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γ d → π0d reaction near the threshold of η production
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We consider the reaction γ d → π 0d in a wide energy range around and above the η-meson photoproduction
threshold at backward c.m. angles of the outgoing pions. Our theoretical analysis is motivated by the recent
measurements of the CLAS Collaboration at Jefferson Lab, where this kinematical region of the reaction has
been thoroughly studied for the first time and an enhancement in the energy dependence of the differential cross
section in the region of Eγ ∼ 600–800 MeV has been observed. Our preliminary and qualitative analysis, based
on single- and double-scattering diagrams, shows that the observed structure can be explained by the contribution
of the double-scattering diagram with intermediate production of the η meson. The effect, to a considerable
extent, is due to the contribution of the N (1535) resonance to the amplitudes of subprocesses on the nucleons.
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I. INTRODUCTION

The reaction of coherent photoproduction of the π0 meson
on the deuteron,

γ d → π0d, (1)

has recently been studied [1] at Jefferson Lab using the
CLAS detector. The experiment was carried out for a wide
range of photon energies Eγ = 0.5–2.0 GeV at large c.m.
scattering angles of the outgoing pions. A new phenomenon
was observed.

The process of pion photoproduction on the nucleon γp →
πN has been theoretically investigated over a long period
of time (see, for example, Refs. [2–5]). Reaction (1) on the
deuteron also has been considered in a number of papers [6–8].
A through review of pion photoproduction reactions induced in
few-body systems can be found in Ref. [9]. During the past few
years, η-photoproduction processes have also been actively
studied (see, for example, Refs. [10,11] for γp → ηp, [8,12]
for γ d → ηd, and [13] for η photoproduction on light nuclei).

The study of meson-photoproduction processes on a
deuteron target provides information about the underlying
reaction mechanisms on few-body systems. Our project has
been motivated by a special interest in role of intermediate
particles in reaction (1).

In the 1970s, the contribution of intermediate particles and
resonances to the differential cross section in backward πd

elastic scattering was theoretically discussed in Ref. [14]. It has
been predicted that the contribution of intermediate particles,
formed in a two-step process, should manifest itself as a max-
imum in the energy dependence of the backward differential
cross section around the corresponding thresholds. Such an
effect, associated with intermediate η-meson production, was
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confirmed by several independent measurements of backward
πd elastic scattering [15].

The preliminary CLAS photoproduction data [1] give for
the first time clear evidence for the intermediate η-meson
effect. A visible excess of events in the region Eγ ∼ 600–
800 MeV, around the η-photoproduction threshold, survives
in the energy dependence of the differential cross section at
large c.m. scattering angles, cos θ < −0.6. The observed effect
becomes more pronounced as the scattering angle increases.
This behavior was also seen in a previous measurement of
reaction (1) [16] in which a small structure was observed in the
excitation function at cos θ = −0.64 (the maximum scattering
angle of this experiment). Reaction (1) was also theoretically
considered earlier (see, for example, Ref. [4]) in the framework
of a single- and double-scattering approach without consider-
ation of the intermediate η meson. A reasonable theoretical
description of the previous data [16] was achieved without the
necessity of inclusion of the “η effect” [4] at low momentum
transfer.

The aim of the present paper is the theoretical study of
reaction (1) at large pion production angles. Our principal
interest is the contribution of the intermediate η meson to
the differential cross section and whether it can explain the
structure in the differential cross section that has been observed
in a recent CLAS experiment [1]. We shall use the standard
approach based on single- and double-scattering amplitudes.
The main contribution to the total amplitude at large angles is
expected to come from the double-scattering terms. We shall
consider photon energies far from the πd threshold, say 500 <

Eγ < 1000 MeV, where the influence of the intermediate
N (1535) resonance and the η-meson effect should be impor-
tant, and it is possible to neglect the excitation of the �(1232)
isobar in the intermediate state. Thus, we construct the total
reaction amplitude from terms, expected to be essential, with
approximate values of the parameters. In this paper, although
we do compare our predictions with the data qualitatively
and present all the details of our treatment, we do not
attempt a detailed description of the CLAS data; we leave this
task for forthcoming papers from the CLAS Collaboration.
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FIG. 1. Feynman diagrams for the γ d →
π 0d reaction: (a) single scattering and (b) double
scattering.

This paper is organized as follows. In Sec. II, we derive the
expressions for different terms of the amplitude of reaction (1)
in a diagrammatical approach. In Sec. II A, we briefly discuss
the main contributions to the reaction amplitude and introduce
the notation that we use. In Secs. II B and II C, we give gauge-
invariant expressions for the resonance and vector-meson-
exchange (VME) contributions to the elementary amplitudes
on the nucleon. These results are used in Secs II D and II E to
obtain single- and double-scattering amplitudes of reaction (1),
respectively. In Sec. III, we present the numerical results. In
Sec. III A, we study the influence of the “nonstatic” corrections
that are taken into account in the double-scattering amplitude
with intermediate η production. In Sec. III B, we discuss
our numerical results for the differential cross section (its
energy behavior at several values of cos θ ) of reaction (1)
with backward π0 production. The conclusion is presented in
Sec. IV.

II. FORMALISM

A. Diagrams and notation

The diagrams for single- and double-scattering amplitudes
M(1) and M(2) of reaction (1) are shown in Figs. 1(a) and 1(b),
respectively. The notation for the 4-momentum vectors of the
initial, intermediate, and final particles are given in this figure.
The circles marked by “i” or “j” correspond to the elementary
amplitudes of the subreactions on the nucleons, and indices “i”
and “j” specify the contributions to the elementary amplitudes
considered in the following. In Fig. 1(b), the notation “h”
stands for the intermediate meson. Hereafter, we shall consider
only diagrams with h = π or η.

The elementary photoproduction amplitude γN → hN is
usually constructed as a sum of Born, VME, and resonance
terms [4,5,11]. The Born amplitudes correspond to a set of
tree diagrams with NNh coupling and all possible couplings
with a photon, summed by a contact γπNN -coupling term.
It is known that the total Born amplitude satisfies gauge
invariance (see Ref. [4] and references therein). Using Born
amplitudes for subprocesses in reaction (1) on the deuteron,
one encounters the problem of how to get the total gauge-
invariant amplitude. The problem arises from nucleon off-shell
effects, and the way to solve it is discussed, for example, in
Ref. [8] (see also references therein). However, in our analysis,
we shall neglect Born terms in the kinematical region of the
reaction under study.

The resonance and VME terms in the photoproduction
amplitude are shown graphically in Fig. 2, where VME
terms are calculated via ρ and ω exchanges [4,11]. The

“meson-meson” hN → πN amplitudes are written through
resonance contributions (Fig. 3). The main contribution from
an intermediate η meson to the cross section of reaction (1)
is expected from the double-scattering diagram in Fig. 1(b)
(h = η), with the N (1535) excitation in both blocks of the
diagram attributed to the large partial width of the decay
N (1535) → ηN . Several nucleon resonances [17] are coupled
to the πN system. Also, the couplings of N (1535), N (1440),
and N (1520) to the ηN system [7,12,13] are often used in the
production amplitudes. However, in our qualitative analysis,
we shall limit the resonance parts of the elementary amplitudes
(Figs. 2 and 3) to the contributions of the N (1535) in the πN

and ηN channels and of the N (1440) in the πN channel. We
do not include the contribution of the �(1232) isobar since the
considered energies are far above the �(1232) region.

Let us write the total amplitude Mγd of reaction (1) as

Mγd = M(1) + M(2), M(1) =
∑

i

Mi,

M(2) =
∑
i,h,j

Mihj , (2)

where h = π, η and index i = 1, 2, ω, and ρ (the same for j)
stands for N (1535), N(1440), ω exchange, and ρ exchange
for the elementary subprocesses, respectively. Note that the
ρ-exchange term in the single-scattering amplitude M(1) is
forbidden by isotopic arguments. We shall use standard
normalizations for the amplitudes, corresponding to the fol-
lowing expression of the differential cross section for a binary
reaction:

dσ

d	c.m.

= k

64π2s q
|M|2. (3)

Here, |M|2 is the square of the total amplitude, averaged
(summed) over the polarizations of the initial (final) particles;
s is the square of the total c.m. energy; and q with k are
the relative 3-momenta of the initial and final state particles.
In the following, we use the notation ϕ1,2(χ1,2) for Pauli
spinors (isospinors) for the initial and final nucleons in the
elementary reactions or for the nucleons in the deuteron and
ϕ+ϕ = 1(χ+χ = 1); ă ≡ (aσ ), where a is any 3-vector and σ

is a 3-vector from the Pauli spin matrices.

FIG. 2. Diagrams of meson photoproduction on the nucleon
(resonance and VME contributions).
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FIG. 3. Diagrams of meson-nucleon binary reactions (resonance
contributions).

In Secs. II B and II C, we give gauge-invariant expressions
for the elementary amplitudes on the nucleon and notation for
coupling constants and other terms that will be used for the
total amplitude Mγd in Secs. II D and II E.

B. Resonance terms in the amplitudes on the nucleon

To obtain the expressions for resonance contributions to the
elementary amplitudes, let us use the effective Lagrangians for
the πNR, ηNR, and γNR interactions:

LπNR = −igπNRN̄�τR π + H.c.,
(4)

LηNR = −igηNRN̄�R η + H.c.,

LγNR = e

2(m + mR)
R̄

(
ks
R + kv

Rτ3
)
�µνNFµν

+ H.c. (e2/4π ≈ 1/137), (5)

� = 1, �µν = γ5σµν (odd parity), (6)

� = γ5, �µν = σµν (even parity) (7)

[we use the pseudoscalar couplings in Eq. (4)]. Here, σµν =
(1)/(2i)(γµγν − γνγµ); Fµν = ∂νAµ − ∂µAν ; N, π , η, Aµ,
and R are the nucleon, η, π , photon, and resonance-particle
(R) fields; m and mR are the nucleon and resonance masses;
and ks

R and kv
R correspond to isoscalar and isovector

γNR couplings. Operator structures in Eqs. (6) and (7)
correspond to odd- [N (1535), I (JPC) = 1

2 ( 1
2

−
)] and even-

[N (1440), I (JPC) = 1
2 ( 1

2
+

)] parity resonances R.
Hereafter, we use the photon couplings ĝγ i , gs i , and gv i ,

defined as

ĝγ i = gs i + gv iτ3 = e

m + mi

(
ks
R + kv

Rτ3
)
, (8)

where i = 1[N (1535)] and 2[N (1440)] specifies resonances
and their masses mi .

In the following, we use the nonrelativistic deuteron wave
function (DWF) to obtain the amplitudes of reaction (1)
(Secs. II D and II E). In this connection, we derive the
elementary amplitudes in a nonrelativistic approximation
before they are used to obtain the amplitudes on the deuteron,
leaving the leading terms only with respect to the relative
momenta. The relative accuracy of this approximation near
the η-photoproduction threshold (

√
s ∼ m + mη) is of the

order of q/2m ∼ 0.2–0.3 (where q is the photon relative
momentum). Let us introduce some useful notation for the
resonance amplitude Aaib of the reaction aN → Ri → bN ,
writing it as

Aaib = χ+
2 T̂ χ1 ϕ+

2 Ŝϕ1, T̂ = T̂aib, Ŝ = Ŝaib,

(9)

where Ŝ and T̂ are spin and isospin operators. Let us first
consider the spin operators, Ŝγ ih, of the photoproduction
amplitudes. In our approximation, they have the following
structures:

Ŝγ 1h ∼ (q0 ĕ − e0 q̆), Ŝγ 2h ∼ k̆(q̆ ĕ − q0 e0),

where ĕ = (σ e), q̆ = (σ q), and k̆ = (σ k); k (q) is the c.m.
3-momentum of the final meson (initial photon); q0 and
e = (e0, e) are the c.m. energy and polarization 4-vector of
the photon. Note that gauge invariance, guaranteed by the
Lagrangian LγNR (5), is obviously valid for the operators
Ŝγ 1h and Ŝγ 2h. Hereafter, we shall fix the photon 4-vector
by the gauge condition e0 = (eq) = 0. Finally, we obtain the
following expessions for the resonance amplitudes Aaib in
terms of the operators T̂aib and Ŝaib (9):

T̂γ iπ = (πτ )ĝγ i , T̂γ iη = ĝγ i ,

T̂π1iπ2 = (π2τ )(π1τ ), T̂ηiπ = (πτ ) (i = 1, 2),

Ŝγ 1h = iCγ 1hF1hĕ, Ŝγ 2h = iCγ 2hF2hk̆ q̆ ĕ,

Ŝh1π = iCh1πF1hF1π I (h = π, η),

Cγ 1h = g1hBW12mq0, Cγ 2h = g2hBW2,

Ch1π = ig1hg1πBW12m, Ŝh2π = iCh2πF2hF2π k̆q̆,

Ch2π = i

2m
g2hg2πBW1, BWi = 2mi

s − m2
i + i

√
s�i(s)

,

(10)

where, in addition to the previous notation, q is the c.m.
3-momentum of the initial photon or meson; BWi, �i(s),
and gih are the Breit-Wigner propagator, total width, and
coupling constant to the hN channel for the ith resonance,
respectively; I is the unit 2 × 2 matrix; and Fih are the form
factors of the strong decays Ri → hN . Here, we use the form
factor only for the p-wave N (1440)Nπ vertex (Fih ≡ 1 for
other vertices) to compensate for its energy growing in the
region far away from the πN threshold. We take the function
F2π = F in a monopole parametrization [see Eqs. (11)], which
is convenient for analytical calculations of the integrals in
Sec. II D. The widths �i , coupling constants gih, and relative
3-momenta qh(h = π, η) for the decays N (1535) → πN, ηN

and N (1440) → πN are connected by the relations

�1(s) = �1π (s) + �1η(s), �1π = 3g2
1π

(E + m)qπ

4π
√

s
,

�1η = g2
1η

(E + m)qη

4π
√

s
, �2π = 3g2

2π

(E − m)qπ

4π
√

s
F 2(qπ ),

F (qπ ) = �2
0

�2 + q2
π

, �2
0 = �2 + q2

0π , (11)

where E + m ≈ 2m,E − m ≈ q2
π/(2m) (where E is nucleon

total energy), and q0π is the relative momentum in the decay
N (1440) → πN at resonance mass.

The photon couplings ĝγ i can be expressed through helicity
amplitudes A

p

1/2 and An
1/2 [11] of the decays Ri → pγ and

Ri → nγ , respectively. We can relate the radiative widths to
the amplitudes A

p,n

1/2 (for spin-1/2 resonances) as well as to the
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constants g
p,n

γ i = gsi ± gvi ; that is,

�(Ri → pγ, nγ ) = k2
γ m

πmi

∣∣Ap,n

1/2

∣∣2 = (
g

p,n

γ i

)2 k3
γ

π
, (12)

where kγ is the relative photon 3-momentum in the decay.
Then, we obtain

∣∣Ap,n

1/2

∣∣2 = (
g

p,n

γ i

)2 mi

m
kγ , 2gvi = (

A
p

1/2 − An
1/2

)√ m

mikγ

.

(13)

Note that only the isovector constants gvi (not gsi) are needed to
derive the amplitude for reaction (1) on the deuteron. The helic-
ity amplitudes are usually extracted from the photoproduction
experiments, and the values A

p,n

1/2 for N (1535), N (1440), and
other nucleon resonances can be found, for example, in
Refs. [5,18].

C. Vector-meson exchange terms

To derive ω- and ρ-exchange amplitudes of the photore-
actions on the nucleon, we use the effective Lagrangians
LV NN and Lem of the V NN(V = ω, ρ) and V hγ (h = π, η)
interaction, taken in forms used in Refs. [4,11] as

LV NN = −gV NNN̄

[(
γµ + βV

2m
σµν∂

ν

)
(ωµ + τρµ)

]
N,

(14)

Lem = εµνλσ (∂µeν)

[
GV πγ

mπ

(∂λπi)
(
δi3ω

σ + ρσ
i

)

+ GV ηγ

mη

(∂λη)δi3ρ
σ
i

]
(15)

(ε1230 = 1, ε123 = 1), where µ, ν, λ, σ and i, j are Lorentz
and isotopic indices, respectively, and π, η, ρ, and ω stand
for π, η, ρ, and ω mesons. The coupling constants GV hγ (h =
π, η) in Eq. (15) can be expressed through the radiative widths
�V →hγ by the following relation:

�V →hγ = G2
V hγ q3

hγ

12πm2
h

= G2
V hγ

12πm2
h

m3
V

8

(
1 − m2

h

m2
V

)3

. (16)

Using Eqs. (14) and (15), one can write the VME amplitudes of
the reactions γN → hN as AγV h = χ+

2 T̂ χ1ū2M̂γV hu1, where
u1,2 are nucleon Dirac spinors (ū1,2u1,2 = 2m), and

M̂γV h = GV hγ

mh

gV NN(
r2 − m2

V

)εµνλσ qµeνkλ

×
[
−(1 + βV )γ σ + βV

m
pσ

1

]
, (17)

where qµ and eν are the 4-momentum and polarization of the
photon, kλ and pσ are 4-momenta of the final meson h and the
initial nucleon, and r2 = (q − k)2 is the 4-momentum transfer
to the nucleon squared. T̂ = T̂γ V h is the isospin operator:

T̂γρπ = (πτ ), T̂γωπ = (n3π )I, T̂γρη = τ3, (18)

where n3 = (0, 0, 1) is the unit vector in isotopic space. Using
the notation (9) for the amplitude AγV h (i.e., ū2M̂γV hu1 =

ϕ+
2 Ŝγ V hϕ1) and the gauge invariance condition e0 = (eq) = 0,

in the nonrelativistic approximation, we have

Ŝγ V h = iCγV h Tr{k̆q̆ ĕ}I, CγV h = m

mh

GV hγ gV NN(
r2 − m2

V

) ,

Tr{k̆q̆ ĕ} = 2i(k · [q × e]). (19)

(Here, the expression for the trace Tr{k̆q̆ ĕ} is used for conve-
nience in Sec. II D.) The amplitudes (19) in our approximation
do not contain the constants βV from Eq. (14). The gauge
invariance of the amplitude (17) is obvious and is also satisfied
in the expression (19) for Ŝγ V h owing to the gauge-invariant
factor Tr{k̆q̆ ĕ}.

Note that the ρπγ vertex in the Lagrangian (15) corre-
sponds to isoscalar photon coupling, whereas only isovector
photon coupling can contribute to the amplitude of reaction (1).
Generally, the isotopic ρπγ vertex has the structure g1(πρ) +
g2π3ρ3 + g3(n3[π × ρ]), where g3 is an isovector coupling
constant. Then for radiative ρ decays, we have �ρ0→π0γ ∼
(g1 + g2)2 and �ρ±→π±γ ∼ g2

1 + g2
3. From the PDG [17],

�ρ0→π0γ /�ρ±→π±γ ∼ 1.7–1.8, that is, (g1 + g2)2 > g2
1 + g2

3.
Since isoscalar ρπγ coupling (g2 = g3 = 0) is successfully
used in the ρ-exchange amplitude of the reaction γN → πN ,
we may suppose that g2,3 � g1. In addition, let us compare
ω- and ρ-exchange amplitudes Mγωπ and Mγρπ of the reac-
tion γN → π0N . Using coupling constants from [4] (g1 ≡
Gρπγ ), we obtain Mγωπ/Mγρπ ∼ Gωπγ gωNN/Gρπγ gρNN ∼
10. Based on that, we neglect the ρ-exchange amplitude with
intermediate pion production in reaction (1) in comparison
with the ω-exchange amplitude.

D. Single-scattering amplitude of the reaction γ d → π0d

Let us write the amplitude A of the process γN → π0N

in the form (9), where Ŝ and T̂ are the spin and isospin parts
of the transition operator. Then, a single-scattering amplitude
M(1) for reaction (1) reads

M(1) = 2 Tr{T̂ }
∫

d3p
(2π )3

Tr
{
�̂+

2 Ŝ�̂1
}
, �̂1,2 = �̂(ε1,2, q1,2).

(20)
Here, the intermediate nucleon with 3-momentum p [see
Fig. 1(a)] is on-shell; q1,2 = p − 1

2 P1,2; ε1,2 are 3-vectors of
polarization for initial and final deuterons; and �̂(ε, q) is a
matrix expression in the DWF �, which has the form

� = ϕ+
2 �̂σ2ϕ

∗
1χ+

2

τ2√
2
χ∗

1 ,

�̂ = �̂(ε, q) = u(q)√
2

ε̆ − w(q)

2

(
3(qε)

q2
q̆ − ε̆

)
, (21)

where q is the relative 3-momentum of nucleons, u(q) and
w(q) are the s- and d-wave parts of the DWF, respectively,
normalized as

∫
d3q[u2(q) + w2(q)] = (2π )3 (we follow the

diagrammatical technique of Ref. [19], and some comments
will be given in Sec. II E).
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Then, using Eqs. (9), (10), (18), and (19) for the γN →
π0N amplitudes, we obtain

M(1) = M1 + M2 + Mω, Mi = xi

∫
d3p

(2π )3
Tr

{
�̂+

2 Ôi�̂1
}

(i = 1, 2, ω),

Ô1 = ĕ, Ô2 = k̆q̆ ĕ, Ôω = Tr{k̆q̆ ĕ}I,
x1 = 4igv1Cγ 1π , x2 = 4igv2Cγ 2πF (k), xω = 4iCγωπ .

(22)

Hereafter, q0, q, and k are the c.m. photon energy and the c.m.
3-momenta of the initial photon and final pion, respectively.
The values x1,2, factored out of the integrals in Eq. (22),
depend on the effective mass mπN = √

s in the subprocess
γN → πN , and we calculate the value mπN using the
3-momentum p = 1

4 (P1 + P2) of the intermediate nucleon
in Fig. 1(a). Expressing the DWF given by Eq. (21) for �̂ in
the r-representation, where

�̂(ε, q) =
∫

d3r
4π

e−iqr�̂(ε, r),

�̂(ε, r) = u(r)

r
√

2
ε̆ − w(r)

2r

(
3(rε)

r2
r̆ − ε̆

)
, (23)

we obtain the amplitudes Mi (22) in the form

Mi = xi

∫
d3r

(4π )2
ei�r Tr

{
�̂+

2 Ôi�̂1
}
,

�̂1,2 = �̂(ε, r), � = 1

2
(k − q). (24)

To evaluate the amplitudes Mi , let us introduce the integrals∫
d3r

(4π )2
ei�rf 2

1 (r) = A1,

∫
d3r

(4π )2
ei�rf1,2(r)f2(r)

rirj

r2
= ninjB1,2 + δijC1,2, (25)

where

f1(r) = u(r)

r
√

2
+ w(r)

2r
, f2(r) = 3w(r)

2r
,

n = del
�

(|n| = 1). (26)

From Eqs. (22)–(26), we obtain the amplitudes Mi (i =
1, 2, ω) in the form

M1 = x1(A1 − 2C1) Tr{ε̆∗
2 ĕε̆1} + x1B1 Tr{V̆ ĕn̆},

M2 = x2(A1 − 2C1) Tr{ε̆∗
2 k̆q̆ ĕε̆1} + x2B1 Tr{V̆ k̆q̆ĕn̆}

+ x2[C2(ε1ε
∗
2) + (B2 − 2B1)(nε1)(nε∗

2)] Tr{k̆q̆ ĕ},
Mω = 2xω[(A1 − 2C1 + C2)(ε1ε

∗
2)

+ (B2 − 2B1)(nε1)(nε∗
2)] Tr{k̆q̆ ĕ}, (27)

where V̆ = (nε∗
2)ε̆1 − (nε1)ε̆∗

2 (ε̆∗
2 = ε∗

2σ ). Neglecting the d-
wave component of the DWF [i.e., setting w(r) = 0 in
Eq. (26)], one obtains B1,2 = C1,2 = 0, which simplifies
Eqs. (27). However, in a single-scattering amplitude, the
momentum is transferred to one nucleon, and at large angles
of the outgoing π0, the relative momenta q1,2 of the nucleons

become large and the d-wave part of the DWF should be
important. We use a parametrization of the DWF employing
the Bonn potential [20] (full model) and the corresponding
analytical expressions for A1, B1,2, and C1,2, used in Eqs. (27),
are given in the extended version of the present paper [21].

E. Double-scattering amplitude of the reaction γ d → π0d

Let Ŝ1(Ŝ2) and T̂1(T̂2) be spin and isospin operators in the
amplitude (9) of the subprocess γN → hN (hN → π0N ) in
the diagram of Fig. 1(b). Then, the double-scattering amplitude
M(2) has the form

M(2) = − 1

m
Tr

{
T̂1T̂

c
2

} ∫
d3 p2

(2π )3

d3 p′
1

(2π )3
Tr

{
�̂+

2 Ŝ1�̂1Ŝ
c
2

}
Gh(s),

(28)
where integration over the energies of intermediate nucleons
with 3-momenta p′

1 and p2 [see Fig. 1(b)] has already been
done, giving the result (28) with those nucleons taken on
the mass shell. Here, Gh(s) is the propagator of the inter-
mediate meson h with 3-momentum s and T̂ c

2 = τ2T̂
T τ2 and

Ŝc
2 = σ2Ŝ

T σ2 [22], where index “T ” stands for transposition
operator.

Inserting T̂ and Ŝ from Eqs. (10), (18), and (19), we obtain
the contributions Mihj to M(2) in the form

Mihj = −yihj

∫
d3 p2

(2π )3

d3 p′
1

(2π )3
Tr{Ôihj }Gh(s),

yih1 = 2gvi

m
Cγ ihCh1π , Ô1h1 = �̂+

2 ĕ�̂1,

Ô2π1 = �̂+
2 s̆q̆ ĕ�̂1s̆k̆F (s), yih2 = 2gvi

m
Cγ ihCh2πF (k),

Ô1π2 = �̂+
2 ĕ�̂1s̆k̆F (s), Ô2π2 = �̂+

2 s̆q̆ ĕ�̂1s̆k̆F 2(s),

(29)

where F (s) is a form factor in the N (1440)Nπ vertex [see
Eq. (11)]. For simplicity in this paper, we do not take
into account VME contributions in the double-scattering
amplitudes.

For the double-scattering amplitude due to the DWF, the
main contribution to the integral

∫
d3 p2d

3 p′
1 comes from

the regions p1,2 ∼ 1
2 P1 and p′

1,2 ∼ 1
2 P2 with small relative

momenta q1,2 ∼ 0. To simplify the calculations, we neglect
the d-wave components of the DWF in the amplitudes Mihj .
The factors yihj in Eqs. (29) are calculated at

p1 = p2 = 1
2 P1, p′

1 = p′
2 = 1

2 P2. (30)

The meson propagator Gh(s) = (s2 − m2
h + i0)−1 in

Eq. (29) can be written as

Gh(s) = −
[

s2 + Q0

m

(
p′ 2

1 + p2
2

) + a2
h − i0

]−1

,

Q0 = q0 + Td1 − εd, a2
h = m2

h − Q2
0, (31)

where, Td1 is the kinetic c.m. energy of the initial deuteron,
s = − p′

1 − p2, and Q0 is the excess energy in the process
γ d → pnh. The term (Q0/m)( p′ 2

1 + p2
2) in Eq. (31) takes

into account the kinetic energies of the intermediate nucleons.
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In this section, we neglect this term; that is, we use a “static”
approximation. However, to study the energy dependence of
the differential cross section of η production (Q0 ∼ mη) in the
threshold region, we shall restore this term in the amplitude
with the intermediate η meson in Sec. III A.

Note that the spin structure of the elementary amplitudes
[N (1440) contribution] includes the dependence on the 3-
momentum s of the intermediate meson h in Fig. 1(b). This
dependence is taken into account in the double-scattering
amplitudes (29). Here, let us mention that similar calculations
were presented long ago in Ref. [23] for elastic πd scattering in
the �(1232) region and a two-loop integral was calculated with
angular dependence of the πN amplitude taken into account.
In the following, we give some details of our calculations of
the amplitudes Mihj (29).

In the “static” approximation, Gh = −(s2 + a2
h − i0)−1.

The r-representation is convenient for calculating the double-
scattering amplitudes. Let us introduce the Fourier transfor-
mations for s-dependent parts of the integrands (29):

1

s2 + a2
h − i0

=
∫

d3r
4π

eisrh11(r),

sF(s)

s2 + a2
h − i0

=
∫

d3r
4π

eisr rh12(r),

sisj

s2 + a2
h − i0

F 2(s) =
∫

d3r
4π

eisr [rirjh1(r) + δij r
2h2(r)].

(32)

Let us also define the integrals∫
f 2(r)h11(r) = A11,

∫
f 2(r)h12(r)r = mA12,∫

f 2(r)h1(r)rirj = mimjA221 + δijA222,∫
f 2(r)r2h2(r) = A223, (33)

where f (r) = u(r)/(r
√

2), and u(r) is the s-wave part of
the DWF. For the integrals in Eqs. (33), we use a shorthand
notation∫

. . . ≡
∫

d3r
(4π )3

ei Qr . . . , Q = 1

2
(k + q), m = Q

Q
.

(34)

The functions h11,12,1,2(r) and the expressions for
A11, A12, A221, and A222 are given in Ref. [21]. Rewriting
integrals (29) in the r representation using Eqs. (23), (32), and
(33), we obtain the following expressions for amplitudes Mihj :

M1h1 = y1h1A11 Tr{ε̆∗
2 ĕε̆1} (h = π, η),

M1π2 = y1π2A12 Tr{ε̆∗
2 ĕε̆1m̆k̆},

M2π1 = y2π1A12 Tr{ε̆∗
2 m̆q̆ĕε̆1},

M2π2 = y2π2[A221 Tr{ε̆∗
2 m̆q̆ĕε̆1m̆k̆}

+ (A222 + A223) Tr{ε̆∗
2σ q̆ĕε̆1σ k̆}]. (35)

By summing the amplitudes from Eqs. (22) and (35),
we obtain the total amplitude Mγd (2). Note that the gauge

invariance of this amplitude comes from the Lagrangians
(5) and (15) and that invariance is not violated by the
nucleon off-shell effects in the deuteron. The square |Mγd |2
of the total amplitude, averaged (summed) over initial (final)
polarizations, is rather cumbersome, and we do not write it
here.

III. NUMERICAL RESULTS

A. Nucleon kinetic energy terms

Before we consider the differential cross section of reaction
(1), let us discuss the threshold effect of intermediate η pro-
duction in the double-scattering amplitude. The contributions
of the intermediate η meson to the reaction amplitude comes
from the terms M1η1 and Mρη1 (35), which contain the integral
A11. We shall recalculate A11 in a “nonstatic” case using the
η propagator (31) with nucleon kinetic energy (NKE) terms
(Q0/m)( p′ 2

1 + p2
2) taken into account, and compare it with the

result of the “static” approximation, used in Eqs. (32) and (33).
To simplify the calculation of A11 for the “nonstatic” case,

let us replace the Bonn DWF by the effective Gaussian s-wave
function ψ(r) = B exp(−br2). To fix the slope parameter b, let
us note that for reaction (1) at the η threshold with backward
outgoing π0, we have a2

h = 0 (h = η) in Eq. (31) and Q ≈ 0
in Eqs. (33). However, we have A11(a2

h = Q = 0) ∼ 〈1/r〉d
from Eqs. (33). We fix the value b from the mean value
〈1/r〉d corresponding to the s-wave part of the Bonn DWF.
The expression for A11 with the Gaussian DWF is given in
Ref. [21].

Figure 4 shows ReA11 and Im A11, calculated in the “static”
approximation, as a function of the photon laboratory energy
Eγ for one of the values of z = cos θ , where θ is the c.m.
scattering angle of the outgoing π0 meson. Here, one can
see that the results obtained with Bonn (solid curves) and
Gaussian (dashed curves) s DWF’s are quite close to each
other (a characteristic valid in the wide region of z for which
we obtain results in this paper). The function ReA11 peaks
at Eγ = Eth ≈ 630 MeV, where Eth is the photon threshold
energy for the reaction γ d → ηpn, and Im A11 = 0 at Eγ <

Eth. Note that the left (right) derivative d(ReA11)/dEγ →
+∞ [d(Im A11)/dEγ → +∞] at Eγ → Eth. These properties
come from the “static” approximation used in Eqs. (32). In the
η-threshold region, the function Im A11 should depend on Eγ

as a 3-particle NNη phase space, that is, ∼Q
3/2
0 , where Q0 is

the excess energy given in Eqs. (31) and Q0 ≈ Eγ − Eth. In
fact, when NKE terms (Q0/m)( p′ 2

1 + p2
2) in the η propagator

(31) are neglected, then Im A11 behaves as a 2-particle phase
space, that is, ∼Q

1/2
0 .

In Fig. 5, we compare ReA11, Im A11, and |A11|2 calculated
with the Gaussian DWF in “static” (dashed curves) and
“nonstatic” (solid curves) cases. Results are shown for two z

values, −0.55 [Figs. 5(a), 5(c), and 5(e)] and −0.85 [Figs. 5(b),
5(d), and 5(f)]. In the “nonstatic” case, Im A11 ∼ Q3/2 in
the small region close to the η threshold and then because
of the DWF Im A11 begins to decrease where Eγ increases.
The energy dependence of |A11|2 clearly demonstrates the
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FIG. 4. (a) [(b)] Real [image] parts of the loop integral A11 of the
double-scattering diagram [Fig. 1(b)] in the “static” approximation
with an intermediate η meson in the reaction (1). The results are given
for the values z = cos θ = −0.55. Solid (dashed) curves correspond
to the results with the Bonn (Gaussian) s DWF.

η-threshold effect from the loop diagram [Fig. 1(b)] in the
energy behavior of the differential cross section of reaction (1)
when all kinematical factors from subreactions on the nucleons
are neglected. Figures 5(e) and 5(f) show that when NKE terms
are included then |A11|2 turns out to be a much smoother
function instead of exhibiting the sharp peaking in the “static”
approximation case.

Finally, for the differential cross sections in Sec. III B, all
double-scattering amplitudes with an intermediate pion are
calculated in a “static” approximation using the Bonn DWF
[20] and the expressions for the integrals A11,12,221,222,223 are
defined by Eqs. (33). For the amplitude with an intermediate
η meson, we use A11 with NKE terms taken into account as
described in this section.

B. Differential cross section of the reaction γ d → π0d

The amplitude of reaction (1) as expressed by Eqs. (27) and
(35) depends on a number of parameters. In Table I, we list
sets of helicity amplitudes A

p,n

1/2 for photon couplings to spin- 1
2

resonances [see Eqs. (13)] used in our amplitudes.
We use the values A

p,n

1/2 from column [24]-1 (1st variant
from Ref. [24]), which are approximately the mean values
among those given in Table I.

FIG. 5. (a) and (b) Results for ReA11; (c) and (d) results for
Im A11; and (e) and (f) results for |A11|2 at z = −0.55 [(a), (c), and
(e)] and z = −0.85 [(b), (d), and (f)] with the Gaussian s DWF. Solid
(dashed) curves correspond to the “nonstatic” (“static”) case.

For the partial (�ih) and total (�i) widths (11) of N (1535)
and N (1440) at nominal masses (

√
s = m1,2), we use the

values

�1π = �1η = 0.5�1, �2π = 0.65�2,
(36)

�1 = 150 MeV, �2 = 350 MeV

and take � = 1 GeV in the form factor F (11) of the hadronic
N (1440) decay.

The coupling constant Gωπγ is obtained through Eq. (16)
from radiative width [17]
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FIG. 5. (Continued.)

�ω→π0γ = 8.7 × 10−2�ω, �ω = 8.44 MeV. (37)

The strong coupling constant gV = gV NN is not well
determined, as was mentioned in Ref. [5]. In various analyses,
it varies in the range [26,27]8 < gω < 20. (We discuss only
the vector coupling constants; tensor couplings are neglected
according to Sec. II C.) Here, we list some values of gω from
the aforementioned papers:

gω = 21 [5], gω = 8 [4],
g2

ω

4π
= 20 [20] (full model).

(38)
For our subsequent results, we use the value g2

ω/4π =
20 (gω ≈ 15.85) from Ref. [20].

In Fig. 6, we show the calculated differential cross section of
reaction (1) with backward π0 photoproduction as a function

TABLE I. N (1535) and N (1440) resonance couplings. Units are
(GeV)−1/2 × 10−3.

Ref. [24]-1 [24]-2 [25] [11] [5] PDG [17]

N (1535) A
p

1/2 78 50 53 97 67 90
An

1/2 −50 −37 −98 — −55 −46
N (1440) A

p

1/2 −66 −64 −69 — −71 −65
An

1/2 50 45 56 — 60 40

of the photon laboratory energy Eγ at several fixed values of
z = cos θ from z = 0 to z = −0.85. (The experimental CLAS
data, which are presented in [1], are at the same z values.)
The results shown by the solid curves have been obtained
with the total amplitude Mγd consisting of the terms (22) and
(35). The other curves are explained in the figure caption. One
can see that the contribution from single-scattering amplitudes
dominates the cross section for z = 0. The relative contribution
from the other amplitudes increases as z approaches −0.85.
Note that the ω-exchange amplitude Mω dominates in the total
contribution from single-scattering amplitudes.

In Fig. 6, we see a maximum in the energy spectra of the
differential cross section at Eγ ≈ 700 MeV, in the angular
region of z < −0.65. This maximum gets more pronounced
as z → −0.85. The CLAS experimental data [1] also show the
excess of events, but less sharp, of the same order of magnitude
(increasing as z → −0.85) in a region around the same energy
for the same angles. For more detailed discussion, we should
mention that the effective energies

√
s in subprocesses on

the nucleons in the double-scattering diagram [Fig. 1(b)] are
calculated in the approximation (30). These energies,

√
s,

are equal to the ηN -threshold mass at Eγ ≈ 700 MeV. The
maxima in Fig. 6 reflect the ηN -threshold effect from the
N (1535) propagators in the elementary amplitudes because we
use the energy-dependent width �1(s) of N (1535) according
to Eqs. (11) and �1η(s) = 0 at

√
s � m + mη(Eγ � 700 MeV).

The main effect comes from the double-scattering amplitude
M1η1 with two N (1535) propagators whereas the contribution
from M1π1 is much smaller owing to a small N (1535)Nπ

coupling constant (g1π � g1η). Thus, Fig. 6 demonstrates the
effects of the two-particle (ηN ) threshold in the elementary
amplitudes on the intermediate nucleons. At the same time,
for the reasons discussed in Sec. III A, we do not see a sizable
threshold effect from the three-particle (ηNN ) intermediate
state (Eth = 630 MeV).

Note that the prescription (30) usually works well because
of the rapid momentum dependence of the DWF in comparison
with ones for the amplitudes of the reactions on the nucleon.
However, this approximation does not reproduce adequately
any sharp peculiarities of elementary amplitudes in the
amplitude of a nuclear reaction. Because of “Fermi motion”
within the deuteron, the ηN threshold in the diagrams in
Fig. 1 are not positioned at a fixed value of Eγ . These effects
tend to be spread over some region of the incoming photon
energy. Thus, the sharp maximum at Eγ ≈ 700 MeV in Fig. 6
should be smoothed, but we have no proper simple procedure
to do this.
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FIG. 6. Differential cross sections of the reaction (1) vs photon
laboratory energy Eγ at several values of z = cos θ . Dashed (dotted)
and solid curves show the contributions of single- (double-) scattering
amplitudes and total amplitude, respectively. Dash-dotted curves
correspond to the contributions of total amplitude without the ω-
exchange term. The results are obtained with energy-dependent total
width of N (1535). (a) z = 0, (b) z = −0.65, and (c) z = −0.85.

Let us consider the case when the N (1535) width in the
elementary amplitudes is a constant nominal value �1(s) ≡
�1 = 150 MeV. In this case, shown in Fig. 7, we have no ηN -
threshold effects in the elementary amplitudes and no sharp
maxima at Eγ ≈ 700 MeV. Here, we see broad enhancements
centered around Eγ = 750 MeV. These enhancements appear
mainly from the contribution of the amplitude M1η1 with two
N (1535) propagators. Their position is shifted to the left of
Eγ ≈ 785 MeV [laboratory photon energy on the nucleon
target with an effective c.m. energy equal to the N (1535)
mass] owing to decreasing factors from DWF’s in reaction

FIG. 7. The same as in Fig. 6 but the results are obtained with
constant total width of N (1535).

(1). Note that the energy-dependent N (1535) width �1(s) at
the ηN threshold (

√
s = m + mη), where �1η(s) = 0, is about

half the size of the nominal value �1 of the N (1535) resonance.
Thus, taking N (1535) with constant nominal width, we get
smaller values of the corresponding elementary amplitudes in
the region close to the ηN threshold. Therefore, the differential
cross sections in Fig. 6 at Eγ ∼ 700 MeV are essentially
enhanced in comparison with those of Fig. 7. Finally, we
conclude that the enhancements in the energy region near the
η threshold, shown in Figs. 6 and 7, are mainly due to the
N (1535) contributions to the double-scattering diagram with
an intermediate η production.

The absolute values of the calculated differential cross
section at z = 0 [Figs. 6(a) and 7(a)] are in an approximate
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agreement with CLAS data [1]. For larger scattering angles
θ , our results are lower in absolute value than those of
the data. At z = −0.85 [Figs. 6(c) and 7(c)], the calculated
differential cross sections are considerably smaller than the
experimental ones. We expect that the contribution from the
single-scattering amplitude Mω in our treatment is too large.
However, adding the VME terms in the double-scattering
amplitudes (not included here) may essentially improve our
predictions as z → −0.85, where the contribution from the
term Mω gets smaller. Thus, we hope that, by decreasing the
elementary ω-exchange amplitude (taking smaller coupling
constant gωNN and introducing form factors) and including
double-scattering amplitudes Mωπ1 and Mωπ2, we may have a
good description of the experimental absolute cross sections at
z = 0 and essentially improve our predictions as z → −0.85.

IV. CONCLUSION

We considered the energy dependence of the differential
cross sections of the reaction γ d → π0d in a wide energy
range around the η-meson photoproduction threshold at
several backward c.m. angles of the outgoing pion. Our
calculations are based on a nonrelativistic diagrammatical
technique and take into account single- and double-scattering
amplitudes. We conclude that the contribution of double-
scattering with intermediate production of an η meson can
explain the structure experimentally observed by the CLAS
Collaboration [1] in the energy dependence of the differential
cross section near the η threshold. Indeed, our calculations
show that a broad enhancement (with width of the order of
100 MeV) appears in the energy behavior of the differential
cross section at large scattering angles θ in the η-threshold

region. This enhancement becomes more pronounced as θ

increases, and the magnitude of the effect is in qualitative
agreement with the CLAS data.

We discussed the role of the three-particle NNη-threshold
effect, taking into account “nonstatic” corrections to the η

propagator. Indeed, we found that a sharp energy behavior of
the differential cross section at the energy of the η thresh-
old calculated in a “static” approximation was essentially
smoothed by taking into account “nonstatic” corrections to
the η propagator. Our calculation results show that the en-
hancements in the energy dependence of the differential cross
section are, to a great extent, due to the N (1535) contributions
in the elementary amplitudes of the double-scattering diagram
with intermediate η production.

Our predictions depend on a number of parameters, some
of which are not well established (e.g., the constant gωNN ,
form-factor parameters, etc.). Not all of the possible diagrams
are considered in our analysis. Our calculations do not include
VME terms in the double-scattering amplitudes or any other
resonance amplitudes besides the N (1535) and N (1440)
contributions. Thus, there is room for further improvements
of our predictions.
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