3(N̄N )3 − 1

4!
C4(N̄N )4.

(47)

We will introduce symmetry breaking chemical potentials
later. We have included both three-body and four-body
forces. The SU(4)-symmetric three-nucleon force is needed
for consistent renormalization and has been shown to be the
dominant three-body force contribution [27–29].

With four distinct fermion species there are two irreducible
representations of SU(2)I × SU(2)S for two fermions in an
s wave, a spin-singlet isospin-triplet (S = 0) or an isospin-
singlet spin-triplet (I = 0). One can show that [7]

C ′
U = −CT , C ′

S = CS − 2CT . (48)

In the case of nucleons, one finds that both of the s-wave
channels are attractive, with the I = 0 channel being more
strongly attractive,

1

aI=0
scatt

>
1

aS=0
scatt

. (49)

This implies that [7]

CS < 3CT , CT < 0, (50)

C ′
S < −C ′

U , C ′
U > 0. (51)

For a more general system with four fermion states and an
SU(2) × SU(2) symmetry, we can interchange the isospin and
spin labels so that, without loss of generality,

1

aI=0
scatt

�
1

aS=0
scatt

. (52)

In the special case when the scattering lengths are equal, the
symmetry group is the full Wigner SU(4) symmetry [30], and
the isospin and spin labels can be interchanged.

A. Two-body operator coefficients

We determine the two-body operator coefficients in the
same manner as before. The only difference is that there are
now two s-wave channels. The coefficient C in Eq. (9) is
replaced by CS=0 and CI=0, where

CS=0 = C ′
S + C ′

U , (53)

CI=0 = C ′
S − 3C ′

U . (54)
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We then find

C ′
S 	 3

4mN

(
1

4πaS=0
scatt

− 0.253
alattice

) + 1

4mN

(
1

4πaI=0
scatt

− 0.253
alattice

) , (55)

C ′
U 	 1

4mN

(
1

4πaS=0
scatt

− 0.253
alattice

) − 1

4mN

(
1

4πaI=0
scatt

− 0.253
alattice

) . (56)

For any chosen temperature and nucleon density there
is again a corresponding maximum value for the lattice
spacing,

a−1
lattice 
 (

a−1
lattice

)
min = max[π−1

√
2mNT , ρ1/3]. (57)

This sets a maximum value for the absolute value of the
coupling C ′

U ,

|C ′
U | � |C ′

U |max ≡

∣∣∣ 1
4πaI=0

scatt
− 1

4πaS=0
scatt

∣∣∣
4mN

∣∣∣( 1
4πaS=0

scatt
− 0.253

(
a−1

lattice

)
min

) (
1

4πaI=0
scatt

− 0.253
(
a−1

lattice

)
min

)∣∣∣ . (58)

A similar bound for C ′
S can be made but is not needed in our

analysis.

B. Convexity inequality for µS
3

We first consider the case when an asymmetric chemical
potential µS

3 is coupled to the nucleon spins. The grand
canonical partition function is given by

ZG =
∫

DNDN̄ exp (−SE) =
∫

DNDN̄ exp

(∫
d4x LE

)
,

(59)

where we take the form of LE given in Eq. (47) with an
asymmetric spin chemical potential,

LE = −N̄

[
∂4 −

�∇2

2mN

+ (
m0′

N − µ − µS
3σ3

)]
N

− 1

2
C ′

S(N̄N )2 − 1

2
C ′

UN̄ �τN · N̄ �τN

− 1

3!
C3(N̄N )3 − 1

4!
C4(N̄N )4. (60)

Using Hubbard-Stratonovich transformations we can rewrite
ZG as

ZG ∝
∫

DNDN̄Df D �φ exp

(∫
d4x Lf, �φ

E

)
, (61)

where

Lf, �φ
E = −N̄

[
∂4 −

�∇2

2mN

+ (
m0′

N − µ − µS
3σ3

)]
N

+f N̄N + iC ′
U

�φ · N̄ �τN + g(f ) − 1

2
C ′

U
�φ · �φ.

(62)

In Ref. [31] it was shown that three-body and four-body forces
can be introduced without spoiling positivity of the functional
integral measure. The only requirements are that the three-
body force is not too strong and the four-body force is not
too repulsive. Estimates of the three- and four-body forces
suggest that these conditions are satisfied. For our analysis
here we assume that to be the case, and the function g(f ) is

a real-valued function which produces the two-, three-, and
four-body force terms involving N̄N .

The nucleon matrix M has the block diagonal structure

M =
[

M
(
µ + µS

3

)
0

0 M
(
µ − µS

3

) ]
, (63)

where the upper block is for up spins and the lower block is
for down spins. M is a matrix in isospin space,

M(µ) = −
[
∂4 −

�∇2

2mN

+ (
m0′

N − µ
)] + f + iC ′

U
�φ · �τ .

(64)
We note that

τ2Mτ2 = M∗, (65)

and so det M � 0.
Integrating over the fermion fields gives us

ZG

(
µ,µS

3

) ∝
∫

DNDN̄Df D �φ exp

(∫
d4x Lf, �φ

E

)

=
∫

D� det M

=
∫

D� det M
(
µ + µS

3

)
det M

(
µ − µS

3

)
,

(66)

where

D� = Df D �φ exp

(
−

∫
d4x V(f, �φ)

)
(67)

with

−V(f, �φ) = g(f ) − 1
2C ′

U
�φ · �φ. (68)

From the Cauchy-Schwarz inequality we get

ZG(µ,µ3) �
√

ZG

(
µ + µS

3 , 0
)√

ZG

(
µ − µS

3 , 0
)
. (69)

We therefore find an upper bound for the pressure,

P
(
µ,µS

3

)
� 1

2

[
P

(
µ + µS

3 , 0
) + P

(
µ − µS

3 , 0
)]

. (70)
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C. Shifted-field inequality for µI
3

We now consider the case with an isospin chemical potential
µI

3. We start with the Lagrange density in terms of the Hubbard-
Stratonovich fields,

Lf, �φ
E = −N̄

[
∂4 −

�∇2

2mN

+ (
m0′

N − µ − µI
3τ3

)]
N

+f N̄N + iC ′
U

�φ · N̄ �τN + g(f ) − 1

2
C ′

U
�φ · �φ.

(71)

Let M0 be the nucleon matrix without the µI
3τ3 term,

M0 = −
[
∂4 −

�∇2

2mN

+ (
m0′

N − µ
)] + f + iC ′

U
�φ · �τ .

(72)
We note that

τ2M0τ2 = M∗
0, (73)

and so det M0 � 0.

As we did for the two-fermion case, we now shift the φ3

field and find the inequality

P
(
µ,µI

3

)
� P (µ, 0) +

(
µI

3

)2

2C ′
U

. (74)

If we take the lattice spacing as large as possible then

P
(
µ,µI

3

)
� P (µ, 0) +

(
µI

3

)2

2
∣∣C ′

U

∣∣
max

, (75)

where |C ′
U |max was defined in Eq. (58). As a rough estimate

of the quantities involved, we note that for ρ ∼ 0.1ρN

and T < 10 MeV, |C ′
U |max is about 0.2 fm2. In this case,

however, the situation is complicated by nuclear saturation,
and it is not clear that the pionless effective theory is
applicable.

V. SUMMARY AND DISCUSSION

The main results we have shown are as follows. We first con-
sidered the two-fermion system with an attractive interaction
and SU(2) symmetry. If µ is the symmetric chemical potential
and µ3 is the asymmetric chemical potential, we proved both
the convexity inequality

P (µ, 0) � P (µ,µ3) � 1
2 [P (µ + µ3, 0) + P (µ − µ3, 0)],

(76)
and the shift-field inequality

P (µ, 0) � P (µ,µ3) � P (µ, 0) + 3µ2
3

2 |C|max
. (77)

We then analyzed the four-fermion system with an
SU(2)I × SU(2)S symmetry. We considered the case when
both s-wave channels are attractive and without loss of
generality assumed the I = 0 channel to be more strongly

attractive. With µ as the symmetric chemical potential and
µS

3 as the asymmetric spin chemical potential we proved the
convexity inequality

P (µ, 0) � P
(
µ,µS

3

)
� 1

2

[
P

(
µ + µS

3 , 0
) + P

(
µ − µS

3 , 0
)]

.

(78)

For nonzero asymmetric isospin chemical potential µI
3 we

proved the shifted-field inequality

P (µ, 0) � P
(
µ,µI

3

)
� P (µ, 0) +

(
µI

3

)2

2|C ′
U |max

. (79)

In the Wigner SU(4) symmetry limit, we note that the shift-
field inequality (76) becomes meaningless since |C ′

U |max → 0.
However in this limit we also have the convexity inequality
for µI

3,

P (µ, 0) � P
(
µ,µI

3

)
� 1

2

[
P

(
µ + µI

3, 0
) + P

(
µ − µI

3, 0
)]

.

(80)

The equation of state for nuclear matter with small isospin
asymmetries can be measured indirectly in the laboratory
by studying nuclear multifragmentation. Of the inequalities
presented here, the simplest and perhaps most interesting to
check is the isospin convexity inequality (80) in the Wigner
symmetry limit. Since much is still unknown about asymmetric
nuclear matter, this Wigner pressure inequality may be a useful
consistency check for proposed phenomenological models for
asymmetric nuclear matter.

While some of the inequalities are difficult to observe in
nuclear physics experiments, each of our results could be tested
in the cold Fermi gas system where parameters in the effective
Lagrangian can be tuned. Such experiments can in principle
test the inequalities over a range of physical parameters
and probe universal results in the limit of infinite scattering
length and zero range. Although four-fermion systems have
not yet been produced, these may be possible in the near
future.

On the computational side, the inequalities can also be
checked by nonperturbative lattice simulations. There have
been several recent simulations of effective theories on the
lattice [1,3,5,6]. It will be particularly interesting to look
at symmetric and asymmetric nuclear matter in the Wigner
symmetry limit, which can be simulated without any sign
problem.

It remains to be seen how well many-body nucleon systems
can be described without explicit pions. Results from Ref. [5]
for dilute neutron matter suggest that lowest-order effective
field theory without pions works very well in describing the
neutron equation of state. The situation for nearly symmetric
nuclear matter, however, is less clear due to the effect of
saturation which requires higher densities.

With pions included the effective theory action can in
general become negative. This would in principle invalidate
any inequality based on positivity of the action. However, it
has been shown that this sign problem goes away in the static
limit [32]. Furthermore the sign problem has been numerically
observed to be small [3] in simulations with neutrons and

044001-6



PRESSURE INEQUALITIES FOR NUCLEAR AND . . . PHYSICAL REVIEW C 71, 044001 (2005)

neutral pions for temperatures above 10 MeV and densities at
or below normal nuclear matter density. If one neglects these
sign changes, then the sign-quenched results for the effective
theory with pions will also satisfy each of the inequalities
proven here.
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