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α-decay half-lives of the observed superheavy nuclei (Z = 108−118)
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A systematic and comprehensive study of the decay half-lives of nuclei appearing in the observed α-decay
chains of superheavy elements (Z = 108−118) is presented. The calculation proceeds in three steps. First,
the relativistic mean-field equations are solved in the axially symmetric deformed oscillator basis to obtain
ground-state properties such as binding energies, radii, deformations, and densities. The results are in good
agreement with the available experimental systematics, as expected. Next, the calculated densities are used in
the double-folding prescription to determine the interaction potentials for the α-daughter systems. Finally, these
potentials, along with calculated and experimental Q values, are used in the WKB approximation to estimate
the decay half-lives. The calculated half-lives, which sensitively depend on Q values, qualitatively reproduce the
experiment.
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The production and study of superheavy elements (SHE)
has been the cherished aim of experimentalists since the
prediction of the island of stability, around Z ∼ 114, N ∼ 184
in the 1960s. It has still not been possible to reach the N =
184 closed shell. Earlier experiments had partial success.
Cold (hot) fusion with Pb/Bi (actinides: 235U / 244Pu / 243Am)
targets and suitable projectiles of 64Ni / 70Zn (48Ca) have
been successfully used for the production of superheavy
elements 110−113 (114−116). The search for isotopes of
these elements and also for elements with higher atomic
numbers (Z ) is pursued vigorously by a number of laboratories
around the world.

On the theoretical front, primarily two kinds of approaches
have been used to describe superheavy nuclei: microscopic
theories and microscopic-macroscopic models. The relativistic
mean-field (RMF) theory [1,2] belongs to the former, and the
Möller-Nix [3] or the Muntian [4] models are examples from
the latter category. The aim of the earlier RMF studies [5]
had been to predict the most stable N and Z combination. In
self-consistent models, the occurrence of a spherical proton
(neutron) shell closure with given Z (N ) may change with
varying neutron number N (Z ). Such systematic investigations
are still being reported [6–8]. A number of RMF investigations
for the ground-state properties of nuclei appearing in the
observed decay chains of specific superheavy nuclei have
also been reported (e.g., [9–11]). The calculated binding
energies reproduce Audi-Wapstra systematics [12] rather well.
However, most of these use the phenomenological Viola-
Seaborg formula [13] for the calculation of the decay half-
lives. Our emphasis in this Brief Report is on microscopic
calculation of the α-decay half-lives, where the experimental
data are available [14–19]. First, the ground-state properties
are calculated in the RMF framework. We do not intend
to present all the details of the ground-state properties;
instead, we list essentials of the emerging systematic features,
which are consistent with earlier investigations. The present
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calculation of the half-lives requires specific ground-state
information, namely, binding energies (through the Q values)
and density distributions (entering through the α-daughter
interaction potentials). Therefore, we present and discuss only
the calculated Q values and the decay half-lives.

Relativistic mean-field theories work at the level of nu-
cleons and mesons. The Dirac spinor nucleons interact only
through the σ, ω, and ρ mesons and the photon fields.
Starting with a suitable interaction Lagrangian [1,2], the
Euler-Lagrange variational principle yields the equations of
motion. Replacing the field operators by c numbers and
imposing symmetry requirements, one finally ends up with
a set of coupled nonlinear differential equations:
� the Dirac equation with potential terms involving meson and

electromagnetic fields describing the nucleon dynamics and
� a set of Klein-Gordon-type equations with sources involving

nucleonic currents and densities, for mesons and the photon.

These equations, known as the RMF equations, are to be
solved self-consistently. The pairing correlations, important
for open-shell nuclei, are incorporated by using a simple BCS
prescription (constant gap) or self-consistently, through the
Bogoliubov transformation. The latter leads to the relativistic
Hartree-Bogoliubov (RHB) equations [2]. Under the constant-
gap approximation, the RHB equations reduce to the usual
RMF equations.

The explicit calculations require the following input infor-
mation:
� the parameters appearing in the Lagrangian and
� the pairing gaps or suitable pairing interaction.

We employ here the most widely used Lagrangian param-
eter set, NL3 [20]. The pairing gaps, in principle, are to be
calculated from the experimental odd-even mass differences.
However, in the absence of experimental odd-even mass diffe-
rences (as in the present case), one generally uses some
phenomenological prescription for the pairing gaps (see, for
example, [11]). For a better description of pairing, one often
uses the finite-range Gogny-D1S [21,22] interaction, which
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is known to have the right pairing content. Here, the gaps
are determined so as to reproduce the individual proton and
neutron RHB pairing energies obtained with the Gogny-D1S
interaction. It has been shown [23] that this choice of pairing
gaps yields reliable and satisfactory results for the ground-state
properties.

We now present and discuss briefly the calculated ground-
state properties. The calculated binding energies are found to
be in good agreement with the corresponding Audi-Wapstra
systematics [12]; the maximum departure is a few MeV
(<0.25%). The rms matter radii are found to vary monotoni-
cally. The calculated quadrupole deformation parameters (β)
are found to be close to the corresponding values of Möller
and Nix [3]. Most of the nuclei considered here turn out
to be of prolate shape, except for 287,288115, with β ≈ 0.
However, for some of the isotopes of the elements with
Z � 110, superdeformed ground-state solutions are obtained.
Such solutions are reported by Ren [24] and also by Sharma
et al. [25]. However, these superdeformed solutions may
disappear if higher multipolar constraints are imposed. This is
supported by the recently reported microscopic-macroscopic
analysis [26]. With these brief comments on the ground-state
properties, we now present and discuss the Q values, which
are required in the subsequent calculation of the α-decay
half-lives.

The Q value of a parent nucleus against α decay is just
the difference between the binding energy of the parent
nucleus and the sum of binding energies of the α and
daughter nuclei. The calculated Q values (denoted Cal.) for

the superheavy nuclei against α decay are presented in Fig. 1.
The corresponding values for the hypothetical α-decay chains
of 294,295118 nuclei are also shown in the same figure. The so-
called experimental Q values for the decay chains of 294,295118
have been obtained from the Audi-Wapstra systematics [12].
The calculations are found to be in good qualitative agreement
with the corresponding experimental values [14–19]. At a
finer level, differences do exist at some places, the maximum
departure being of the order of 1 MeV. However, for the
Z = 115 chains, the maximum departure is found to be about
2 MeV. The kind of agreement obtained here is gratifying in
view of the fact that the Q value is the difference between
two large numbers. A small error even in one of them could
alter the Q values considerably. This agreement reflects a very
precise and delicate cancellation.

The results obtained by using the other successful La-
grangian parameter sets (e.g., NL1 [1,27], NL-SH [28], and
NL-SV1 [29]) exhibit identical systematics. Therefore, the
conclusions drawn here will generally remain valid.

The present calculation of the decay half-lives also requires
the α-daughter interaction potentials. These are obtained using
the double-folding prescription. The double-folding (DF)
model [30] yields the nucleus-nucleus interaction potential,
using the density distribution of the constituent nuclei and
nucleon-nucleon interaction. The calculated deformed densi-
ties are first expanded in terms of multipoles (Y 0

L). The L = 0
projected and renormalized (spherical) densities are then used
to obtain the DF potential. Here, we use the density-dependent
version of the M3Y interaction (V). The density dependence
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FIG. 1. Calculated and experimental Q val-
ues against α decay. The corresponding exper-
imental values [14–19] are also shown, where
available.
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FIG. 2. Decay half-lives against α decay of
superheavy nuclei. See text for details.

is expected to simulate medium effects and Pauli blocking.
Exchange effects are taken into account through a δ-function
pseudo-potential. The α-daughter potential (VαD) within the
DF prescription reads

VαD( �R) =
∫

ρα(�rα)ρD(�rD)V(�rα − �rD + �R)d3�rαd3�rD, (1)

where R is the separation between the centers of α and the
daughter; �rα and �rD are the integration variables for α and
daughter nuclei, respectively. An explicit expression forV may
be found in [9]. The Coulomb potential (VC) is also obtained by
the DF prescription. These calculated potentials are used in the
WKB approximation to estimate the transmission probability
and hence the half-lives. The half-life of a parent nucleus is
given by

T1/2 = ln(2)

νo

(1 + eK ), (2)

where the action integral K appearing in Eq. (2) reads

K = 2

h̄

∫ Rb

Ra

{2µ(VαD(R) + VC(R) − Q)}1/2dR; (3)

Ra and Rb are the classical turning points, deduced by
requiring that the integrand in Eq. (3) vanishes. In Eq. (2)
νo is the conventional assault frequency obtained from the
energy E [=Q/(1 + Mα/MD), with Mα and MD being the α

and daughter masses, respectively], corrected for the recoil,

through

νo =
(

1

2R

√
2E

Mα

)
, (4)

where R = 1.2A1/3 is the nuclear radius parameter of the
parent nucleus and A is the mass number.

The calculated and the corresponding experimental half-
lives for superheavy nuclei against α decay are presented
in Fig. 2. The results obtained with the calculated Q values
are denoted Cal. The calculated half-lives are found to be
in qualitative agreement with the corresponding experimental
values. It is further observed that the half-lives obtained by
using the calculated Q values, though trending similar to the
experimental data, differ from them quantitatively at some
places. This reflects hypersensitivity of the half-lives on Q
values. A small change (∼0.2 MeV) in Q values alters the
decay half-lives by at least an order of magnitude. Therefore,
for a reliable and accurate estimation of the half-lives, the
calculated Q values should be accurate within a few tens
of keV. It is to be stressed that the present prescription
for obtaining the decay half-lives is parameter free. Similar
results obtained with experimental Q values [14–19] are
denoted by Qexpt. + WKB in Fig. 2. Using the experimental
Q values further improves the agreement. This indicates that
the microscopic nucleus-nucleus potential obtained in the DF
model is reliable; therefore, it can be used with confidence
in reaction calculations (e.g., as the real part of the optical
potential).
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In summary, a systematic study of α-decay half-lives of
superheavy nuclei has been carried out. The ground-state
properties of the relevant nuclei are calculated within the
framework of the RMF theory. The binding energies and
deformation parameters are found to be in accord with the
available corresponding systematics. The calculated Q values
are found to be in reasonably good agreement with the
experiment. The maximum departure is of the order of 2 MeV
in some cases. The half-lives obtained by using these Q values,
though qualitatively similar to those from the experiment,
do differ significantly at some places. This emphasizes the
sensitive dependence of the half-lives on Q values. Use of
experimental Q values, however, brings the half-lives closer to

the experimental values, thereby implying that the calculated
double-folding potential is reliable and can be used with
confidence in other reaction studies as the real part of the
optical potential.
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