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Regularities with random interactions in energy centroids defined by group symmetries
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Regular structures generated by random interactions in energy centroids defined over irreducible representa-
tions (irreps) of some of the group symmetries of the interacting boson models sdIBM, sdgIBM, sdIBM-T, and
sdIBM-ST are studied by deriving trace propagation equations for the centroids. It is found that, with random
interactions, the lowest and highest group irreps in general carry most of the probability for the corresponding
centroids to be lowest in energy. This generalizes the result known earlier, via numerical diagonalization, for the
more complicated fixed spin J centroids where simple trace propagation is not possible.
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Johnson, Bertsch, and Dean in 1998 [1], using the nuclear
shell model, found that random two-body interactions lead to
ground states for even-even nuclei, having spin 0+ with very
high probability. Similarly, Bijker and Frank [2], using the
interacting boson model (IBM) with s and d bosons (sdIBM),
showed that random interactions generate vibrational and
rotational structures with high probability. Further studies
using the shell model, fermions in one or two j orbits, sd, sp,
and sdg IBM’s, bosons in a single � orbit, etc., revealed
statistical predominance of odd-even staggering in binding
energies, 0+, 2+, 4+, . . . yrast sequence, regularities in ground
states in parity distributions, occupation numbers, and so
on; see [3–10] and references therein. Notably, Zelevinsky
et al. [4] introduced the idea of geometric chaos as a basis
for the regularities observed in shell model studies. Similarly,
Zhao et al. [8] developed a prescription based on sampling of
the corners of the parameter space, and Bijker, Frank and
Kota [7,9] employed mean-field methods. The unexpected
results for regularities with random interactions are reviewed
in [6,10]. As Zhao et al. stated [10], “a more fundamental
understanding of the robustness of 0+

g.s. dominance is still out
of reach.” Therefore, going beyond the ground states and near
yrast levels, energy centroids, spectral widths, and correlations
among them are also being investigated by several groups
[4,5,11–13] as they are expected to give new insights into
regularities generated by random interactions. For example,
Zhao et al. [11,12] initiated the study of energy centroids
and analyzed fixed-L (fixed-J, JT ) centroids in IBM (in shell
model) spaces. They found that Lmin (or Jmin) and Lmax (or
Jmax) will be lowest with largest probabilities, and others
appear with negligible probability. Similarly Papenbrock and
Weidenmüller [13] recently analyzed the structure of fixed-J
spectral widths for fermions in a single-j shell.

An interesting and important question is the extension of the
spin-zero ground state dominance (and also other regular struc-
tures seen in shell model and IBM studies) to group theoretical
models with Hamiltonians preserving a symmetry higher than
J (or L). Similarly, one may consider centroids and variances
defined over good or broken symmetry subspaces. They open
a new window to the regularities of many-body systems in the
presence of random forces. Initiating work in this direction [9],
we recently used random one- plus two-body Hamiltonians

invariant with respect to O(N1) ⊕ O(N2) symmetry of a variety
of interacting boson models to investigate the probability
of occurrence of a given (ω1ω2) irreducible representation
(irrep) to be the ground state in even-even nuclei; [ω1] and
[ω2] are symmetric irreps of O(N1) and O(N2) respectively.
We found that the 0+ dominance observed in ground states
of even-even nuclei extends to group irreps. The purpose
of this paper and others to follow is to go beyond this and
study regularities generated by random interactions in energy
centroids, variances, etc. defined over group irreps. Reported
in this rapid communication are the results of a first analysis
of energy centroids with examples from sdIBM, sdgIBM,
sdIBM-T with the bosons carrying isospin (T ), and sdIBM-ST
with the bosons carrying spin-isospin (ST ) degrees of freedom.
Before proceeding further, it is important to stress that energy
centroids (also variances) can be calculated as a function of
particle number m and the quantum numbers labeling the group
irreps, without recourse to the construction of the Hamiltonian
matrix. The principle used here is trace propagation, a subject
introduced in the context of statistical nuclear spectroscopy by
French [14,15]. Readers not interested in the details of group
algebra and derivation of trace propagation equations for the
energy centroids [given by Eqs. (5)–(8)], may jump ahead to
the discussion of results starting just after Eq. (8).

Let us begin with the spectrum generating algebra (SGA),
say G1, of a group theoretical model with all the many particle
states in the model belonging to the irrep �1 of G1. For
example, the SGA G1 for sdIBM is U(6). Now the average
of an operator O(k) of maximum body rank k over the irreps
�2 of a subalgebra G2 of G1 (G2 in general denotes a set of
subalgebras contained in G1 and �2 denotes all their irreps) is
defined by

〈O(k)〉�1,�2 =
∑

β

∑
α∈�2

〈�1β�2α|O(k)|�1β�2α〉
/[ ∑

β

∑
α∈�2

〈�1β�2α|1|�1β�2α〉
]

(1)

In Eq. (1), β labels the multiple occurrence (multiplicity) of �2

in a given �1 irrep (i.e., in the reduction of �1 to �2). Removing
the denominator in Eq. (1) gives the trace over (�1, �2) space,
i.e., tr[O(k)]�1,�2 . General theory for propagation of traces
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of operators over irreps of group symmetries was developed
in Refs. [16–19]. In particular, Quesne [16] showed that for
G1 ⊃ G2, trace propagation over the irreps �1 and �2 of G1

and G2 algebras is related to the so-called integrity basis
of G2 in G1 which gives the minimal set of G2 scalars
in G1. As discussed in Refs. [17,18], it is seen that in
general the multiplicity of �2 in a given �1 irrep results
in the propagation of the matrix of traces tr[O(k)]�1�2;ββ ′ =∑

α 〈�1β�2α|O(k)|�1β
′�2α〉. However, quite often the trace

of this trace matrix or its average, as given by Eq. (1), which
is important in applications, may not propagate in a simple
manner. There are approximate methods for propagating trace
of the trace matrix, and they are significant, particularly when
the integrity basis contains far too many operators [18]. A
very important example here is fixed-L averages in IBM’s or
fixed-J (and JT) averages in the shell model. For these, it is
not possible to write a simple propagation equation in terms
of the defining space averages. On the other hand, traces over
irreps of group symmetries (higher than J symmetry) can be
propagated in many situations using Casimir invariants. French
and Draayer [19] showed that by simple counting of irreps of
G2 in G1 and the scalars one can construct in terms of the
Casimir invariants of G1 and G2 will immediately confirm if
propagation via Casimir invariants is possible; in this situation,
the integrity basis reduces to Casimir operators of G1 and G2.
In this paper we restrict ourselves to examples in IBM’s where
this result applies; Refs. [20,21] give the first IBM examples.

For IBM’s the SGA, called G1 above, is U(N ), withN = 6
for sdIBM, 15 for sdgIBM, etc, and its irreps �1 are labeled
uniquely by the boson number m as all m boson states are
symmetric with respect to U(N ). Now, consider the average
of an operator O(k) over the irreps (m,�2) with �2 being
the irreps of a subalgebra G2 of U(N ). Say the number
of (m,�2), called �i hereafter, for m � k is r. Also assume
that there are r number of invariants Ĉi , i = 1, 2, . . . , r , of
maximum body rank k constructed out of the products of m
and the Casimir invariants of G2. Then, for any irrep �0, clearly
〈O〉�0 = ∑r

i=1 ai〈Ĉi〉�0
, where ai are constants. The ai can be

determined by assuming that the averages 〈O〉�j

are known for
the irreps �j , j = 1, 2, . . . , r . For example, �j can be chosen
to be the irreps (m,�2) for m � k. With this, defining the row
matrices [C] and [Oinp] and the r × r matrix [X] as

[C] ⇔ Ci = 〈Ĉi〉�0
,

[Oinp] ⇔ Oinp:i = 〈O〉�i

, (2)

[X] ⇔ Xij = 〈Ĉj 〉�i

,

the propagation equation is

〈O〉�0 = [C] [X]−1 ˜[Oinp]. (3)

As the eigenvalues of the Casimir invariants of the algebras
U(N ), O(N ), etc. are known, construction of [C] and [X] is
easy. In the reminder of this paper, the H is assumed to be
(1 + 2)-body. As an example, let us consider SU(3) centroids
in sdIBM. Here G1 = U(6) and G2 = SU(3). Simple counting
of scalar in terms of the number operator n̂ and the quadratic
Casimir operator Ĉ2 and the cubic Casimir operator Ĉ3 of
SU(3) confirms that they exhaust all the scalars needed for

propagating 〈O(k)〉m,(λµ) for any k [18,21]. Note that (λµ)
denotes SU(3) irreps. Propagation equation for the energy
centroids over SU(3) irreps can be written as 〈H 〉m,(λµ) =
a0 + a1m + a2m

2 + a3C2(λµ), where

C2(λµ) = 〈(λµ)α|Ĉ2|(λµ)α〉= [λ2 + µ2 + λµ+ 3(λ + µ)].
(4)

Using Eqs. (3) and (4), the propagation equation, in terms of
the energy centroids for m � 2, is [21]

〈H 〉m,(λµ) = 1
2 (2 − 3m + m2)〈H 〉0,(00) + (2m − m2)〈H 〉1,(20)

+ [− 5
6m + 5

18m2 + 1
18C2(λµ)

] 〈H 〉2,(40)

+ [
1
3m + 2

9m2 − 1
18C2(λµ)

] 〈H 〉2,(02). (5)

Equation (5) extends easily to the SU(3) limit of pf IBM with
U(10) SGA but not to sdg, sdgpf , etc., IBM’s. Now we will
derive three new propagation equations for energy centroids.

In the U(N ) ⊃ ∑
i [U(Ni) ⊃ O(Ni)] ⊕ symmetry limits

of IBM’s, with the bosons carrying angular momenta �1, �2, . . .

so that Ni = (2�i + 1) and N = ∑
i Ni , for a given ith orbit,

U(Ni) generates number of particles mi in the orbit and O(Ni)
generates the corresponding seniority quantum number ωi .
The number operators n̂i of U(Ni) and the quadratic Casimir
operators of O(Ni) or the corresponding pairing operators
P̂2(O(Ni)) suffice to give fixed m̃ω̃ = (m1ω1,m2ω2, . . .)
averages of H. Appendix A in Ref. [22] gives the explicit
form of P̂2(O(Ni)) for a general situation. Fixed-m̃ω̃ centroids
of H can be written as 〈H 〉m̃ω̃ = ∑

i miεi + ∑
i�j aijmi(mj −

δij ) + ∑
i ci〈P̂2(O(Ni))〉miωi . Solving for aij and ci in terms

of the centroids for m � 2, the final propagation equation, for
IBM’s with no internal degrees of freedom, is

〈H 〉m̃ω̃ =
∑

i

miεi +
∑
i>j

Vij mimj

+
∑

i

mi(mi − 1)

2
〈V 〉mi=2,ωi=2

+
∑

i

〈V 〉mi=2,ωi=0 − 〈V 〉mi=2,ωi=2

2Ni

× (mi − ωi)(mi + ωi + Ni − 2);

Vij = {[Ni(Nj + δij )]/(1 + δij )}−1

×
∑
L

V L
�i�j �i�j

(2L + 1),

〈V 〉mi=2,ωi=0 = 〈(�i�i)Li = 0|V |(�i�i)Li = 0〉,
〈V 〉mi=2,ωi=2 =

[Ni(Ni + 1)

2
Vii − 〈V 〉mi=2,ωi=0

]
/ [Ni(Ni + 1)

2
− 1

]
. (6)

Note that in (6), εi are energies of the single- particle levels with
angular momentum �i and V L

�i�j �i�j
= 〈(�i�j )L|V |(�i�j )L〉 are

two-particle matrix elements of the two-body part of H. Also
in Eq. (6), for s orbit, ms = 2 and ωs = 2 and there will be no
two-boson state with ωs = 0. Equation (6) for sdgIBM is given
first in [23], i.e., for averages over the irreps of the algebras
in the chain Usdg(15) ⊃ Us(1) ⊕ [Ud (5) ⊃ Od (5)] ⊕ [Ug(9) ⊃
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Og(9)]. Similarly Eq. (6) gives H averages over the irreps
of Usd (6) ⊃ Ud (5) ⊃ Od (5) of sdIBM, Usdpf (16) ⊃ [Ud (5) ⊃
Od (5)] ⊕ [Up(3) ⊃ Op(3)] ⊕ [Uf (7) ⊃ Of (7)] of sdpf IBM,
etc. Moreover, this extends easily (this will be discussed
elsewhere) to IBM’s with internal degrees of freedom. Let us
add that it is also possible to write propagation equations for
the variances 〈[H − 〈H 〉m̃ω̃]2〉m̃ω̃ using the results in [20,24].

In IBM-T with U(3N ) ⊃ U(N ) ⊗ [SUT (3) ⊃ OT (3)]
where U(N ) gives the spatial part (for sd, sdg, sdpf , etc.) and
OT (3) generating isospin [25], it is possible to propagate the
centroids 〈H 〉m,{f },T ≡ 〈H 〉m,(λµ),T . Note that the U(N ) irreps
are labeled by {f } = {f1, f2, f3} where f1 � f2 � f3 � 0
and m = f1 + f2 + f3. The corresponding SUT (3) irreps are
(λ,µ) = (f1 − f2, f2 − f3). The SUT (3) to OT (3) reductions
follow from the formulas given by Elliott [26,27]. The scalars
1, n̂, n̂2, Ĉ2(SUT (3)) and T̂ 2 and the energy centroids for m � 2,
via Eqs. (2)–(4), give

〈H 〉m,(λµ),T = [
1 − 3

2m + m2

2

] 〈H 〉0,(00),0 + [2m − m2]

×〈H 〉1,(10),1 + [− 1
6m + 1

18m2 + 1
9C2(λµ)

− 1
6T (T + 1)

] 〈H 〉2,(20),0 + [− 5
6m + 5

18m2

+ 1
18C2(λµ) + 1

6T (T + 1)
] 〈H 〉2,(20),2

+ [
1
2m + 1

6m2 − 1
6C2(λµ)

] 〈H 〉2,(01),1. (7)

For sdIBM-T, starting with the general Hamiltonian given in
Appendix A of [27] which contains the s and d boson energies
and 17 two-particle matrix elements V

L,t
�l�2�3�4

, it is easy to write
〈H 〉m,(λµ),T for m � 2; for m = 2, the two-boson isospins t
uniquely define the corresponding SUT (3) irreps. Thus Eq. (7)
for 〈H 〉m,(λµ),T is easy to apply for any m.

In IBM-ST, a group chain of interest is [28] U(6N ) ⊃
U(N ) ⊗ [SUST (6) ⊃ OST (6)], with U(N ) generating the spa-
tial part and SUST (6) [or UST (6)] generating the spin-isospin
part; note that the Wigner’s spin-isospin super-multiplet
algebra SUST (4) is isomorphic to OST (6). Just as before, it
is possible to propagate the centroids 〈H 〉m,{f },[σ ]. Here {f }’s
are the irreps of U(N ) or equivalently UST (6) and {f } =
{f1, f2, f3, f4, f5, f6}, where

∑
ifi = m and fi � fi+1 � 0.

The OST (6) irreps are labeled by [σ ] = [σ1, σ2, σ3], and the
{f } to [σ ] reductions, needed for the results discussed ahead,
follow from the analytical formulas given in [27] and the
tabulations in [29]. Equations (2) and (3) give, using the
quadratic Casimir invariants Ĉ2 of UST (6) and OST (6),

〈H 〉m,{f },[σ ] = [
1 − 3

2m + m2

2

] 〈H 〉0,{0},[0] + [2m − m2]

×〈H 〉1,{1},[1] + [− 5
3m + 1

4m2 + 1
6C2({f })

+ 1
12C2([σ ])

] 〈H 〉2,{2},[2] + [− 1
12m

+ 1
12C2({f })− 1

12C2([σ ])
] 〈H 〉2,{2},[0]

+ [
5
4m + 1

4m2 − 1
4C2({f })] 〈H 〉2,{12},[12], (8)

where C2({f }) = 〈Ĉ2[UST (6)]〉{f } = ∑6
i=1 fi(fi + 7 − 2i)

and C2([σ ]) = 〈Ĉ2[OST (6)]〉[σ ] = ∑3
i=1 σi(σi + 6 − 2i). Dia-

gonalizing Ĉ2(OST (6)) in the |(�1�2)LST 〉 basis and applying
the resulting unitary transformation to the H matrix in this
basis will give the input averages in Eq. (8).
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FIG. 1. Probabilities for sdgIBM fixed-(ms, md, vd, mg, vg) cen-
troid energies to be lowest in energy vs ms for a system of 15 bosons
(m = 15). For each ms , the probability shown is the sum of the
probabilities for the irreps with the seniority quantum number lowest
[v� = π (m�)] and highest (v� = m�). Filled circles and stars are for
configurations with md = 0 and mg = 0, respectively; they are joined
by lines to guide the eye. Note that for ms = 15, both md = 0 and
mg = 0.

Now we will apply Eqs. (5)–(8) to study regularities
generated by random interactions in energy centroids. In
all the calculations used are independent Gaussian random
variables with zero center and unit variance and a 1000-
member ensemble. We begin with the simplest example
of sdIBM centroids. The highest SU(3) irrep for a given
m is (2m, 0) and Eq. (5) gives 〈H 〉m,(λµ) − 〈H 〉m,(2m,0) =
[C2(λµ) − C2(2m, 0)]�/18 with � = 〈H 〉2,(40) − 〈H 〉2,(02).
Therefore, the probability of finding � to be positive or
negative will simply give the probability for finding the highest
or lowest m particle SU(3) irrep to be lowest in energy. With the
two-particle matrix elements chosen to be Gaussian variables
(with zero center and unit variance), � itself will be a Gaussian
variable with zero center. For m = 3k, 3k + 1, and 3k + 2, k

being a positive integer, the lowest SU(3) irreps are (00), (20),
and (02), respectively. They will be lowest in energy with
50% and the (2m, 0) irrep will be lowest in energy with 50%
probability. Thus, it is easy to understand the regularities in
centroids defined over fixed SU(3) irreps in sdIBM with one-
plus two-body Hamiltonians, without constructing the many
boson Hamiltonian matrix but just by using the propagation
equation (5).

In sdgIBM, regularities in fixed-(ms,md, vd,mg, vg) cen-
troids are studied using the propagation equation (6). Choosing
the three single-particle energies (εs, εd, εg) and the 16
diagonal two-particle matrix elements V L

�1�2�1�2
, with �i = 0, 2,

and 4 to be Gaussian variables, the probability for the centroid
of a given (ms,md, vd,mg, vg) configuration to be lowest is
calculated for m = 6 − 25, and the results are shown in Fig. 1
for m = 15. To maintain proper scaling, the ε are divided by
m and the V L by m(m − 1) just as in [2]. For the discussion
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FIG. 2. Probabilities for the sdIBM-T’s (λµ)T centroid energies
to be lowest in energy vs C2(λµ)/m2 for boson systems with m =
12, 15, 20, and 25. Except for the highest (λµ), for all other (λµ)
shown in the figure, the probabilities are for Tmax if λ 
= 0 and µ 
= 0
and they are for Tmin if λ = 0 or µ = 0. For the irreps not shown in
the figure, the probability is <0.1%. All the points for a given m are
joined by lines to guide the eye.

of the results, we define π (x) such that π (x) = 0 for x even
and π (x) = 1 for x odd. It is seen from Fig. 1, and also valid
for any m, that the configurations (ms,md = vd = m − ms,

mg = vg = 0), [ms,md = m − ms, vd = π (md ),mg = vg =
0], (ms,md = vd = 0,mg = vg = m − ms) and [ms,md =
vd = 0,mg = m − ms, vg = π (mg)] exhaust about 91% prob-
ability. Moreover, the configurations with ms = md = 0 carry
∼20%, ms = mg = 0 carry ∼21%, ms = m carries ∼24%,
and ms 
= 0 but md = 0 or mg = 0 carry ∼26% probability.
Thus the ms = m configuration and the four configurations
with ms = 0 are most probable to be lowest in energy.
However, other configurations with ms 
= 0,m (they are 49
out of 1195 configurations in the m = 15 example) give
nonnegligible probability for being lowest. Thus, about ∼4%
of the (ms,md, vd,mg, vg) configurations will have probabil-
ity to be lowest with random interactions.

For sdIBM-T, it is easily seen from Eq. (7) that the one-body
part of H will not play any role in the study of fixed-(λ,µ)T
centroids. Choosing V

L,t
�1�2�1�2

to be Gaussian variables, the
centroids are generated, using Eq. (7), for m = 10 − 25
and for all allowed (λ,µ)T . Some typical results for the
regularities are shown in Fig. 2. First, for a given m the highest
SUT (3) irrep is (m, 0) with Tmax = m and Tmin = π (m). For
m = 3k, 3k + 1, and 3k + 2, with k being a positive integer,
the lowest SUT (3) irreps are (00), (10), and (01) with T = 0, 1,
and 1, respectively; for the latter two situations, the next
lowest irreps are (02) and (20), respectively, with Tmin = 0.
For m = 3k, Fig. 2 shows that the lowest SUT (3) irrep centroid
(here T is unique) is lowest with ∼35% probability. Similarly
the highest irrep centroid is lowest with ∼60% probability
and this splits into ∼30% each for the lowest and highest T’s.
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FIG. 3. Probabilities for the sdIBM-ST {f }[σ ] centroid energies
to be lowest in energy vs C2({f })/m2 for boson systems with m =
6, 7, 9, and 10. For the structure of the irreps with probability >2%,
see text. For m = 7, 9, and 10 there is one additional irrep with ∼0.3%
probability. For the irreps not shown in the figure, the probability is
<0.1%. All the points for a given m are joined by lines to guide the
eye.

For m = 3k + 1 and 3k + 2, the probability for the centroid
of the highest irrep to be lowest in energy is the same as for
m = 3k. However, for the centroid of the lowest irrep, the
probability is ∼29%, and the next lowest irrep appears with
∼6%. Thus, in general, the centroids of the highest and the
lowest (for m = 3k + 1 and 3k + 2, the lowest two) SUT (3)
irreps exhaust about 95% of the probability for being lowest
in energy. As the two-particle centroids Xt = 〈H 〉m=2,t are
linear combinations of V, it can be seen that they themselves
are Gaussian variables. Note that 〈H 〉m,(λµ)T − 〈H 〉m,(m,0)m =
[C2(λµ) − C2(m, 0)]�1 + [T (T + 1) − m(m + 1)]�2, where
�1 = 1

9X0 + 1
18X2 − 1

6X1 and �2 = 1
6 (X2 − X0). Calcula-

tions with Xt taken as Gaussian variables with the same
variance (actually, the variance of X0 and X2 are the same,
and that of X1 is ∼20% higher) are carried out, and it is seen
that they give almost the same results as in Fig. 2.

For sdIBM-ST, as seen from Eq. (8), the energy centroids
〈H 〉m,{f },[σ ] are determined by the two-particle averages
〈H 〉2,{2},[2] , 〈H 〉2,{2},[0], and 〈H 〉2,{12},[12], and they are linear
combinations of the two-particle matrix elements V LST in
the |(�1�2)LST 〉 basis. Instead of choosing V LST to be
Gaussian variables, we have chosen, using the result found
in the sdIBM-T examples, the three two-particle averages
to be Gaussian variables. Using this, the probabilities are
calculated for various m values, and some of the results are
shown in Fig. 3. First, for a given m, the highest {f } is
{m}. The corresponding highest and lowest [σ ] are [m] and
[π (m)]. For all m, the centroid of the highest UST (6) irrep
is lowest with ∼56% probability, and this splits into ∼34%
and ∼22% for the highest and lowest OST (6) irreps. For
m = 6k, 6k ± 1, 6k ± 2, and 6k + 3, with k a positive integer,
the lowest UST (6) irreps are those that can be reduced to
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the irreps {0}, {1}, ({2}, {12}), and ({13}, {21}), respectively.
These irreps with the corresponding lowest [σ ] are lowest,
with probability ∼43%.

In conclusion, with random interactions, the lowest and
highest group irreps (i.e., irreps of G2 in G1 ⊃ G2) carry
most of the probability for the corresponding centroids to be
lowest in energy. With the inclusion of a subalgebra (G1 ⊃
G2 ⊃ G3), these probabilities split into the probabilities for
the corresponding lowest and highest irreps of the subalgebra.
This is indeed the situation for all the examples discussed
in this paper. Continuing with the process of embedding
subalgebras, the O(3) algebra generating L can be reached
(with generalization for systems with LT,LST , or JT ).
Then, clearly, the energy centroids of highest and lowest
L should be most probable, and this is found to be true
numerically in [11,12]. An important aspect of the energy
centroids is that they propagate via Casimir invariants in many
situations. New propagation equations are derived in this paper

[Eqs. (6)–(8)]. In fact, there are many other situations where
such equations can be derived; an example is the centroids
over the irreps [msd (λsdµsd ); mpf (λpf µpf )] of [Usd (6) ⊃
SUsd (3)] ⊕ [Upf (10) ⊃ SUpf (3)] algebra of sdpf IBM [30].
These will be discussed in a longer paper along with extensions
of the present work to spectral variances and also to shell
model symmetries. Finally, an important observation is that
the propagators carry information about G1 ⊃ G2 geometry
(i.e., G1 ⊃ G2 reduced Wigner coefficients and G2 Racah
coefficients); thus, it is plausible that propagation equations
may be useful in quantifying geometric chaos. This is being
investigated, and it should be remarked that only recently has
the role of Wigner-Racah algebra in two-body random matrix
ensembles been established [31].

Thanks are due to Y. M. Zhao for useful correspondence
and for making available Ref. [12] before it was submitted for
publication.
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