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Model-independent tracking of criticality signals in nuclear multifragmentation data
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We look for signals of criticality in multifragment production in heavy-ion collisions using model-independent
universal fluctuations theory. The phenomenon is studied as a function of system size, bombarding energy, and
impact parameter over a wide range of INDRA data. For very central collisions (b/bmax < 0.1) we find evidence
that the largest fragment in each event, Zmax, plays the role of an order parameter, defining two different regimes
at low and high incident energy, respectively, according to the scaling properties of its fluctuations. Data for a
wide range of system masses and incident energies collapse on to an approximately universal scaling function in
each regime for the most central collisions. The forms of the scaling functions for the two regimes are established,
and their dependence on the total mass and the bombarding energy is mapped out. Data suggest that these regimes
are linked to the disappearance of heavy residues in central collisions.
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I. INTRODUCTION

It has long been hoped that the study of nuclear multi-
fragmentation reactions as observed in intermediate-energy
heavy-ion collisions [1–5] can give valuable information on the
nuclear matter phase diagram and equation of state [6–8]. The
principal guidewire for this research has been the search for
signs of something analogous to a liquid-gas phase transition
in data on intermediate mass fragment (IMF) production, ever
since the observation of power laws in fragment mass-yield
distributions [9,10], reminiscent of the condensation of liquid
drops in a critical vapor [11]. This effort was encouraged by
the failure of statistical models of hot nuclear decay [12–14]
to explain the observed fragment yields [2,15] unless they
suppose the breakup of the system at low densities [16–18]
where the phase transition may occur [6].

Signals of the phase transition in experimental data on
multifragmentation may be revealed by anomalously large
fluctuations of fragment observables [19–21]. The main
obstacles to such endeavors insofar as experimental data are

∗Deceased.

concerned are the huge statistical fluctuations inherent to small
systems such as atomic nuclei and the still-open question
of the mechanism(s) of fragment production in heavy-ion
collisions at intermediate energies [22–39]. Indeed in all
experimental studies of the question, at the same time as
one is searching for evidence of the phase transition of a
piece of hot nuclear matter [35], one is (implicitly or not)
obliged to elucidate the manner in which such an excited
system may be formed in the course of certain reactions [34].
The solidity of any experimental evidence for a link between
multifragmentation and the nuclear matter phase diagram
will be undermined by any remaining ambiguity about the
dominant mechanism of fragment production in the selected
sample of experimental events, and it would be preferable
to be able to address the question of “phases” in nuclear
multifragmentation independently of reaction mechanism.

It is for this reason that the theory of the universal character
of order parameter fluctuations in finite systems proposed by
Botet and Płoszajczak [40–43] provides an attractive oppor-
tunity to address the question of phase transitions induced
by heavy-ion collisions in the least ambiguous way possible.
According to their work, it is possible to obtain pertinent
information on the relationship between the formation of
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clusters in a system and the phase transition(s) of said
system without needing to characterize the state of the system
under study to the extent of, for example, supposing it to
be in thermodynamical equilibrium at the time of cluster
formation. One needs only to study the properties of the
clusters: specifically, all pertinent information can be obtained
from a sufficiently precise measurement of the event-by-event
distributions of cluster multiplicity and the size of the largest
cluster produced. The attractiveness of such an approach in
the domain of nuclear fragmentation reactions is obvious, for
the reasons just given. Although the mechanism of fragment
production remains an open question, for several years now
large solid-angle multidetector arrays such as INDRA have
provided high-quality data on the multiplicity and the size
(charge) of the fragments produced in such reactions.

A first application of the universal fluctuations theory to
INDRA data for central collisions of Xe + Sn from 25A

to 50A MeV was published in [44]. In this paper we will
present the results of the same analysis applied to a wide range
of systems measured with INDRA. As in [44] we observe a
signature compatible with the existence of different regimes
at different bombarding energies. This behavior disappears
for less central collisions. By applying the analysis to data
for colliding systems with total mass number between 73
and 394 we will show the mass dependence of the energy of
transition between the two regimes and present a systematic
study of the universal scaling functions observed in the low-
and high-energy regimes.

II. UNIVERSAL FLUCTUATIONS OF THE ORDER
PARAMETER IN FINITE SYSTEMS

Universal scaling laws of fluctuations (the �-scaling laws)
have been derived for equilibrium systems and have been
shown to apply also in certain out-of-equilibrium situations.
In a system in which the second-order critical behavior can
be identified, the relation among order parameter, criticality,
and scaling law of fluctuations has been established and the
relation between the scaling function and the critical exponents
has been found. Details can be found in [43].

Experimental observables that may be related to a critical
order parameter can be identified through their �-scaling
behavior. The � scaling is observed when two or more
probability distributions PN [m] of the observable m for a
system of “size” N collapse onto a single scaling curve �(z(�))
independent of system size when plotted in terms of the scaling
variables:

〈m〉�PN [m] = �(z(�)) = �

(
m − 〈m〉

〈m〉�
)

, (1)

where 〈m〉 is the mean value of the distribution PN [m] and
1/2 � � � 1. Here 〈m〉 plays the role of a scale parameter and
can replace N as a measure of the size of the system. A weaker
(necessary but not sufficient) condition for � scaling is that the
variance of the distribution should scale with its mean value as

σ 2 ∼ 〈m〉2� (2)

so that in a log-log plot of σ 2 versus 〈m〉2 data should fall on
a straight line of slope �.

The scaling law (1) with � = 1/2 is associated with low-
temperature (“ordered”) systems, or with observables that are
not related to an order parameter. Scaling with � = 1 is seen
at high temperature (“disordered” system) and also for critical
systems. For m to be an order parameter it must exhibit a
corresponding change of �-scaling regime when some suitable
control parameter (e.g., available energy, temperature, or bond-
breaking probability) is varied.

Here it is worth saying a word about the comparison of
experimental distributions using Eq. (1) and the determination
of �-scaling regimes for data. As the transformation from
experimental observable to the scaling variable z(�) is a linear
transformation, the form of the �(z(�)) distribution is the same
as that of PN [m]. However, the presence of the exponent �

in the scale factor 〈m〉� means that two identical distributions
will appear different (their widths will be different) if they are
scaled using a value of � that is not the one relating the mean
values and variances of the two distributions via Eq. (2). For
example, consider two Gaussian distributions whose widths
and mean values are related via Eq. (2) with � = 1. In this
case the use of Eq. (1) with, for example, � = 1/2 would not
lead to a universal scaling function: The widths of the two
scaled distributions would be different, and, because of the
normalization of �(z(�)), the height of the distributions would
differ also. It should also be noted that the relationship between
the mean and the variance of a set of distributions, that is, the
value of � if Eq. (2) holds, is quite independent of the form of
the distributions: A given value of � does not imply a certain
type of distribution, and vice versa.

More detailed information on the state of the system and the
fragmentation process may be found in the form of the scaling
functions �(z(�)), Eq. (1). For systems far from a critical point,
the central limit theorem tells us that for an observable m being
the sum of uncorrelated random variables, one should observe
asymptotically a Gaussian distribution for fluctuations of m
about its mean value. If, however, m is an extremal value such
as the largest among a set of uncorrelated random variables,
then asymptotically its distribution should be that of Gumbel’s
first asymptote [45]. For critical systems such general results
do not exist, because the presence of correlations at all length
scales means that the order parameter distribution must depend
on the precise details of the interaction in this case. An
asymptotic form of the large-m scaling function tail was
derived in [42], where close to a critical point the order
parameter distribution was expected to fall off like exp(−mν̂)
with 3 � ν̂ � 6, meaning that large deviations of the order
parameter from its mean value are strongly suppressed.

There are two generic families of fragment production
scenarios for which the second-order phase transition has been
identified, with two different order parameters. These are as
follows:

� the fragment multiplicity for fragmentation scenarios such
as the fragmentation-inactivation binary (FIB) model [46]
and

� the size of the largest cluster or fragment in aggregation
scenarios such as percolation or Fisher droplet models [42].
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Therefore the elimination of one of these two easily measur-
able experimental quantities as not having the order parameter
�-scaling behavior described here should give important
information on the fragment production process, by allowing
us to exclude one of the two scenarios.

III. PRESENTATION OF DATA

A. Experimental details

To study as exhaustively as possible the question of the
existence of an order parameter or other “phaselike” behavior
in heavy-ion collisions, we have profited from the wide range
of very high quality data that have been obtained with the
INDRA 4π array [47–49] at the GANIL (Caen) and GSI
(Darmstadt) accelerator facilities. This charged-product detec-
tor covers about 90% of the 4π solid angle. The total number of
detection cells is 336 arranged according to 17 rings centered
on the beam axis. The first ring (2◦–3◦) was composed of
12 fast NE102/NE115 phoswich detectors during experiments
at the GANIL facility. For the GSI experiments these were
replaced by 12 telescopes composed of a 300-µm-thick silicon
detector and a 14-cm-thick CsI(Tl) scintillator. Rings 2–9
cover the angular range from 3◦ to 45◦ and are made of three
detector layers: a low-pressure gas-ionization chamber (5 cm
of C3F8 at 20–50 mbar, depending on the experiment and the
polar angle), a 300-µm-thick silicon detector, and a 14- to 10-
cm-thick CsI(Tl) scintillator. The remaining eight rings cover
the angular range from 45◦ to 176◦ and have two detection
layers: an ionization chamber and a 7.6- to 5-cm-thick CsI(Tl)
scintillator. Fragments with Z up to the charge of the projectile
are identified with unit resolution in the forward region, when
they are stopped in the scintillator detectors. Beyond 45◦, the
charge resolution is one unit up to Z = 16, and a few charges
for larger Z. Over the entire angular range, very good isotope
identification is obtained for Z = 1 to Z = 3, except for
particles with low energies where ambiguities are unresolved.

The energy calibration of the CsI(Tl) scintillators was ob-
tained for light charged particles (LCP) by means of the elastic
and inelastic scattering of secondary LCP beams (p, d, t,3He,
4He) produced by the fragmentation of a 95A MeV 16O beam in
a thick C target. These particles were then momentum selected
by the “alpha magnetic spectrometer” of GANIL and scattered
in a C or Ta target installed in the INDRA reaction chamber. A
typical energy resolution was about 4%. Typical identification
thresholds are a few 100 keV for light particles, 0.7A MeV
for Z = 3, and 1.4A MeV for Z = 35. A complete technical
description of INDRA, its calibration, and its electronics can
be found in [47–53].

B. Overview of data

The data presented here cover a wide range of quasi-
symmetric systems studied with the INDRA array, with
different total masses and bombarding energies. They are as
follows:

Ar + KCl: 32A, 40A, 52A, and 74A MeV;

Ni + Ni: 32A, 40A, 52A, 63A, 74A, 82A, and 90A MeV;

Xe + Sn: 25A, 32A, 39A, 45A, 50A, 65∗A, 80∗A, and
100∗A MeV; and

Au + Au: 40∗A, 60∗A, and 80∗A MeV.

The systems marked with an asterisk were measured during
the experimental campaign at the GSI facility. We have
concentrated on symmetric colliding systems to benefit from
the maximum overall efficiency of the INDRA array in this
case. Before presenting the analysis of this data set in terms
of universal fluctuations we will give an overview of the chief
characteristics of these reactions.

Figure 1 shows experimental data for the Xe + Sn system.
The contour plots show the number of events measured
corresponding to each value of the size of the largest detected
fragment, Zmax, and of the fraction of the available energy
converted into transverse energy of light charged particles,
Et12/Eavail. This latter quantity has been shown [29,31,54,55]
to be principally related to the geometry of heavy-ion collisions
in this energy domain and is particularly well suited to sorting
events measured with the INDRA detector with little bias,
because the efficiency of the array for light charged particle
detection is ≈90% whatever the centrality or reaction mecha-
nism. The data shown were recorded with an online trigger
requiring that at least four detectors fired in coincidence,
whereas in the offline analysis we required at least four
correctly identified charged products in each considered event.
Very similar plots were obtained for all other data studied in
this paper, as for example the data for the Ni + Ni system
shown in Fig. 2. These give an overview of the evolution of
reaction mechanisms with beam energy and impact parameter.

For the least violent collisions (small Et12/Eavail) two strong
contributions to the total cross section are observed, depending
on whether the projectile-like fragment was detected (Zmax ≈
Zproj) or not (Zmax < 10). For most of these collisions the
target-like residue is too slow-moving to be detected and/or
correctly identified by the INDRA array. With increasing beam
energy, the contribution from projectile-like fragments appears
to decrease in importance. This is due to the increasingly
forward-focused kinematics of the reactions and the smaller
grazing angle at higher energy, which mean that projectile-like
fragments from peripheral collisions are more likely to be
deflected to angles too small for them to be detected in the first
ring of the INDRA array (see Sec. III A).

For more central collisions (larger Et12/Eavail) the outcome
of the reaction depends on bombarding energy and the mass of
the colliding nuclei. For the Xe + Sn system at the lowest
incident energies [Figs. 1(a) and 1(b)], the cross section
for all but the most peripheral collisions is dominated by
events for which the heaviest detected fragment has around
one-half of the charge of the projectile nucleus, and there is
a discontinuous evolution in cross section between the most
peripheral collisions and these events. This is due to the onset
of fission of projectile-like nuclei above a certain threshold
excitation energy, which is attained in mid-peripheral and
more central reactions [55]. At higher bombarding energies
[Figs. 1(c) and 1(d)], a more continuous evolution of projectile-
like residue size with the collision violence is seen. For a lighter
system such as Ni + Ni [Figs. 2(a) and 2(b)], a continuous ridge
goes from the most peripheral toward more central collisions,
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FIG. 1. (Color online) Experimental
correlations between the size of the largest
detected fragment Zmax and the total trans-
verse energy of light charged particles
divided by the available c.m. energy, for
Xe + Sn collisions. A minimum of four
well-identified charged particles was re-
quired in the offline analysis. Logarithmic
contour levels are shown corresponding to
the number of events (with darker tones
indicating larger numbers).

showing that the size of the projectile-like residues decrease
continuously with decreasing impact parameter, as fission
is not a predominant decay channel even at high excitation
energies for such light nuclei. The correlations between Zmax

and Et12/Eavail for the Ar + KCl system (not shown) are very
similar to those for Ni + Ni, whereas for the Au + Au system
they resemble those for Xe + Sn at 50A and 100A MeV except
that for the most peripheral collisions a clear contribution from
the fission of gold quasi-projectiles is seen.

Finally note the similarity between Figs. 1(a) and 2(a)
concerning the production of heavy residues at low inci-
dent energy. Both figures show that there are two distinct
contributions to the total yield for residues with Z close to
that of the projectile. The first was discussed in the previous
paragraph and is due to projectile-like fragments produced
in peripheral collisions (small Et12/Eavail values). This is
the dominant contribution. Nevertheless, there is a second
contribution associated with a broad distribution of large
residue sizes Zproj/2 < Zmax <∼ Zproj as well as an equally
broad distribution of Et12/Eavail values corresponding to mid-
to central collisions. The appearance of these experimental
correlations suggests that the mean value of the charge of
the heaviest detected fragment, 〈Zmax〉, first decreases with
increasing collision violence and then increases for the most
“central” collisions at the lowest beam energy for these two
systems.

According to Figs. 1 and 2, such reactions make a relatively
important contribution to the production of heavy residues in

central collisions of Ni + Ni and Xe + Sn at 32A and 25A MeV,
respectively. When the incident energy increases [40A MeV for
Ni + Ni, Fig. 2(b), and 32A MeV for Xe + Sn, Fig. 1(b)], the
size and yield of the associated residues decrease, making this
contribution harder to distinguish. From Figs. 2(c) and 2(d) and
Figs. 1(c) and 1(d) it appears that the cross sections associated
with these reactions become very small above ∼40A MeV,
for the Ni + Ni system, or above ∼32A MeV, for the Xe +
Sn system. (For the Ar + KCl system, not shown here, this
contribution is discernible up to 52A MeV.) However, more
sensitive analyses can reveal the survival of such reactions at
higher incident energies.

Figure 3 shows the evolution of 〈Zmax〉 with three different
centrality selectors, for Xe + Sn collisions between 25A and
50A MeV: the total transverse energy of light charged particles,
Et12; the total transverse energy of all charged products,
Et ; and the total multiplicity of charged products, NC . Only
well-measured events are considered, for which the ratio of
the total detected charge to the total charge of projectile and
target is at least 80%, ensuring that the largest fragment of
the event is correctly identified. For each selector, 〈Zmax〉 first
decreases with increasing violence of the collision (smallest
values of the selector variable). As previously mentioned,
for these collisions 〈Zmax〉 reflects the size of projectile- or
target-like residues. With Et12 [Fig. 3(a)], 〈Zmax〉 increases in
central collisions at 25A and 32A MeV, whereas at 39A MeV
and above it reaches a minimum value at which it saturates.
With NC [Fig. 3(c)] the same increase of 〈Zmax〉 in central
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FIG. 2. (Color online) Experimental
correlations between the size of the largest
detected fragment Zmax and the total trans-
verse energy of light charged particles
divided by available c.m. energy, for Ni +
Ni collisions. A minimum of four well-
identified charged particles was required
in the offline analysis. Logarithmic con-
tour levels are shown corresponding to
the number of events (with darker tones
indicating larger numbers).

collisions occurs at 25A MeV, whereas for 32A MeV and
above it shows a decreasing trend for all values of NC . The
increase of 〈Zmax〉 for central collisions suggests an important
mass transfer between projectile and target at 25A MeV and,
perhaps, at 32A MeV. This is clearly seen with Et12 and
NC . However, for Et an increase is seen for all bombarding
energies [Fig. 3(b)], but only for bins with large statistical
errors. This effect is probably due to an autocorrelation
between the selector and the observable. The contribution
of the largest fragment to the transverse energy Et is quite
large, whereas its contribution to the total multiplicity NC

(which is also autocorrelated with the size of the largest
fragment) is 1. This can explain why the evolution of 〈Zmax〉
with Et shows clear autocorrelation effects, whereas the
evolution of 〈Zmax〉 with NC is qualitatively the same as
that observed for the uncorrelated selector Et12. Meanwhile,
the larger dynamic of the Et12 variable offers the possibility
of greater sensitivity in event selection than the (integer)
variable NC .

In Fig. 4 we can follow the correlated evolution of the
variance and the mean of the Zmax distribution as a function
of collision violence: from peripheral collisions leading to
a slightly excited quasi-projectile (large 〈Zmax〉 and small
variance) to the most central collisions (indicated by a ring
around the last data point for each beam energy). To do this
we considered only events for which at least 75% of the
momentum of the incident beam particles is reconstructed
from the detected nuclei. In this way we retain all events for

which at least a good reconstruction of the quasi-projectile
residue and products was obtained, in the most peripheral
collisions, while in the most central collisions we achieve
an almost complete reconstruction of the event. Each point
in this figure corresponds to Et12 cuts defined by slicing the
minimum-bias distribution into 100 bins, each containing an
equal number of events. Thus each point represents 1% of the
measured cross section, although owing to our requirement
of well-measured events the most peripheral (least well
measured) events are absent. This allows us to see how in the
most central collisions two different behaviors are observed
depending on the incident beam energy: Below 39A MeV
in the 3–5% most central collisions the mean charge of the
largest fragment actually begins to increase again, whereas
the correlation between this mean value and the variance of
the distribution is not the same as for the majority of other
impact parameters.

This figure suggests that at beam energies <∼39A MeV the
origin of the heaviest fragment is not the same in central
collisions as for the rest of the reactions. The increase
of 〈Zmax〉 for the most central collisions at these ener-
gies suggests a contribution from (incomplete) fusion re-
actions where the heaviest fragment detected is an evapo-
ration residue. The disappearance of this phenomenon for
>∼39A MeV can be interpreted as signaling the disappearance
of fusion-evaporation residues and marking the onset either of
fusion multifragmentation [34] or of transparency in central
collisions (incomplete stopping) [30,56,57].
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FIG. 3. (Color online) The mean charge of the largest fragment detected in each event, Zmax, as a function of (a) the total transverse energy
of light charged particles, Et12; (b) the total transverse energy of all charged particles and fragments, Et ; and (c) the total multiplicity of charged
products, NC . Vertical bars show the statistical error on the mean value for each bin. To retain only the most significant data, bins to which
fewer than 10 events contributed were excluded from the plots.

IV. ANALYSIS OF DATA IN TERMS OF
UNIVERSAL FLUCTUATIONS

A. Selection of central collisions

We begin our analysis by extending the results of [44],
for central collisions of Xe + Sn, to a wider range of
systems measured with the INDRA multidetector array. As
was discussed in Sec. I, the analysis of universal fluctuations
in multifragmentation data does not require knowledge (or
supposition) of how fragments are formed. However, the
comparison of events with very different collision geometries

is unlikely to give meaningful results. Therefore we will
limit our study to very central collisions for which the
geometrical overlap between projectile and target is as close
as possible to total. The need to select equivalent classes of
events for a large range of system masses and beam energies
with as little dependence as possible on detector efficiency
led us to use the total transverse energy of light charged
particles, Et12.

The sorting variable Et12 has been studied specifically for
the INDRA detector. It was shown that, for a given projectile-
target system, the minimum-bias inclusive distributions of Et12

FIG. 4. (Color online) Collisions from the
most peripheral with detection of a quasi-
projectile residue (furthest right-hand side of the
figure) to the most central (indicated by a ring)
sorted into bins corresponding to 1% of the total
measured cross section.
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FIG. 5. (Color online) Data for the total multiplicity of charged products with Z � 1, Mtot, for well-measured central collisions of Xe +
Sn [b < 0.1bmax, Zdet � 0.8(Zproj + Ztarg)]. (a) Log-log plot of the variance versus the squared mean value of the distribution of Mtot for each
bombarding energy. The straight line represents Eq. (2) with � = 1/2. (b) Experimental distributions of Mtot expressed in the variables of the
second scaling law, that is, Eq. (1) with � = 1/2. The dashed curve is a Gaussian fit to all the data.

for different beam energies scale as a function of the available
center of mass energy [31,58], consistent with Et12 being
mainly sensitive to the geometry of the collisions, that is, that
it is a good indicator of collision centrality. Moreover, as it was
pointed out in Sec. III B, the efficiency of the INDRA detector
for light charged particles is almost independent of the type of
reaction under study, allowing us to use this variable to sort
all data considered in this paper in the same way. It should be
noted that the total transverse energy of all charged products
(including the heaviest), Et , does not exhibit any scaling with
beam energy for our data, probably because of the variable
efficiency of the INDRA array for heavy fragment detection as
a function of impact parameter. Therefore, although one may
expect Et to contain more information on the events than a
variable limited to the kinematical properties of only Z = 1, 2
particles, the specificities of INDRA data make Et12 a more
suitable selector.

In addition, by using Et12 we avoid any direct link between
the studied observables (size of the largest fragment in
each event and fragment multiplicity) and the variable used
for the selection of events. We are therefore in the best
possible situation to avoid distortion of the data caused by
autocorrelations with the experimental filter [15].

The data analyzed in the following with the largest values of
Et12 correspond to 1% of the total number of events recorded
during the experiment with a minimum-bias condition (b <

0.1bmax in the geometrical approximation of [59], where the
maximum impact parameter bmax is smaller than the sum of
the radii of projectile and target due to the experimental trigger
condition). We were able to check whether the largest detected
charged fragment of each event is really the largest, using the
total detected charge of the event, Ztot.

B. Establishing an “order parameter” for nuclear
multifragmentation with no model-dependent hypotheses

Generic models of cluster production may be classed into
two types. The first, the class of “fragmentation” scenarios in

which a system is broken up by a series of binary splittings
or some other physical process, has for its order parameter
the number or multiplicity of clusters. For such models, it
is the multiplicity that exhibits different �-scaling regimes if
the system has different phases. The second class of models,
in which clusters are built up by “aggregation” of smaller
constituents, has for its order parameter the size of the largest
cluster. As INDRA does not measure the mass but only the
atomic number of fragments, we will assume in the following
that the largest fragment of each event corresponds to Zmax,
the fragment with the largest atomic number.

Figure 5 shows the data for the total multiplicity of charged
products with Z � 1,Mtot, for central collisions of Xe + Sn
from 25A to 100A MeV. In Fig. 5(a) we plot the natural
logarithm of the variance of the measured Mtot distributions
as a function of the natural logarithm of the square of the
mean value. The estimated statistical errors of these quantities
are smaller than the symbols used. If fluctuations obey the
universal scaling law [Eq. (2)], then the data must fall on a
straight line of slope � in this plot. It can be seen in Fig. 5(a)
that this is true to a fair approximation and that the variance of
the multiplicity distribution grows with increasing bombarding
energy as 〈Mtot〉.

Figure 5(b) shows that the multiplicity distributions for
different bombarding energies collapse to a unique distribution
(scaling function) when expressed in terms of the second
scaling law [Eq. (1) with � = 1/2], as suggested by Fig. 5(a).
It should be noted that examination of an observable’s scaling
properties in this way is far more constraining than that of
Fig. 5(a), when the statistics of the data samples allow it.
The observed scaling function is very well approximated by a
Gaussian distribution (dashed curve on the figure). The scaling
properties of total multiplicity fluctuations are therefore
the same for all bombarding energies in the range 25A–
100A MeV. This is true not only for the Xe + Sn data but
also for all the data we have studied in this paper [see, for
example, the data for 58Ni + 58Ni collisions in Fig. 6(a)].
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FIG. 6. (Color online) Data for well-measured central collisions of Ni + Ni [b < 0.1bmax, Zdet > 0.8(Zproj + Ztarg)]. (a) Distributions of
Mtot expressed in the variables of the second scaling law, that is, Eq. (1) with � = 1/2. The dashed curve refers to a global Gaussian fit to the
data. (b) Log-log plot of the variance versus the squared mean value of the distribution of fragment multiplicity MZ � 3 for each bombarding
energy.

Therefore the total multiplicity of charged particles for central
collisions in this energy range does not show any evidence of
“anomalous” or “critical” behavior.

The multiplicity Mtot is dominated by the multiplicity of
light charged particles, MLCP, which is typically 3–4 times
greater than the multiplicity of IMF (Z � 3). However, similar
conclusions as for Mtot can be drawn for the IMF multiplicity,
MZ � 3, for which the Xe + Sn data are presented in Fig. 7 and
the Ni + Ni data in Fig. 6(b). Figure 7(a) shows that the widths
of MZ � 3 distributions for Xe + Sn at bombarding energies of
32A to 65A MeV increase with the mean multiplicity according
to a � = 1/2 scaling law, and this is confirmed by Fig. 7(b).
The width for the 25A MeV system falls below this “sys-
tematic” trend, which may indicate that this energy is close
to the threshold for multifragmentation in central collisions
(with a mean multiplicity for this system of approximately 3

fragments with Z � 3), leading to reduced fluctuations of the
fragment multiplicity. Recent data obtained with INDRA for
the same system at bombarding energies from 8A to 20A MeV
will allow us to study this point in more detail.

Nevertheless, the multiplicity of fragments does show some
slightly more interesting features than Mtot. Note the “back-
bending” in Fig. 7(a) for bombarding energies >65A MeV,
indicating a decrease of mean fragment multiplicity at the
highest bombarding energies. The same behavior is seen more
clearly in Fig. 6(b) for Ni + Ni collisions above 52A MeV. Let
us note in passing that the available energy for the maximum
of fragment production in the Ni + Ni system is here much
lower (13A MeV) than that reported in [60] (17.5A MeV).

This type of “rise and fall” behavior has been observed in
many different data sets [3–5,60]. The absolute value of the
maximum mean multiplicity and the energy at which it occurs
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FIG. 7. (Color online) Same as Fig. 5 but now for the multiplicity of fragments with Z � 3, MZ � 3. (b) Data for bombarding energies
32A–65A MeV expressed in the variables of the second scaling law, that is, Eq. (1) with � = 1/2.
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FIG. 8. (Color online) Same as Fig. 5 (well-measured central Xe + Sn collisions) but for the charge Zmax of the heaviest fragment detected
event-by-event, and with � = 1.

in central collisions are not only system dependent [60] but also
selection dependent [15] and detector dependent. It should
be noted that in the framework of the universal fluctuations
theory this rise and fall is not consistent with the fragment
multiplicity being an order parameter. Rather, in the energy
domain for which fluctuations of MZ � 3 show a regular scaling
behavior (32A–65A MeV for Xe + Sn), it can be seen that this
scaling is always of the second kind (� = 1/2) and in this
domain the multiplicity distributions all collapse to a unique,
quasi-Gaussian scaling function [Fig. 7(b)].

Therefore, neither the total charged multiplicity nor the
fragment multiplicity have fluctuations that indicate the
presence of different “phases” for central collisions in this
energy range. It should be noted, however, that we cannot
exclude the possibility of a different behavior of observables
to which we do not have access in those data, for example the
true total multiplicity including neutrons. Nor does our result
exclude the possibility that in other fragmentation reactions
(e.g., at higher bombarding energies and/or in spectator decays
rather than central collisions) the total or fragment multiplicity
may be the pertinent order parameter. For our data on central
collisions between 25A and 100A MeV, however, we will from
now on only consider the other possible order parameter for
fragmentation, the size of the largest fragment.

Looking at the log-log plot of the first two cumulant
moments of Zmax [Fig. 8(a)] we can suspect some evolution
of the scaling behavior of this observable’s fluctuations with
increasing beam energy: The data do not appear to fall on a
single straight line, but rather they seem to be grouped into two
“branches” with different slopes. Although most of the data
in Fig. 8(a) lie close to a line of slope � = 1, this does not
correspond to a universal scaling law, as all data in Fig. 8(b) do
not collapse onto a single universal curve under the first scaling
law [Eq. (1) with � = 1]. This confirms that there is a change
in the scaling behavior of Zmax fluctuations with increasing
energy. The charge of the largest fragment in each event, and
not the fragment multiplicity, seems therefore to be a good
candidate for the order parameter of multifragmentation in
central collisions at these energies.

C. Evolution of the scaling behavior of order parameter
fluctuations with incident energy

Figure 8(b) shows that the scaled Zmax distributions for
Xe + Sn collisions from 45A MeV upward are nearly identical
even in the large-Zmax tails, which are two orders of magnitude
less probable than the most probable value of Zmax. The
39A MeV data can also be included in this group if the
small differences in the tail of the distribution are neglected.
However, the 32A MeV distribution is clearly significantly
narrower, whereas the distribution for 25A MeV is evidently of
a different form, as can be seen both in the tails and around the
maximum (see comments on the comparison of experimental
distributions with this technique in Sec. II).

Using the values of � extracted from Fig. 8(a) using a linear
fit to the two “branches” (25A–39A MeV and 39A–100A MeV)
we find a good scaling of distributions using σ ∼ 〈Zmax〉1/2

at the lowest beam energies [Fig. 9(a)], whereas for the
higher energies the fluctuations of the size of the largest
fragment increase like σ ∼ 〈Zmax〉 [Fig. 9(b)]. An approxi-
mately equally good scaling for 39A MeV data is achieved
in both cases, and this energy may be considered as close
to a transition between the two regimes. Figure 9 also
shows that the shape of the scaling function changes with
increasing beam energy: It is nearly Gaussian at low energy
[with the dashed curved in Fig. 9(a) representing a best fit to
all data with a Gaussian distribution], but at higher energies
it is rather asymmetric with a near-exponential tail for Zmax

greater than its most probable value (see Sec. IV E).
These observations establish the size (or charge) of the

largest fragment as the most likely “order parameter” for
fragment production in central collisions in this energy range.
They also show that data can be assigned to one of two regimes
depending on the �-scaling properties of this order parameter.
At low energies systems obey the second-scaling law associ-
ated with an ordered phase, whereas at higher energies, the
first-scaling law is observed, typical of a disordered phase
(large fluctuations) [42]. It should be noted that these regimes
are defined, not by the average size of the largest fragment

034607-9



J. D. FRANKLAND et al. PHYSICAL REVIEW C 71, 034607 (2005)

10-2

10-1

-5 -2.5 0 2.5 5
z( )

(z
)

25A MeV

32A MeV

39A MeV
10-2

10-1

1

-1 0 1
z

(z
)

Xe + Sn 39A MeV

45A MeV

50A MeV

65A MeV

80A MeV

 100A MeV

∆ ∆

∆ (∆)

Φ Φ

FIG. 9. (Color online) (a) Zmax distributions for Xe + Sn collisions at 25A–39A MeV, scaled according to Eq. (1) with � given by a linear
fit to the data of Fig. 8(a) of the form σ ∼ 〈m〉�. The dashed curve is a best fit to scaled data using a Gaussian distribution. (b) Same as (a) but
for bombarding energies 39A–100A MeV. The dashed curve is a best fit to scaled data using the Gumbel distribution, Eq. (5).

produced for a given incident energy (which would be a typical
way to define, e.g., liquid and gas phases), but rather by the
way in which the fluctuations of this quantity evolve compared
to its mean value. The identification of the largest fragment
size as order parameter also indicates some similarity between
fragment production in central collisions and the aggregation
models with the second-order phase transition mentioned
in Sec. II, whereas the monotonic behavior of total and
fragment multiplicities excludes “shattering” fragmentation
models such as FIB [46].

Another, not necessarily incompatible, interpretation of the
different � regimes is suggested by Fig. 4. As we remarked in
Sec. III B, this figure suggests that at beam energies <∼39A MeV
the heaviest fragment in central collisions is an evaporation
residue of an incomplete fusion reaction. The data presented in
Fig. 8(a) for incident energies 25A–50A MeV correspond to the
points highlighted by a circle in Fig. 4. Therefore the transition
from a � ∼ 1/2 to a � ∼ 1 branch can be interpreted as being
linked to the disappearance of fusion-evaporation residues and
signaling either the onset of fusion multifragmentation (phase
transition) or the onset of transparency in central collisions
(incomplete stopping).

It should be noted that the transition energy of around
39A MeV for the Xe + Sn system is slightly higher than that
found in [44] (32A MeV). This is due to the different method
of selection of “central collisions.” In this paper we define
central collisions based on the amount of energy deposited
into the light charged particles’ degrees of freedom (Et12).
As we are dealing with finite systems this reduces the energy
available for the fragment degrees of freedom, owing to energy
conservation. This is consistent with the fact that when central
collisions are selected based on fragment degrees of freedom
(the fragment kinetic energy flow angle selection of [28,34,61])
the multifragmentation regime is observed at lower incident
energy for the same system (32A MeV for Xe + Sn in [35]),
as is the transition to the � = 1 scaling regime.

The observed scaling properties of Zmax fluctuations are
confirmed by the Ni + Ni data, as shown by Figs. 10 and 11.

Most data follow a � ≈ 1 scaling law for Zmax fluctuations,
except at the lowest energies. The data do not all collapse to a
single scaling function in terms of a � = 1 law [Fig. 10(b)],
but only for bombarding energies E � 52A MeV [Fig. 11(b)].
The similarity between the scaling functions observed for the
two different systems should be noted, both in the “ordered”
(� ∼ 1/2) and “disordered” (� ∼ 1) regimes (Figs. 9 and 11
and Table I).

D. System-size dependence of energy of transition from
“ordered” to “disordered” regime

We observe for the Xe + Sn and Ni + Ni data that
the energy ranges corresponding to the different regimes
are not the same for two systems of different total mass,
with the “transition” occurring around 39A MeV for Xe +
Sn and 52A MeV for Ni + Ni. The “disordered” regime
begins at lower incident (or available) energy for the heavier
system. This tendency is confirmed by the data for Ar +
KCl and Au + Au (Figs. 12 and 13). The former has a

TABLE I. Fluctuation scaling exponent �, coefficient of skew-
ness γ , kurtosis κ, χ 2 for global fits to data with Gaussian (� ∼ 1/2)
and Gumbel (� ∼ 1) distributions, and scaling function tail exponent
ν̂(χ 2) (see Sec. II), for the scaling functions shown in Figs. 9 and
11–13.

System Einc � γ κ χ 2 ν̂(χ 2)
(AMeV)

Xe + Sn 25–39 0.48 0.45 0.66 27 —
Ni + Ni 32–52 0.61 0.48 0.64 72 —
Ar + KCl 32–52+ 0.46 0.33 0.64 63 —
Au + Au 40–80 1.00 0.83 1.39 1.8 0.92 ± 0.09(1.3)
Xe + Sn 39–100 0.89 0.85 1.20 11 1.20 ± 0.03(1.2)
Ni + Ni 52–90 0.88 0.84 1.30 45 1.54 ± 0.04(7)
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FIG. 10. (Color online) Same as Fig. 8 but for collisions of Ni + Ni from 32A to 90A MeV bombarding energy.

total mass smaller than both Xe + Sn and Ni + Ni. The
largest fragments produced in central collisions of 36Ar +
KCl follow quite closely a � ∼ 1/2 scaling behavior for beam
energies up to at least 52A MeV [Fig. 12(a)], whereas the
data for 74A MeV, which deviate from the overall trend, may
indicate a transition to the � ∼ 1 regime occurs somewhere
between these last two available data points. The data for
32A–52A MeV exhibit very similar near-Gaussian probability
distributions. Although we cannot have much confidence in
a scaling law established for only two data points let us
remark in passing that the scaling behavior observed for data
at 52A and 74A MeV is approximately a � ∼ 1 scaling
with a scaling function of a form similar to that observed
for the other “disordered” regime data, indicating that the
transition energy for this system is probably somewhere
between 52A and 74A MeV, higher than for the heavier
systems.

However, for the much heavier 197Au + 197Au system a
� = 1 scaling law is observed for fluctuations of the size of

the largest fragment in each event for all studied beam energies
(Fig. 13). Even at the lowest energy (40A MeV) the scaling of
the entire Zmax distribution with the other energies is excellent.
For this system it may be that the beam energy of the transition
from the � = 1/2 regime, if it exists, to � = 1 occurs at a
lower energy than the lowest energy available for study in our
data, which may explain why we do not observe an “ordered”
regime for this system. Of course it is equally possible that
no such regime exists for this system. Indeed, following the
interpretation of Sec. IV C in terms of the disappearance of
fusion-evaporation residues, we would not expect fusion to
occur for a system as heavy as Au + Au at any incident
energy.

We therefore observe that the bombarding energy (or
available energy) at which there is a transition from the
“ordered” to the “disordered” regime decreases with increasing
total mass of the system under study. This is represented
in Fig. 14. If one interprets our results in the framework of
universal fluctuations theory (i.e. in terms of a second-order
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FIG. 11. (Color online) (a) Zmax distributions for Ni + Ni collisions at 32A–52A MeV, scaled according to Eq. (1) with � given by a linear
fit of the form σ ∼ 〈m〉�. The dashed line is a best fit using a Gaussian distribution. (b) Same as (a) but for energies 52A–90A MeV. The dashed
line is a best fit using the Gumbel distribution, Eq. (5).
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phase transition) one would expect the energy at which one
phase is replaced by the other to be related to the critical
temperature of the corresponding system. The definition of
this quantity for finite, charged systems such as nuclei has
received much theoretical attention. On the one hand, in the
absence of Coulomb forces, we can define a pseudo-critical
temperature (corresponding to a large peak in the finite system
specific heat) that is smaller than the infinite matter value
TC and increases as the size of the system approaches the
infinite matter limit [62]. On the other hand, calculations
including the Coulomb repulsion show that the maximum
temperature that an equilibrated hot nucleus can support, Tlim,
decreases for heavier nuclei, owing to their increasing nuclear
charge [63]. A recent systematic study of a wide range of data
on so-called caloric curves by Natowitz et al.. [64] has shown
that the temperature and excitation energy at which a plateau is
observed in these curves decrease with increasing mass of the
primary excited nucleus and that such behavior is consistent
with theoretical predictions for the limiting temperatures, Tlim.

In the present analysis we chose not to study this question
in more detail, as to do so would require us to (i) show that

the fragment production is thermally driven, (ii) identify the
thermal (sub)system in each case, and (iii) deduce the mass,
charge, excitation energy, and temperature of this (sub)system.
Each step would require us to make important hypotheses
about the formation and decay properties of fragments in
the collisions under study, taking us far from our initial
goal of determining as much information as possible on the
nature of fragment production with a minimum number of
suppositions. Moreover, the observed effect, which depends
on the entrance channel total mass and bombarding energy
may have a completely different origin. Therefore we will limit
ourselves to the observation that the transition from “ordered”
to “disordered” regime takes place at a lower available energy
for systems of greater total mass.

E. Detailed study of the form of the scaling functions

The results of the analysis for all the systems presented
here are summarized in Table I. Systems have been grouped
according to their observed �-scaling behavior, � ∼ 1/2 at the
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FIG. 13. (Color online) Same as Fig. 8 but for collisions of Au + Au from 40A to 80A MeV bombarding energy.
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FIG. 14. (Color online) Dependence on bombarding energy and
total system mass of the frontier between the two �-scaling regimes
observed in this work for very central collisions.

lowest beam energies and � ∼ 1 at the highest. To get some
quantitative information on the form of the scaling function in
each case, we calculated the overall coefficient of skewness γ

and the kurtosis κ for each system in each regime, using the
following definitions [65]:

γ =
〈
z3

(�)

〉
σ 3

(3)

and

κ =
〈
z4

(�)

〉
σ 4

− 3. (4)

Larger skewness values indicate more asymmetric distribu-
tions, whereas the kurtosis measures the deviation of the
distribution from the Gaussian form (with κ = 0 being a
perfect Gaussian). The values shown in the table confirm our
observation that the higher energy, � ∼ 1 scaling data present
more asymmetric, less Gaussian probability distributions than
those at lower energy. It can also be seen that, quantitatively, the
scaling functions corresponding to the two regimes for systems
of different masses have very similar forms, confirming the fact
that data for different systems do indeed collapse onto a single
distribution.

In the “ordered” regime the fluctuations of the size of the
largest fragment show a significant deviation from a Gaussian
distribution, contrasting with the near-perfect Gaussian distri-
butions that we observe for total and fragment multiplicities
(Figs. 5–7). For the “disordered” regime the deviation from
the Gaussian form is large and the shape of the distribution
function is well reproduced by a Gumbel distribution,

�(z�) ∼ exp −(z − e−z). (5)

This distribution is shown by the dashed curves in Figs. 9(b)
and 11(b) and the gray curve in Fig. 13(b), which represent the
best fits to these data using Eq. (5). The overall agreement can
be seen to be quite good, and it is excellent for the Au + Au
data where χ2 = 1.8 is achieved. Some significant deviations
can be seen, however, in the tail of the distributions for the

lighter systems Ni + Ni and Xe + Sn: The data seem to have a
faster-than-exponential falloff for large (positive) fluctuations
about the mean value.

To confirm this in a quantitative manner we performed fits to
the tails of these functions with the asymptotic scaling function
form exp(−zν̂) (see Table I). They show that the exponent
ν̂ is very close to 1 for the Au + Au data, confirming the
observation of an exponential tail compatible with the Gumbel
distribution, whereas for Ni + Ni and Xe + Sn data we find
1 < ν̂ < 2. Let us remark in passing that, just as � seems
to increase toward the asymptotic value of 1 with increasing
system mass in the “disordered” regime, it is possible that ν̂

also has a systematic mass dependence and decreases toward
an asymptotic value of 1 (exponential tail) for the heaviest
system.

We have clearly and quantitatively established the form
of the scaling functions in the two regimes, and in the
data presented here we do not observe any deviation from
these “canonical” forms, quasi-Gaussian at low energy and
quasi-Gumbel at high energy. We do not, therefore, have any
information on the nature of the transition between the two
regimes: As we discussed in Sec. II we cannot be certain
of the form of the scaling function at the critical point, but
one may see a sharp decrease of the large-z tails [faster than
exp(−z2)] or an order parameter distribution (OPD) with an
exponential large-z tail but significantly different from the
Gumbel distribution around the maximum and below [66].
However, for a first-order phase transition with a passage
through the coexistence region, although the scaling behavior
of the OPD is not well established [42,67], by definition in this
case the order parameter should present a bimodal (double-
humped or very wide) distribution. More detailed study of
existing and new data around the transition energy of 39A MeV
(for the Xe + Sn system) may yet reveal such features.

F. Dependence of the observed scaling behavior on
the violence and centrality of collisions

The results we have presented come from a wide-ranging
set of data concerning different system energies and masses,
but they represent only 1% of the total measured cross section
because of our centrality cut. The representativity of the
observed scaling behavior is far from certain in this case, as it
is well known that data selected by cuts in distribution tails are
prone to serious autocorrelation effects owing to conservation
laws [15,68]. We therefore have to study the dependence of our
findings on the strictness of our centrality cuts. In Fig. 15 the
data for the same Xe + Sn collisions as in Fig. 9(b) have been
analyzed with a slightly relaxed centrality cut, b < 0.2bmax.
The effect on the apparent value of � can be seen from the
cumulant moments plot [Fig. 15(a)]. Relaxing the centrality
condition gives an apparent scaling law with a smaller value
of �, which is here � ≈ 0.85 instead of � = 0.89 (see
Table I). A similar dependence on the estimated centrality
of collisions was observed in [44] and was interpreted in
terms of a smaller excitation energy of fragmenting systems
in less central collisions. However, as Fig. 15(b) shows, the �

scaling actually begins to break down for these less central
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FIG. 15. (Color online) Same as Fig. 8 but for collisions with an estimated centrality of b < 0.2bmax.

data, as can be seen in the high-z(�) tail of the “scaling”
function.

If the centrality condition is relaxed even further, b <

0.4bmax (Fig. 16), we first observe that now apparently all
of the data for Xe + Sn are compatible with an approximate
second-scaling law (� = 0.58), without any change of scaling
regime between 25A and 100A MeV. However we cannot
assign the data to a single “ordered” regime because in fact
this is not true � scaling: The different distributions no longer
collapse to a universal curve [Fig. 16(b)].

Therefore we observe universal fluctuations and behavior
of the Zmax observable compatible with it being an order
parameter for nuclear multifragmentation only for very central
collisions of symmetric systems for which one may suppose a
near-to-total overlap of the projectile and target in the entrance
channel. We have not, up to now, observed an equivalent
scaling for quasi-projectile residues in midperipheral to pe-
ripheral collisions. This may be because in such reactions the
fragment production is far more sensitive to entrance channel

effects, which vary greatly as a function of the colliding
nuclei and their energies. If so, a meaningful comparison
between different systems is harder to achieve, at least with our
rather “global” approach. In head-on collisions, in contrast, the
fragmentation of the projectile and target may be virtually a
statistical (although not necessarily thermal) process, far less
sensitive to the details of the reaction, and therefore more
amenable to reveal features that are independent of the system
under study.

V. SUMMARY

We have studied nuclear multifragmentation data obtained
with the INDRA 4π array for collisions of symmetric
systems of total mass Atot ∼ 75–400 at bombarding energies
from 25A to 100A MeV. Using the total transverse energy
of light charged particles, Et12, as a measure of collision
violence, we deduced the evolution of these reactions with
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FIG. 16. (Color online) Same as Fig. 15 but for collisions with an estimated centrality of b < 0.4bmax.
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beam energy, impact parameter, and system size from the
experimentally measured correlations between the charge of
the largest fragment detected in each event, Zmax, and Et12.
For all data presented in this work these correlations are
dominated by reactions leading to a projectile-like fragment
whose size decreases with increasing collision violence. In
the case of the heaviest projectiles (Xe, Au) fission of the
moderately excited quasi-projectile modify this picture. For
higher excitation energies the opening of the quasi-projectile
multifragmentation channel may exhibit a bimodal behavior,
which has been evidenced [69] in selecting complete detection
events. However, in central collisions for a few percent of
the measured cross section, “heavy” residues are produced in
the systems Ar + KCl, Ni + Ni and Xe + Sn, suggesting
incomplete fusion of projectile and target, for beam energies
that are not too high (�52A MeV for Ar + KCl, �40A MeV
for Ni + Ni, and �32A MeV for Xe + Sn).

Using a model-independent analysis based on the theory
of universal fluctuations of the order parameter for finite
systems, we tested the most violent collisions for signals that
the fragment production may be related to a phase transition.
Following the results of [44] we first confirmed that, of the two
possible order parameters for a critical fragmentation process,
it is the charge (size) of the largest fragment, Zmax, and not the
total or IMF multiplicities Mtot or MZ � 3, that has a behavior
of the scaling properties of its fluctuations compatible with its
being an order parameter for a critical fragmentation process.
Indeed, we have shown that the event-by-event distribution
of Zmax allows us to sort data into two fluctuation-scaling
regimes defined by the value of the scaling exponent �, which
is approximately equal to 1/2 at low energies and tends toward
the asymptotic value 1 at high energies with increasing total
system size. These regimes are equally well characterized by
a distinctive form of the scaling function �(z(�)). At low
energies this function, although more symmetric than that seen
at higher energy, is significantly different from the Gaussian
form. The deviation is quantitatively the same for the three
different-sized systems (Ar + KCl, Ni + Ni, and Xe + Sn)
for which we observed this low-energy regime. In the high-
energy regime the scaling function is more asymmetric and
tends toward the asymptotic form of the Gumbel distribution,
with increasing system mass. This evolution concerns mainly
the large-Zmax tail of the distribution, which falls off more
slowly for heavier systems, becoming exponential. For the
Au + Au system �(z(�)) is an almost perfect Gumbel
distribution.

The bombarding energy at which the passage from one
regime to the other is situated decreases as the total system
mass (and charge) increases. This is contrary to the expected
behavior if this transition were related to the critical temper-
ature of the systems under study, which would increase with
mass, but is nonetheless consistent with the observation of
decreasing limiting temperatures for finite nuclei [64] owing
to the increase in Coulomb energy for heavy nuclei. However,
we can only speculate whether this is the reason for our
observation, as our analysis does not depend on any model of
fragment production such as supposing it to be equilibrated or
thermally driven, and therefore it does not give any information
on whether these conditions are met or not. Nevertheless,
the data strongly suggest that the dependence on entrance
channel mass and bombarding energy of the two regimes is
closely linked to the disappearance of heavy residues in central
collisions.

Although this analysis allows us to establish the existence
of two distinct regimes in multifragmentation reactions based
on the scaling properties of the fluctuations of the largest
fragment, it has not given any information on the passage from
one regime to the other. In the data studied so far we observe
only order parameter distributions that are compatible with
weakly correlated systems (i.e., far from the critical point). It
may be that the general survey of a wide range of data presented
here is not sufficiently detailed to reveal such features, or
that data taken in small bombarding energy steps around the
“transition energy” is necessary to track the evolution of the
order parameter distribution. Such additional data for the Xe +
Sn system have been measured recently and are currently under
analysis. It is our feeling that the present work constitutes a
solid basis for further study of the question of criticality in
nuclear multifragmentation data.
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Femmes Diplômées des Universités.

[1] R. T. de Souza et al., Phys. Lett. B268, 6 (1991).
[2] D. R. Bowman et al., Phys. Rev. Lett. 67, 1527 (1991).
[3] C. Ogilvie et al., Phys. Rev. Lett. 67, 1214 (1991).
[4] M. B. Tsang et al., Phys. Rev. Lett. 71, 1502 (1993).
[5] G. F. Peaslee et al., Phys. Rev. C 49, 2271(R) (1994).
[6] G. Bertsch and P. J. Siemens, Phys. Lett. B126, 9 (1983).
[7] G. Fai, L. P. Csernai, J. Randrup, and H. Stocker, Phys. Lett.

B164, 265 (1985).
[8] G. Peilert et al., Phys. Rev. C 39, 1402 (1989).

[9] J. E. Finn et al., Phys. Rev. Lett. 49, 1321 (1982).
[10] R. W. Minich, Phys. Lett. B118, 458 (1982).
[11] M. E. Fisher, Physics 3, 255 (1967).
[12] W. Friedman and W. G. Lynch, Phys. Rev. C 28, 16 (1983).
[13] R. J. Charity et al., Nucl. Phys. A483, 371 (1988).
[14] D. Durand et al., Nucl. Phys. A541, 266 (1992).
[15] W. J. Llope et al., Phys. Rev. C 51, 1325 (1995).
[16] W. Friedman, Phys. Rev. C 42, 667 (1990).
[17] D. H. E. Gross, Rep. Prog. Phys. 53, 605 (1990).

034607-15



J. D. FRANKLAND et al. PHYSICAL REVIEW C 71, 034607 (2005)

[18] J. P. Bondorf, A. S. Botvina, A. S. Iljinov, I. N. Mishustin, and
K. Sneppen, Phys. Rep. 257, 133 (1995).

[19] X. Campi, Phys. Lett. B208, 351 (1988).
[20] A. Mekjian et al., Phys. Rev. C 58, 3627 (1998).
[21] J. Richert and P. Wagner, Phys. Rep. 350, 1 (2001).
[22] L. G. Moretto and G. J. Wozniak, Annu. Rev. Nucl. Part. Sci.

43, 379 (1993).
[23] B. Lott et al., Phys. Rev. Lett. 68, 3141 (1992).
[24] J. Toke et al., Phys. Rev. Lett. 75, 2920 (1995).
[25] J. F. Dempsey et al., Phys. Rev. C 54, 1710 (1996).
[26] G. J. Kunde et al., Phys. Rev. Lett. 77, 2897 (1996).
[27] Y. Larochelle et al., Phys. Rev. C 53, 823 (1996).
[28] N. Marie et al. (INDRA Collaboration), Phys. Lett. B391, 15

(1997).
[29] J. Łukasik et al. (INDRA Collaboration), Phys. Rev. C 55, 1906

(1997).
[30] R. Nebauer et al. (INDRA Collaboration), Nucl. Phys. A658, 67

(1999).
[31] E. Plagnol et al. (INDRA Collaboration), Phys. Rev. C 61,

014606 (1999).
[32] T. Lefort et al. (INDRA Collaboration), Nucl. Phys. A662, 397

(2000).
[33] B. Djerroud et al., Phys. Rev. C 64, 034603 (2001).
[34] J. D. Frankland et al. (INDRA Collaboration), Nucl. Phys. A689,

905 (2001).
[35] J. D. Frankland et al. (INDRA Collaboration), Nucl. Phys. A689,

940 (2001).
[36] B. Borderie et al. (INDRA Collaboration), Phys. Rev. Lett. 86,

3252 (2001).
[37] N. Bellaize et al. (INDRA Collaboration), Nucl. Phys. A709,

367 (2002).
[38] J. Colin et al. (INDRA Collaboration), Phys. Rev. C 67, 064603

(2003).
[39] J. L. Charvet, R. Dayras, D. Durand, O. Lopez, D. Cussol,
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