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σ exchange in the nonmesonic decays of light hypernuclei and violation of the �I = 1/2 rule

K. Sasaki,1,∗ M. Izaki,2 and M. Oka2

1Institute of Particle and Nuclear Studies, National Laboratory for High Energy Physics (KEK), 1-1, Oho, Tsukuba, 305-0801 Ibaraki, Japan
2Department of Physics, H27, Tokyo Institute of Technology, Meguro, Tokyo, 152-8551, Japan

(Received 7 October 2004; published 17 March 2005)

Nonmesonic weak decays of s-shell hypernuclei are analyzed in microscopic models for the �N → NN weak
interaction. A scalar-isoscalar meson σ is introduced, and its importance in accounting for the decay rates, n/p

ratios, and proton asymmetry is demonstrated. Possible violation of the �I = 1/2 rule in the nonmesonic weak
decay of the � is discussed in a phenomenological analysis, and several useful constraints are presented. The
microscopic calculation shows that the current experimental data indicate a large violation of the �I = 1/2 rule,
although no definite conclusion can be derived because of the large ambiguity of the decay rate of 4

�H.
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I. INTRODUCTION

Study of the nonmesonic weak decay (NMWD) of �

hypernuclei is one of the major subjects of hypernuclear
physics. A dominant contribution to NMWD is known to
come from the �N → NN transition in nuclear medium,
which is a new type of hadronic weak interaction. It is
expected to provide us with valuable information on the
weak interaction of quarks that may not be available in
weak decays of hadrons. Recent progress in experimental
research on the NMWD of various hypernuclear systems
enables us to make quantitative comparison of theoretical
predictions [1–18] and experimental data [19–26]. During
such studies, several interesting discrepancies have been
revealed.

One of the puzzling features is the so-called n/p problem, in
which the ratio of the �n → nn decay rate �n to the �p → pn

decay rate �p is underestimated in the simple one-pion-
exchange (OPE) weak interaction. From a theoretical point of
view, the essence of this puzzle is attributed to the strong tensor
force brought by OPE. The n/p ratio is strongly suppressed (to
about 0.1) by the enhancement of �p due to the tensor force of
OPE. Recent experimental data, however, established that the
n/p ratio is around 1/2 for 5

�He and 12
� C. In previous studies

[8,14,15,18], we found that the total decay rates and n/p ratios
are both sensitive to short-range components of the baryonic
weak interaction, which are represented by the one-kaon
exchange (OKE), and to the direct-quark (DQ) transition. We
showed in the OPE+OKE+DQ model that �n is enhanced by
the short-range contributions and thus the model can reproduce
the observed n/p ratio both in nuclear matter and in light
hypernuclei. At the same time, we found that the total decay
rates of light hypernuclei tend to be overestimated.

Another quantity that shows discrepancy between ex-
periment and theory is the asymmetry of emitted protons
from polarized hypernuclei. Recent theoretical predictions
[13,15,18,27] yield large negative values of the asymmetry

∗Electronic address: kenjis@post.kek.jp.

parameter α, while new experimental data suggest a smaller
positive asymmetry for 5

�He decay [26]. The asymmetry
comes from interference between the parity-conserving (PC)
and the parity-violating (PV) parts of the decay amplitudes,
and thus it is sensitive to the detail decomposition of the
decay amplitudes. In other words, asymmetry has more
discriminative power to determine goodness of the models
than the decay rates have.

Besides the calculations with microscopic models, an anal-
ysis employing an effective field theory (EFT) was carried out
recently [28,29]. In that analysis, the short-range parts of the
interactions are represented by four-point baryonic operators.
By fitting strength parameters to current experimental data,
including the proton asymmetry, it revealed that the largest
term comes from the isospin- and spin-independent central
operator. Thus the EFT approach suggests that in order to
reproduce the proton asymmetry data, the microscopic models
should be supplemented by central interactions.

Following the hint given by this observation, we consider
scalar-meson exchange in the weak �N → NN transition.
The scalar σ meson with I = 0 has been introduced in the
context of chiral symmetry of QCD. When the symmetry
is spontaneously broken due to nonzero quark condensate,
the pion π appears as a (pseudo) Nambu-Goldstone boson,
while its chiral partner is a scalar-isoscalar σ for the Nf = 2
chiral symmetry. Although the picture of chiral symmetry
breaking of QCD has been established for some time, existence
of σ as a real meson was not confirmed until recently. It
appears as a broad resonance in the π -π scattering phase
shift, and its mass happens to be around 600 MeV [30].
It has been long known that strong NN potential requires
the σ exchange in order to obtain enough attraction in both
the spin singlet and triplet channels. As the σ mass is
of the same range as the kaon, it is natural to expect its
significant role in the weak baryonic interaction as well. Thus,
we consider the one-sigma exchange (OSE) in �N → NN
transition.

Our model, which we call DQ+, now consists of OPE,
OKE, OSE, and DQ. We will show in this paper that the
model contains the necessary features to reproduce all the
experimental data on NMWD of light hypernuclei and that
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indeed the proton asymmetry puzzle can be solved by the
contribution of OSE.

Another interesting property of the strangeness-changing
weak interactions of hadrons is its isospin property. It is
well known that the decays of kaon and hyperons satisfy the
so-called �I = 1/2 rule, which indicates the dominance of
the I = 1/2 transition operator to the I = 3/2 operator. In
the standard theory of the weak interaction of quarks, the
transition s + ū → W− → d + ū allows both �I = 1/2 and
3/2. Yet, in the hadron decays, the �I = 3/2 transition is
much weaker than the �I = 1/2. The ratio of the amplitude
is typically 20 in the decays of K and hyperons. The origin
of this empirical “rule” is not completely understood. In
K → ππ decays, �I = 1/2 dominance may be explained
by contribution of the scalar-isoscalar meson σ in the s
channel [31]. The enhancement is caused by the closeness
of the masses of K and σ . Suppression of the �I = 3/2
transition in the baryon weak decays may be explained
by the color structure of the quark model wave function
of the baryon [Miura-Minamikawa and Pati-Woo (MMPW)
theorem] [32,33]. These mechanisms are rather specific to the
particular decays and are not generalized to the nonmesonic
weak decays, YN → NN .

It is therefore important and interesting to test whether the
�I = 1/2 rule is also effective in NMWD of hypernuclei.
This is the second purpose of this paper. We note that
the meson exchange processes are all dominated by the
�I = 1/2 amplitudes. First OPE is assumed to be purely
�I = 1/2 because the π�N weak vertex causes free � decay.
From the �I = 1/2 dominance of the � → Nπ decays, we
expect that the vertex is (almost) purely �I = 1/2. OKE
is also supposed to have only �I = 1/2, because the KNN
weak coupling is derived from the π�N coupling using the
SU(3) relation. It is obvious that OSE, or the weak σ�N

coupling, is also purely �I = 1/2, because the isospin of σ is
zero.

In contrast, the DQ process may contain �I = 3/2 tran-
sitions. We employ the effective weak Lagrangian derived
from the standard theory with one-loop QCD corrections [34].
The perturbative QCD corrections, which are valid only at
the momentum scale of MW , are “improved” by using the
QCD renormalization group equation. The resulting effective
Lagrangian is given in terms of four-quark local operators
such as (d̄LuL)(ūLsL). A part of the �I = 1/2 enhancement
(and �I = 3/2 suppression) is included in the course of the
down-scaling according to the renormalization group equation,
but certain �I = 3/2 strength still remains [35,36]. The DQ
transition potential thus contains a �I = 3/2 part.

In the previous study, we predicted significant violation
of the �I = 1/2 rule in the J = 0 transition amplitudes
in particular. In this paper, we consider how the �I = 3/2
transition affects the transition rates of light hypernuclei and
check the validity of the �I = 1/2 rule within the available
experimental data.

This paper is organized as follows. In Sec. II, we summarize
the formulation of the weak transition calculations. In Sec. III,
several general relations based on simple parametrization of
the decay rates of the s-shell hypernuclei are given, and the

TABLE I. Possible 2S+1LJ combinations and amplitudes for
nonmesonic weak transitions of the s-shell hypernuclei.

State Parity isospin Amplitude

Initial final I f
z = 0 I f

z = −1

1S0
1S0 PC I f = 1 ap an
3P0 PV I f = 1 bp bn

3S1
3S1 PC I f = 0 cp —
3D1 PC I f = 0 dp —
1P1 PV I f = 0 ep —
3P1 PV I f = 1 fp fn

validity of the �I = 1/2 rule is considered. In Sec. IV, we
introduce the σ exchange and complete our DQ+ model. The
weak coupling parameters for the σ meson are determined so
as to reproduce data from the s-shell hypernuclei. We give
the full results including the proton asymmetry parameter
and point out the important roles of the σ meson exchanges.
Conclusions are given in Sec. V.

II. DECAY RATES OF LIGHT HYPERNUCLEI

Observables of the weak decay of s-shell hypernuclei give
us a chance to discuss the properties of the �N → NN

interaction, the �n/�p ratio, and the �I = 1/2 dominance.
Block and Dalitz [37] performed an analysis based on the
lifetime data of light hypernuclei, which were updated by other
authors [38,39].

For s-shell hypernuclei, the initial �N system can be
assumed to be in the relative s-wave state, and we consider
the �N → NN transition with the six 2S+1LJ combinations
listed in Table I.

Using amplitudes ap ∼ fn, we can express the total decay
rates of light hypernuclei in the short-handed notation

�NM

(
5
�He

) = ∣∣a5
p

∣∣2 + ∣∣b5
p

∣∣2 + 3
(∣∣c5

p

∣∣2 + ∣∣d5
p

∣∣2 + ∣∣e5
p

∣∣2

+ ∣∣f 5
p

∣∣2) + ∣∣a5
n

∣∣2 + ∣∣b5
n

∣∣2 + 3
∣∣f 5

p

∣∣2
, (1)

�NM

(
4
�He

) = ∣∣a4
p

∣∣2 + ∣∣b4
p

∣∣2 + 3
(∣∣c4

p

∣∣2 + ∣∣d4
p

∣∣2 + ∣∣e4
p

∣∣2

+ ∣∣f 4
p

∣∣2) + 2
(∣∣a4

n

∣∣2 + ∣∣b4
n

∣∣2)
, (2)

�NM

(4
�H

) = 2
(∣∣a4

p

∣∣2 + ∣∣b4
p

∣∣2) + ∣∣a4
n

∣∣2 + ∣∣b4
n

∣∣2 + 3
∣∣f 4

p

∣∣2
,

(3)
where the superscript indicates the mass number of the
hypernucleus. Similarly, the n/p ratios of light hypernuclei
are written as

�n

�p

(
5
�He

)

=
∣∣a5

n

∣∣2 + ∣∣b5
n

∣∣2 + 3
∣∣f 5

p

∣∣2

∣∣a5
p

∣∣2 + ∣∣b5
p

∣∣2 + 3
(∣∣c5

p

∣∣2 + ∣∣d5
p

∣∣2 + ∣∣e5
p

∣∣2 + ∣∣f 5
p

∣∣2) ,

(4)
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�n

�p

(
4
�He

)

= 2
(∣∣a4

n

∣∣2 + ∣∣b4
n

∣∣2)
∣∣a4

p

∣∣2 + ∣∣b4
p

∣∣2 + 3
(∣∣c4

p

∣∣2 + ∣∣d4
p

∣∣2 + ∣∣e4
p

∣∣2 + ∣∣f 4
p

∣∣2) ,

(5)

�n

�p

(
4
�H

) =
∣∣a4

n

∣∣2 + ∣∣b4
n

∣∣2 + 3
∣∣f 4

n

∣∣2

2
(∣∣a4

p

∣∣2 + ∣∣b4
p

∣∣2) . (6)

The asymmetry parameter [40] is obtained by

α = 2
(−√

3
[
a5

pe5
p

] − [
b5

pc5
p

] + √
2
[
b5

pd5
p

] + √
6
[
c5
pf 5

p

] + √
3
[
d5

pf 5
p

])
∣∣a5

p

∣∣2 + ∣∣b5
p

∣∣2 + 3
(∣∣c5

p

∣∣2 + ∣∣d5
p

∣∣2 + ∣∣e5
p

∣∣2 + ∣∣f 5
p

∣∣2) , (7)

where we define [apep] ≡ Re(a∗
pep), etc. Note that interfer-

ence terms appear between the J = 0 and J = 1 amplitudes,
such as [apep] and [bpcp], in Eq. (7).

The �I = 1/2 rule for the �N → NN transition leads to
the isospin relations

an =
√

2ap, bn =
√

2bp, and fn =
√

2fp (8)

for the decay amplitudes listed in Table I. This rule also makes

κ ≡ �n

(
4
�He

)
�p

(
4
�H

) =
∣∣a4

n

∣∣2 + ∣∣b4
n

∣∣2

∣∣a4
p

∣∣2 + ∣∣b4
p

∣∣2 (9)

to be equal to 2. Therefore the κ is important to check the
validity of the �I = 1/2 rule for the �N → NN transition
from both the theoretical and experimental points of view.

In the present analysis, we do not take into account virtual
� mixing in hypernuclei. Importance of the � mixing in 4

�He
and 4

�H was pointed out elsewhere [18,41–45]. Even if the
microscopic interactions preserve the �I = 1/2 rule, the �-�
mixing may result in deviation from the �I = 1/2 relation:
κ = 2. We also neglect decay amplitudes that are induced
by two nucleons, i.e., �NN → NNN decays. This is another
process that may modify the above relations. Thus, strictly
speaking, we need to subtract those extra contributions before
applying the above relations to the experimental data.

The �N → NN transition rate is given by

�N =
∫

d3p′
1

(2π )3

∫
d3p′

2

(2π )3

1

2JH + 1

∑
i,f

(2π )δ(Ef − Ei)|Mf i |2,

(10)

where Mf i is the �N → NN transition amplitude, JH is the
total spin of initial hypernucleus, and p′

1 and p′
2 are momenta

of emitted particles, i.e., hyperon and nucleon. The summation
indicates a sum over all quantum numbers of the initial and
final particle systems.

After the decomposition of angular momentum, the explicit
form of |Mf i |2 is

|Mf i |2 = (4π )4

∣∣∣∣
∫ ∫ ∫


L′S ′J
f (R, r ′)V LL′

SS ′J (r, r ′)

× 
LSJ
i (R, r)r2drr ′2dr ′R2dR

∣∣∣∣
2

, (11)

where V LL′
SS ′J (r, r ′) is the (nonlocal) transition potential and


LSJ (R, r) is the wave function of the �N or NN two-body
system in the configuration space. The indices L, S, and J
indicate the orbital angular momentum, spin, and total spin for
the two-body system, respectively.

We take the wave function of the �-N two-body system in
the form

φY (�rY )φN (�rN )
[(

1 − e−r2/a2)n − br2e−r2/c2]
, (12)

where φi stands for a single-particle wave function inside the
nucleus, and r = |�rY − �rN |. For φN , we assume the harmonic
oscillator shell model, and the size parameter is chosen so as
to reproduce the size of the nucleus without �. The φ� is
described by the solution of the Schrödinger equation with
a �-core potential [14]. The parameters for the short-range
correlation are a = 0.5 fm, b = 0.25 fm−2, c = 1.28 fm, and
n = 2, which reproduce the realistic �-N correlation [13].

The wave function of the final two nucleons emitted in the
two-body weak process is assumed to be the plane wave with
the short-range correlation

ei �K· �R′
ei�k·�r ′

[1 − j0(qcr
′)], (13)

where �r ′ = �rN2 − �rN1 , �R′ = (�rN2 + �rN1 )/2, and qc =
3.93 fm−1. This approximation may be justified for light nuclei
as the momenta of the emitted nucleons are relatively high
(∼400 MeV/c).

The general form of the one-pion-exchange (OPE) potential
for the �N → NN transition can be written as

V�N→NN (�q) = gs[ūNγ5uN ]
1

�q2 + m̃2
i

(
�2

i − m̃2
i

�2
i + �q2

)2

× gw[ūN (A + Bγ5)u�], (14)

where the coupling constants gs, gw,A, and B, shown in
Table II, are chosen properly for each transition. It is easy
to confirm that the weak coupling constants satisfy the �I =
1/2 conditions, namely, Aπ−�p = −√

2Aπ0�n and Bπ−�p =
−√

2Bπ0�n. A monopole form factor with cutoff parameter
�π = 800 MeV is employed for each vertex. As the energy
transfer is significantly large, we introduce the effective meson
mass

m̃ =
√

m2 − (q0)2, q0 = 88.5 MeV. (15)

035502-3



K. SASAKI, M. IZAKI, AND M. OKA PHYSICAL REVIEW C 71, 035502 (2005)

TABLE II. The strong and weak coupling constants in the present model. The strong couplings are
taken from the Nijmegen soft-core potential (NSC97) [46]. The weak couplings are given in units of
gw ≡ GF m2

π = 2.21 × 10−7. The weak coupling constants for σ meson are the values used in Sec. IV.

Meson (mass) Strong c.c. Weak c.c.

PC PV

π (138 MeV) gNNπ = 13.16 Bπ0�n = 7.15 Aπ0�n = −1.05
Bπ−�p = −10.11 Aπ−�p = 1.48

K (495 MeV) g�NK = −17.65 BK0nn = −16.19 AK0nn = 2.83
BK0pp = 6.65 AK0pp = 2.09
BK+pn = −22.84 AK+pn = 0.76

σ (550 MeV) gNNσ = 13.16 AME
σ = 3.8 BME

σ = 1.2

ADQ+
σ = 3.9 BDQ+

σ = 6.6

The one-kaon-exchange (OKE) potential can be con-
structed similarly. Both the strong and weak coupling constants
are evaluated using the flavor SU(3) symmetry; they are also
listed in Table II. The cutoff parameter �K = 1300 MeV is
used for the form factor. The �I = 1/2 rule for the weak KNN
vertex requires the conditions

AK0nn = AK0pp + AK+pn,
(16)

BK0nn = BK0pp + BK+pn,

which are easily seen to be satisfied.
The third meson considered here is the σ meson, which is

a scalar and isoscalar meson with the couplings

HσNN
s = gsψ̄N (x)φσ (x)ψN (x),

(17)
Hσ�N

w = gwψ̄n(x)(Aσ + Bσγ5)φσ (x)ψ�(x).

The weak Hamiltonian Hw consists of a parity-conserving
part (proportional to Aσ ) and a parity-violating part (Bσ ). We
employ 550 MeV for the mass of σ and 1200 MeV for the
cutoff mass. From the medium-range attraction in the nuclear
force potential, the strong coupling constant is known to be
about 10, but here it is taken to be the same as the strong
πNN coupling strength, i.e., gσNN = gπNN . The results do not
depend on the choice of gσNN , because it is always multiplied
by the weak coupling constants Aσ or Bσ , which are free
parameters in the present analysis. As mentioned already, the
σ�N coupling contains only the �I = 1/2 transition because
the σ meson is isoscalar. Unlike the OPE and OKE potentials,
this potential does not include the tensor transition potential in
a parity-conserving channel. Hence the OSE cannot affect the
3S1 → 3D1 channel (dp).

The DQ potential is given as the nonlocal form

VDQ
LL′
SS ′J (r, r ′) = −GF√

2
W

7∑
i=1

{
V

f

i fi(r, r
′)

+V
g

i gi(r, r
′) + V h

i hi(r, r
′)
}
, (18)

where r (r ′) stands for the radial part of the relative coordinate
in the initial (final) state. The explicit forms of fi, gi , and hi are
given in Ref. [15], and the coefficients V k

i for the �N → NN

transitions are also listed in Ref. [15].

III. PHENOMENOLOGICAL ANALYSIS

Recently, Alberico and Garbarino [47] carried out an
analysis of experimental data of the nonmesonic (NM) decays
of the s-shell hypernuclei from the viewpoint of validity
of the �I = 1

2 rule. Comparing analyses with and without
the constraint from �I = 1

2 , they found that the current
experimental data can neither confirm nor deny its validity.
Here we follow their analysis with new experimental data and
study qualitative features of the decay rates in specific flavor
and spin channels.

The data employed in the analyses are summarized in
Table III, where we use the new data of the total NM decay
rate and γ ≡ �n/�p ratio of 5

�He taken from Ref. [26] and
compare the results with those obtained from the old data in
Ref. [19]. Among these data, the nonmesonic decay rate of 4

�H
is the most ambiguous one. We take the weighted average of
a recent estimate by Outa [21] and an old estimate by Block
and Dalitz [37], but it should be noted that these numbers were
not obtained by direct measurements but were estimated with
theoretical assumptions.

We assume that the nonmesonic decay rates of the s-shell
hypernuclei are parametrized as

�NM

(
4
�H

) = �p

(
4
�H

) + �n

(
4
�H

)
,

�p

(
4
�H

) = ρ̄4

6
2Rp0, (19)

�n

(
4
�H

) = ρ̄4

6
(Rn0 + 3Rn1),

TABLE III. Experimental data employed in the analysis in
Sec. III, in units of �free

� . Set I includes the data employed in an
analysis by Ref. [47]; set II comprises those for the present analysis.

Set I Set II

�NM (4
�H) 0.22 ± 0.09 [47] 0.22 ± 0.09 [47]

�NM (4
�He) 0.20 ± 0.03 [22] 0.20 ± 0.03 [22]

γ He
4 = �n

�p
(4
�He) 0.25 ± 0.13 [22] 0.25 ± 0.13 [22]

�NM (5
�He) 0.41 ± 0.14 [19] 0.395 ± 0.016 [26]

γ5 = �n

�p
(5
�He) 0.93 ± 0.55 [19] 0.44 ± 0.11 [26]
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TABLE IV. The results of analyses based on Eqs. (19)–(21) with and without the �I = 1/2 constraint. �NM are
given in units of �free

� , and RNJ are in units of fm3.

With �I = 1
2 rule Without �I = 1

2 rule

Set I Set II Set I Set II

Rn0 4.7 ± 2.1 6.1 ± 2.7 4.7 ± 2.1 6.1 ± 2.7
Rp0 2.3 ± 1.0 3.0 ± 1.3 7.9+16.6

−7.9 22.8 ± 14.5
Rn1 10.3 ± 8.6 5.1 ± 3.0 10.3 ± 8.6 5.1 ± 3.0
Rp1 11.5 ± 6.7 15.2 ± 3.1 9.8 ± 5.5 8.7± 4.8
κ = Rn0/Rp0 2 2 0.6+1.3

−0.6 0.27 ± 0.21
�NM (4

�H) 0.17 ± 0.11 0.09 ± 0.03 0.22 ± 0.09 (input) 0.22 ± 0.09 (input)
γ H

4 7.6 ± 6.5 3.5 ± 2.2 2.3+5.0
−2.3 0.47 ± 0.36

�NM

(4
�He

) = �p

(4
�He

) + �n

(4
�He

)
,

�p

(
4
�He

) = ρ̄4

6
(Rp0 + 3Rp1), (20)

�n

(
4
�He

) = ρ̄4

6
2Rn0,

�NM

(5
�He

) = �p

(5
�He

) + �n

(5
�He

)
,

�p

(
5
�He

) = ρ̄5

8
(Rp0 + 3Rp1), (21)

�n

(
5
�He

) = ρ̄5

8
(Rn0 + 3Rn1),

where RNJ are the strengths of the �N → NN elementary
interactions for the spin-singlet (Rn0 , Rp0) and spin-triplet
(Rn1, Rp1) channels. They are related to the a ∼ f amplitudes
by

∣∣aA
p

∣∣2 + ∣∣bA
p

∣∣2 = ρ̄A

2(A − 1)
Rp0,

∣∣aA
n

∣∣2 + ∣∣bA
n

∣∣2 = ρ̄A

2(A − 1)
Rn0,

(22)∣∣cA
p

∣∣2 + ∣∣dA
p

∣∣2 + ∣∣eA
p

∣∣2 + ∣∣f A
p

∣∣2 = ρ̄A

2(A − 1)
Rp1,

∣∣f A
n

∣∣2 = ρ̄A

2(A − 1)
Rn1.

The coefficient ρ̄A denotes the average nucleon density at the
position of � defined by

ρ̄A ≡
∫

d�r ρA(�r)|ψ�(�r)|2. (23)

There is an interesting theorem derived from the
parametrization, Eq. (22). Define

R4 ≡ �NM
(

4
�H

)
�NM

(
4
�He

) ,

and then it is straightforward to prove the following theorem,
using the fact that all the RNJ are positive.

Theorem:

Min(γ5, κ
−1) < R4 < Max(γ5, κ

−1). (24)

This theorem is extremely important because the ratio κ is
directly related to �I in the weak transition. Namely, κ is
determined solely by the Clebsch-Gordan coefficient when

the isospin of the transition operator �I is purely 1/2 or 3/2,
that is,

κ = �n

(
4
�He

)
�p

(
4
�H

) = Rn0

Rp0
=

{
2 for �I = 1/2,

1/2 for �I = 3/2.
(25)

The new data [26] suggest γ5 ∼ 0.5. If we assume
�I = 1/2 or equivalently 1/κ = 1/2, then the theorem re-
stricts R4 to be around 0.5. The current estimate of �NM (4

�H)
does not seem to support R4 = 0.5, although it is not
completely rejected. In contrast, if we remove the �I = 1/2
constraint, the theorem allows the two decay rates in A = 4 to
be comparable, i.e., R4 ∼ 1, as the central values of the current
estimate indicate.

Now we determine RNJ from the two sets of the experi-
mental data given in Table III. We first fix ρ̄5, again following
Ref. [47] which uses an estimate from a model wave function
such that ρ̄5 = 0.045 fm−3. We also use this value throughout
the phenomenological analysis in this section. In fact, the
results are not sensitive to the choice of this value. This leaves
five unknown parameters, ρ̄4 and four �NJ , which can be
determined by the five experimental data tabulated in Table III.
In particular, the density parameter ρ̄4 can be determined by
the relation

�p

(
5
�He

)
�p

(
4
�He

) = 3ρ̄5

4ρ̄4
, (26)

where �p(�Z) is obtained by

�p(�Z) = �NM (�Z)[1 + γ (�Z)]−1. (27)

We obtain ρ̄4 = 0.026 fm−3 for the data set I, while it is
0.020 fm−3 for set II.

The decay rates RNJ determined by the two sets of data
in Table III are given in the last two columns of Table IV.
One sees that for both data sets the central value of κ is much
smaller than 2, which indicates strong violation of the �I = 1

2
rule. The new data set significantly reduces the error bar and
makes the conclusion prominent.

If we assume the �I = 1/2 rule for the nonmesonic weak
decays, then an extra condition Rn0/Rp0 = 2 is imposed and it
reduces the number of unknowns. Therefore, we can determine
RNJ without using �NM (4

�H) as an input. The first two columns
of Table IV show the resulting RNJ . The predicted value of
�NM (4

�H) and the unknown n/p ratio of 4
�H are also given.
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FIG. 1. (Color online) Bσ dependences of the partial decay rates in bn and fn channels given in units of ��. The shaded region corresponds
to Rn1 evaluated in Sec. III. The right panels are the enlarged plots around the crossings for the fn channel.

One sees that by imposing the �I = 1/2 constraint, the ratio of
Rp0 and Rp1 changes drastically, while the sum (Rp0 + 3Rp1)
remains constant. In fact, the order of Rp0 and Rp1 is reversed
for set II. One also sees that �NM (4

�H) for set II is much smaller
than the value given in Table II.

It is easy to prove the following two relations under the
�I = 1/2 constraint:

Rn1

Rn0
= 1

3

(
γ H

4 − 1
)
,

(28)
Rp1

Rp0
= 1

3

(
4

γ He
4

− 1

)
.

The first equation gives a new constraint that γ H
4 must be

larger than 1 if the �I = 1/2 rule is satisfied. The second
equation indicates that Rp1 must be larger than Rp0 because
the n/p ratio of 4

�He is smaller than 1. These conditions may
be useful for testing whether the �I = 1/2 rule is satisfied.
One can easily confirm that these relations are satisfied for our
solutions with the �I = 1/2 condition.

The conclusion of the phenomenological analyses of the
decay rates and n/p ratios of the s-shell hypernuclei is that
current experimental knowledge already suggests that the
�I = 1/2 rule is not satisfied in the NMWD, although precise
measurements of the 4

�H decays are critical to finalizing the
conclusion.

IV. ROLES OF THE σ -MESON EXCHANGE

The phenomenological analyses in the last section revealed
that the new data for 5

�He reduce ambiguities in determining
the partial decay rates, particularly for Rn1. In this section, we
introduce a new element, i.e., the one-sigma exchange (OSE),
in the microscopic model for the �N → NN . A possible
importance of OSE has been suggested by approaches in
effective field theory for weak baryonic interaction. There a

short-range weak transition with no charge or spin dependence
seems to play a significant role in reproducing the decay rates
and the proton asymmetry of NMWD.

We propose new microscopic models that incorporate
OSE: (1) the meson exchange (ME) model, which contains
OPE+OKE+OSE, and (2) the extended direct quark (DQ+)
model, which consists of DQ+OPE+OKE+OSE. ME pre-
serves the �I = 1/2 rule, while DQ+ predicts significant
violation of the �I = 1/2 rule. The latter is induced by the
effective four-quark Hamiltonian [8] and is a distinct feature
of the direct quark interaction. We will see that both ME and
DQ+ can reproduce the current experimental data more or
less, but they predict differences in NMWDs of the A = 4
hypernuclei 4

�He and 4
�H.

Key quantities that show the importance of OSE are the
partial decay rates fN and bN . In particular, |fn|2 is the
only component of the Rn1 decay rate and therefore can be
determined from the experimental data rather directly.

Here we determine the weak �nσ vertex parameters Aσ

and Bσ . They are fixed in the following two steps. (1) We
determine the parameter Bσ so as to reproduce the fn and bn

decay rates. (2) Then Aσ is determined so that the total decay
rate of 5

�He agrees with the recent experimental data [26].
Figure 1 shows the Bσ dependences of the bn and fn decay

rates for both the ME and DQ+ cases. The �(fn), which is
the decay rate of the fn channel, is quadratic in Bσ , so that
we have two candidates of Bσ . This is the channel that has
contributions from OPE, OKE, and DQ all added up coherently
and thus plays the central role in solving the n/p ratio problem.
Our previous analysis employing the OPE+OKE+DQ model
[15,18] was shown to give too much enhancement of �(fn)
so that both the total decay rate and the n/p ratio of 5

�He
were overestimated. The same enhancement is seen in Fig. 1
at Bσ = 0. Thus, the main role of the parity-violating part of
OSE is that it reduces �(fn) so as to fit Rn1.

Between the two possibilities for Bσ , the larger one is not
appropriate. This can be seen from the behavior of the other
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FIG. 2. (Color online) Aσ dependence of the total NM decay rate of 5
�He in the ME and DQ+ models given in units of ��. The shaded

region stands for the experimental value [26] with the error bar. Right two panels are enlargements of the intersections with the experimental
values.

PV decay rate, �(bn), in Fig. 1. If we take the larger Bσ (i.e.,
∼20), �(bn) becomes too large, ∼0.3 ��, to accommodate the
observed total decay rates. Thus we find the ranges for possible
Bσ in the ME and DQ+ as

Bσ =
{−1.2 to 4.4 for ME,

4.2 to 9.8 for DQ+.
(29)

In fact, the central value of Rn1 is reproduced by Bσ = 1.2 for
ME and Bσ = 6.6 for DQ+.

Figure 2 shows the Aσ dependence of the total NM decay
rate of 5

�He at the central value of Bσ . Because aN and cN

depend linearly on Aσ , the total decay rate is a quadratic
function of Aσ . Thus we again have two candidates of Aσ

given by

Aσ =
{

3.8 and −1.7 for ME,

3.9 and −1.0 for DQ+.
(30)

Next, in Fig. 3 we show the Aσ dependences of the n/p

ratio and the asymmetry parameter α of the NMWD of 5
�He.

One sees in the left panel that the n/p ratio hits the peak at
Aσ = 1 for ME, while the same value gives the minimum of
the total NM decay rate of 5

�He. In contrast, for the DQ+ case,
the maximum is given at Aσ = −1 and the minimum appears
at Aσ = 4. For both ME and DQ+, positive Aσ around 4.0
gives a lower n/p ratio that is consistent with the experimental
data.

The right panel of Fig. 3 shows the asymmetry parameter α.
We find that it is sensitive to the choice of Aσ . For both ME and
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FIG. 3. (Color online) The Aσ dependences of the n/p ratio and the asymmetry parameter in ME and DQ+. The shaded region stands for
the experimental values [26] with the error bar.
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DQ+, α becomes large and negative around Aσ = −1, while
it is positive around Aσ = 4. The value rises rather rapidly
around Aσ = 1. The current experimental data for α are small
but positive and therefore favor the positive Aσ .

The observables of A = 4 hypernuclei are also important
to understand the �N → NN weak interactions, especially
in the J = 0 transition channels. Figure 4 shows the Aσ

dependences of the total NM decay rates and n/p ratios of
both 4

�He and 4
�H. The experimental data of 4

�He are also
shown in the figure. One sees that the total NM decay rate and
the n/p ratio of 4

�He are reproduced within the experimental
error bar at Aσ = 4 for both ME and DQ+.

The n/p ratio of 4
�H is interesting because it shows a clear

difference between ME and DQ+. For ME, the n/p ratio has
a huge peak at Aσ = 1, where the a-channel decay rate is
extremely small. It is also seen that this ratio never falls lower
than 1 which is consistent with the �I = 1/2 condition given
in the previous section. In contrast, the n/p ratio calculated by
DQ+ model can be lower than 1, and it becomes 0.7 around
Aσ = 4. Therefore, the n/p ratio of 4

�H is a key quantity to
determine the property of the �N → NN weak interaction.

The results of the parameter searches in the ME model
are summarized in Table V. We take three values for the

parameter Bσ , corresponding to the upper, central, and lower
values for Rn1, respectively. Then two solutions for Aσ are
given for each Bσ because the total decay rate of 5

�He is
a quadratic function of Aσ . Table V shows that the main
difference between the positive and negative Aσ appears only
in the asymmetry parameter, α, and its experimental value
prefers the positive Aσ . We find that the γ5, n/p ratio of 5

�He,
prefers the smaller Rn1 (the larger Bσ ), while for the γ He

4 the
larger Rn1 (the smaller Bσ ) is favorable.

The results for Aσ = 3.8 and Bσ = 1.2 give a reasonable
account of most of the observables except the asymmetry
parameter α. It is found that the total decay rate of 4

�H is about
a half of 4

�He and the n/p ratio is about 2.7. One can easily
check that these values satisfy the conditions for �I = 1/2
given in the previous section.

Table VI shows the results for the DQ+ model. Again two
solutions for Aσ can reproduce the total decay rate of 5

�He, but
the positive Aσ explains all the available experimental data
for both A = 4 and 5 hypernuclei fairly well. The negative
Aσ tends to overestimate the n/p ratio of all hypernuclear
systems, and therefore this choice is ruled out.

The calculation with Aσ = 3.9 and Bσ = 6.6 gives the best
agreement with all the experimental data. In particular, we note

TABLE V. The nonmesonic decay rates, �NM , the n/p ratios, γ , and the proton decay asymmetry parameter, α,
predicted in the ME model. The decay rates are given in units of ��.

Aσ 3.0 −0.8 3.8 −1.7 4.5 −2.3 EXP
Bσ −1.2 1.2 4.4

�NM 0.405 0.400 0.392 0.398 0.407 0.398 0.395 ± 0.016
5
�He γ5 0.675 0.721 0.548 0.603 0.472 0.553 0.44 ± 0.11

α 0.536 −0.857 0.571 −0.903 0.364 −0.684 0.07 ± 0.08
4
�He �NM 0.199 0.195 0.235 0.240 0.298 0.291 0.20 ± 0.03

γ He
4 0.219 0.249 0.417 0.492 0.692 0.781 0.25 ± 0.16

4
�H �NM 0.132 0.135 0.128 0.138 0.145 0.151 0.22 ± 0.09

γ H
4 6.400 5.946 2.705 2.488 1.379 1.362 —

035502-8



σ EXCHANGE IN THE NONMESONIC DECAYS OF LIGHT HYPERNUCLEI . . . PHYSICAL REVIEW C 71, 035502 (2005)

B=4.2
B=6.6
B=9.8

A

κ

-3 -2 -1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

FIG. 5. (Color online) The Aσ and Bσ dependences of κ in the
DQ+ model. If the �I = 1/2 rule is preserved, the κ is equal to 2.

that the proton asymmetry parameter for 5
�He is predicted to be

positive and small in this choice. It is brought mainly by OSE,
which gives a major contribution to the J = 0 amplitudes.
The σ exchange potential changes the sign of the a- and c-
amplitudes from those without OSE and, thus, it leads to the
drastic change of the proton asymmetry parameter, α.

The DQ+ model has a prominent feature that strongly
violates the �I = 1/2 rule. It is easily seen from the value
of κ ,

κ = �n(4
�He)

�p(4
�H)

= 0.42. (31)

Because �I = 1/2 will lead to κ = 2, this result indicates
a large violation of the �I = 1/2 rule due to the DQ
contribution. It is also seen from the total NM decay rates
of 4

�He and 4
�H, which are almost equal, and the n/p ratios for

A = 4, which are less than 1. As is shown in the previous
section, these properties also indicate a large �I = 3/2
contribution.

It is interesting to see the Aσ and Bσ dependencies of κ ,
illustrated in Fig 5. In the Bσ = 4.2 case that corresponds to the
upper limit of Rn1, κ hardly changes with Aσ . All the curves

cross the κ = 2 line in the region of negative Aσ . Therefore, it
must be noted that there is the possibility of observing κ = 2
accidentally, even if the �I = 1/2 rule is largely broken in
the elementary vertex. Our choice, however, is Aσ ∼ 4, where
κ takes a value around 0.5. Thus our best-fit parameter set
indicates the violation of the �I = 1/2 rule.

In total, we conclude that the overall agreement of the
theoretical predictions with experimental data in the DQ+
model is much better than in the ME model. This suggests
strongly that the violation of the �I = 1/2 rule is also favored
by the current data set, although the definite conclusion will
be given only after a future precise measurement is made of
the NM decay of 4

�H.

V. CONCLUSIONS

A microscopic picture of the �N → NN weak interaction
has been established including exchange of a scalar-isoscalar
meson σ , i.e., one-scalar-exchange interaction. Our full model,
called the DQ+ model, consists of the short-range DQ
interaction as well as the long-range π + K + σ exchange
interactions. We have found that the new data for 5

�He are very
powerful in determining the weak σN� coupling constants.
They reduce ambiguity of the Rn1 decay rate, which in turn
determines the PV σN� coupling Bσ rather precisely. The PC
part Aσ can then be determined by the total NM decay rate of
5
�He.

The established DQ+ model has been shown to reproduce
fairly well all the current experimental data of four- and five-
body hypernuclei. In particular, the asymmetry parameter of
the proton emitted from polarized 5

�He is now consistent with
recent experimental data.

A parallel analysis by the meson exchange (ME) model
without the DQ part of the interaction is also found to explain
most of the experimental data except for the asymmetry
parameter, although the fit seems better in DQ+. The main
difference between ME and DQ+ is in the isospin property.
The ME interactions preserve the �I = 1/2 rule and predict
a small decay rate and a large n/p ratio in the NM decay
of 4

�H. The DQ+ model, on the other hand, shows a larger
decay rate, comparable to that of the NM decay of 4

�He, and a
smaller n/p ratio in the 4

�H decay. Our analysis shows that the
DQ+ model introduces a significant �I = 3/2 contribution
brought by the effective four-quark Hamiltonian and thus

TABLE VI. The nonmesonic decay rates, �NM , the n/p ratios, γ , and the proton decay asymmetry parameter, α,
predicted in the DQ+ model. The decay rates are given in units of ��.

Aσ 3.1 −0.2 3.9 −1.0 4.4 −1.5 EXP
Bσ 4.2 6.6 9.8

�NM 0.397 0.398 0.395 0.396 0.401 0.401 0.395 ± 0.016
5
�He γ5 0.593 0.750 0.449 0.650 0.367 0.585 0.44 ± 0.11

α 0.248 −0.640 0.219 −0.630 −0.005 −0.400 0.07 ± 0.08
4
�He �NM 0.184 0.196 0.229 0.246 0.288 0.308 0.20 ± 0.03

γ He
4 0.091 0.274 0.269 0.559 0.498 0.870 0.25 ± 0.16

4
�H �NM 0.179 0.150 0.204 0.161 0.244 0.192 0.22 ± 0.09

γ H
4 1.396 3.649 0.693 1.802 0.411 0.979 —
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predicts violation of the �I = 1/2 rule. Crude estimates from
the present knowledge on the 4

�H decay show a large NM decay
rate and thus support the violation of the �I = 1/2 rule.

We again stress that a direct measurement of the 4
�H decay

is indispensable to establishing the violation of the �I = 1/2
rule and hope that such an experiment is realized in the near
future.
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