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Expressions for the number of J = 0 pairs in even-even Ti isotopes
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We count the number of pairs in the single-j-shell model of 44Ti for various interactions. For a state of total
angular momentum I, the wave function can be written as � = ∑

JP JN
D(JP JN )[(j 2)JP

(j 2)JN
]I , where D(JP JN )

is the probability amplitude that the protons couple to JP and the neutrons to JN . For I = 0 there are three states
with (I = 0, T = 0) and one with (I = 0, T = 2). The latter is the double analog of 44Ca. In that case (T = 2),
the magnitude of D(JJ ) is the same as that of a corresponding two-particle coefficient of fractional parentage.
In counting the number of pairs with an even angular momentum J, we find a new relationship is obtained by
diagonalizing a unitary nine-j symbol. We are also able to get results for the “no-interaction” case for T = 0
states, for which it is found, e.g., that there are fewer (J = 1, T = 0) pairs than on the average. Relative to this
no-interaction case, we find that for the most realistic interaction used there is an enhancement of pairs with
angular momentum J = 0, 2, 1, and 7, and a depletion for the others. Also considered are interactions in which
only the (J = 0, T = 1) pair state is at lower energy, interactions where only the (J = 1, T = 0) pair state
is lowered, interactions where both are equally lowered, and the Q · Q interaction. We are also able to obtain
simplified formulas for the number of J = 0 pairs for the I = 0 states in 46Ti and 48Ti by noting that the unique
state with isospin |Tz| + 2 is orthogonal to all the states with isospin |Tz|.
DOI: 10.1103/PhysRevC.71.034317 PACS number(s): 23.40.Hc, 21.60.−n, 27.40.+z

I. INTRODUCTION

The plan in this work is to obtain, wherever possible,
simplified expressions for the number of pairs of particles
of a given angular momentum J12 in the Ti isotopes in
a single-j-shell model. We shall show that such simplified
expressions can be obtained for all even-J12 pairs in 44Ti and
for all J12 = 0 pairs in 44Ti, 46Ti, and 48Ti. In a previous
work [1], we calculated the number of pairs but did not derive
simple expressions for a given J12. Also in this work, unlike
the previous one, we compare our results with what we call
the no-interaction case, which will be described later.

In the single-j-shell model, 44Ti consists of two valence
protons and two valence neutrons in the f7/2 shell. The allowed
states for two identical particles have angular momenta J =
0, 2, 4, and 6 and isospin T = 1. For a neutron-proton pair, we
can have these and also states of isospin T = 0 with angular
momenta J = 1, 3, 5, and 7. In other words, for even J the
isospin is 1 and for odd J the isospin is 0.

The wave function of a given state of total angular
momentum I can be written as

� =
∑
JP JN

DI (JP JN )
[(

j 2
π

)JP
(
j 2
ν

)JN
]I

. (1.1)

In the above, D(JP JN ) is the probability amplitude that the
protons couple to angular momentum JP and the neutrons to
JN . The normalization condition is

∑
JP JN

[DI (JP JN )]2 = 1, (1.2)

and the orthonormality condition is∑
α

Dα(JP JN )Dα(J ′
P J ′

N ) = δJP J ′
P
δJN J ′

N
, (1.3)

where the sum is over the different eigenfunctions.
For states of angular momentum I = 0, JP must be equal

to JN (JP = JN ≡ J ) such that

�(I = 0) =
∑

J

D(JJ )
[(

j 2
π

)J (
j 2
ν

)J ]0
. (1.4)

In the single-j-shell configuration of 44Ti, there are three
I = 0 states of isospin T = 0 and one of isospin T = 2. The
latter is the double analog of a state in 44Ca, i.e., of a state of
four neutrons in the f7/2 shell. For the unique (I = 0, T = 2)
state in 44Ti, the magnitudes of the D(JJ )’s are the same as
those of two-particle coefficients of fractional parentage,

D(JJ )(I=0, T =2) = [j 2Jj 2J |}j 40]. (1.5)

We thus have for (I = 0, T = 2),

D(00) = 0.5, D(22) = −0.3727,
(1.6)

D(44) = −0.5, D(66) = −0.600.

For the (I = 0, T = 0) states, however, the D’s do depend
on the interaction. We show in Table I the values of the D(JJ )’s
for the lowest energy state for the following interactions:

A. (J = 0, T = 1) pairing. All two-particle states are degen-
erate except (J = 0, T = 1), which is lowered relative to
the others.

B. (J = 1, T = 0) pairing. Only (J = 1, T = 0) is lowered.
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TABLE I. Wave functions D(JJ ) of 44Ti for various interactions:
A. (J = 0, T = 1) pairing; B. (J = 1, T = 0) pairing; C. equal J =
0, J = 1 pairing; D. Q · Q interaction; E. spectrum of 42Sc.

D(JJ ), ground state T = 0 D(JJ ), T = 2

A B C D E Any interaction

J = 0 0.866 0.380 0.826 0.7069 0.7878 0.5
J = 2 0.213 0.688 0.405 0.6863 0.5617 −0.3727
J = 4 0.289 0.416 0.373 0.1694 0.2208 −0.5
J = 6 0.347 −0.457 0.126 0.0216 0.1234 −0.6009

C. Equal J = 0 and J = 1 pairing. Both (J = 0, T = 1) and
(J = 1, T = 0) are lowered by the same amount.

D. Q · Q interaction.
E. Spectrum of 42Sc.

Interaction E is the same as the McCullen, Bayman,
and Zamick (MBZ) calculation [2], except that the correct
spectrum of 42Sc is used (some of the T = 0 states were not
known in 1964). We equate the matrix elements〈

(f7/2)2
J

∣∣V ∣∣(f7/2)2
J

〉
(1.7)

with E(J ), the excitation energy of the lowest state of angular
momentum J in 42Sc. The experimental values for J = 0
to J = 7 are (in MeV) 0.0, 0.6111, 1.5863, 1.4904, 2.8153,
1.5101, 3.2420, and 0.6163, respectively. Note that the three
lowest states have angular momenta J = 0, 1, 7. One can
add to all those numbers a constant equal to the pairing
energy E(42Sc) + E(40Ca) − E(41Sc) − E(41Ca). The value
is −3.182 MeV. However, adding this constant will not affect
the spectrum or wave functions of 44Ti. Note that for the even-J
states of 42Sc, the isospin is 1, while for the odd-J states the
isospin is 0. The eigenvalues and eigenfunctions of interaction
E are given in Table II.

II. NUMBER OF PAIRS IN 44Ti

In this work we will use notation A for the number of
valence nucleons and n for the number of valence neutrons.
For Ti isotopes, A = n + 2.

As previously noted [1] for a system of A valence nucleons
with total isospin T, we have the following result for the
number of pair states:
� Total number of pair states is A(A − 1)/2.

TABLE II. Excitation energies in MeV and eigenvectors of the
spectrum of 42Sc interaction.

Eigenvectors

Exc. energies 0.0000 5.4861 8.2840 8.7875
D(JJ )

D(00) 0.78776 −0.35240 −0.50000 −0.07248
D(22) 0.56165 0.73700 0.37268 −0.04988
D(44) 0.22082 −0.37028 0.50000 0.75109
D(66) 0.12341 −0.44219 0.60093 −0.65432

� Number with isospin T12 = 0 is A2/8 + A/4 − T (T +
1)/2.

� Number with isospin T12 = 1 is 3A2/8 − 3A/4 + T (T +
1)/2.
Hence, for the T = 0 state of 44Ti (A = 4) we have three

T12 = 0 pairs and three T12 = 1 pairs. For the T = 2 state,
however, we have six T12 = 1 pairs. The important thing to note
is that the number of pairs does not depend on the two-body
interaction, except for the fact that it conserves isospin.

In 44Ti the number of pairs (nn, pp, and np) with total
angular momentum J12 (J12 = 0, 1, 2, 3, 4, 5, 6, 7) is given
by

2 |D(J12J12)|2 δJ12, even + |f (J12)|2, (2.1)

with

f (J12) = 2
∑
JP

U9j (JP , J12)D(JP JP ), (2.2)

where we introduce the abbreviated symbol U9j to represent
the unitary nine-j symbol, which can also be written in terms
of a six-j symbol,

U9j (JP J12) = 〈(j 2)JP (j 2)JP |(j 2)J12(j 2)J12〉0

= (2JP + 1)(2J12 + 1)

{
j j JP

j j JP

J12 J12 0

}

= (−1)1+JP +J12
√

(2JP + 1)(2J12 + 1)

×
{

j j JP

j j J12

}
. (2.3)

A derivation of the results up to now in this section is given
in the Appendix. Since the last publication [1], we have found
a relationship which in some cases simplifies the expression.
The relationship pertains only to even J12∑

JP

U9j (JP J12)D(JP JP ) = D(J12J12)/2 for T = 0,

= −D(J12J12) for T = 2.

(2.4)

Some useful relationships that we exploit to get this result are∑
J12

U9j (JP J12)U9j (J ′
P J12) = δJP , J ′

P
, (2.5)

∑
J12

U9j (JP J12)U9j (J ′
P J12)(−1)J12 = −(−1)JP −J ′

P U9j (JP J ′
P ).

(2.6)

Relationship (2.4) does not depend upon which isospin
conserving interaction is used. Using this result for even values
of J12, we find

|f (J12)|2 = |D(J12J12)|2 , (2.7)

and hence

number of nn pairs = number of pp pairs

= number of np pairs = D(J12 J12)2.

(2.8)
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One way of looking at Eq. (2.4) is to say that we can also
write the wave function as

N
∑

J, even

D(JJ )[(π (1)ν(2))J (π (3)ν(4))J ]I=0, (2.9)

where N is a normalization factor.
We do not have a corresponding simple expression for odd

J12. However, the total number of odd-J12 pairs must be equal
to 3, the same as the total number of even-J12 pairs.

We can prove relationship (2.4) by regarding the unitary
nine-j symbol as a four-by-four matrix where JP and J12

assume only even values (0, 2, 4, 6), despite the fact that J12

can also assume odd values. The eigenvalues of this matrix
are −1 (singly degenerate) and 0.5 (triply degenerate). The
eigenvalue −1 corresponds to the (J = 0, T = 2) state of 44Ti,
and indeed the values of D(JJ ) are identical to those obtained
with a charge-independent Hamiltonian and are given in the
last column of Table I. As previously mentioned, these are the
two-particle coefficients of fractional parentage [1].

The triple degeneracy with eigenvalue 0.5 corresponds to
the three T = 0 states being degenerate with this unitary nine-
j Hamiltonian. This means that any linear combination of
the three T = 0 states is an eigenvector. We can obtain the
eigenvalues above without an explicit diagonalization. This is
shown in Sec. IV.

A. Results for the (I = 0, T = 2) state

Because the (I = 0, T = 2) state is unique, we will give
the results for this case first. Since the 44Ti T = 2 state is
the double analog of 44Ca [3], a system of four identical
particles, each pair must have even J12. The number of pairs is
6|[(j 2)J12(j 2)J12|}j 40]|2, i.e., proportional to the square of the
two-particle coefficient of fractional parentage. The number of
pairs is 1.5 for J12 = 0 and (2J12 + 1)/6 for J12 = 2, 4, 6. This
is also the result for 44Ca. Hence, even though the I = 0 ground
state of 44Ca has angular momentum zero and seniority zero,
there are more J12 = 6 pairs in 44Ca than there are J12 = 0
pairs. This should not be surprising. As noted by Talmi [4]
for the simpler case of a closed neutron shell, i.e. 48Ca, the
number of pairs with angular momentum J is equal to 2J + 1.
There is only one J = 0 pair in 48Ca.

B. Number of pairs for all states

We can count the number of pairs for all four I = 0 states
(three with isospin T = 0 and one with T = 2). Using the
orthonormality condition (1.3), we eliminate the D’s and find

(number of pairs)/4 = 1
2δJ12, even + 1

2 [1 − U9j (J12J12)].

(2.10)

The values for T12 = 1 are 0.9375 for J12 = 0; 0.8542 for
J12 = 2; 0.9375 for J12 = 4; and 1.0208 for J12 = 6. The total
sum is 3.75.

The values for T12 = 0 are 0.3244 for J12 = 1; 0.6761 for
J12 = 3; 0.7494 for J12 = 5; and 0.5001 for J12 = 7. The total
sum is 2.25.

TABLE III. Number of pairs for the T = 0 state of 44Ti with
various interactions: A. (J = 0, T = 1) pairing; B. (J = 1, T =
0) pairing; C. equal J = 0, J = 1 pairing; D. Q · Q interaction;
E. spectrum of 42Sc; F. no interaction. In G, we give the number
of pairs for the T = 2 state.

A B C D E F G

J12 = 0 2.250 0.433 2.045 1.499 1.862 0.750 1.500
J12 = 2 0.139 1.420 0.492 1.413 0.946 0.861 0.833
J12 = 4 0.250 0.320 0.416 0.086 0.146 0.750 1.500
J12 = 6 0.361 0.626 0.048 0.001 0.046 0.639 2.167
J12 = 1 0.250 1.297 0.618 0.834 0.675 0.432 –
J12 = 3 0.583 0.388 0.165 0.156 0.271 0.902 –
J12 = 5 0.916 0.003 0.564 0.013 0.159 1.000 –
J12 = 7 1.250 1.311 1.654 1.996 1.895 0.667 –

C. Results for the T = 0 ground state of 44Ti including the
no-interaction case

In Table III we give results for the number of pairs for the
five interactions A–E defined in Sec. I. We also consider the
no-interaction case. This value is obtained by finding the total
number of pairs for all three T = 0 states and dividing by
three.

It should be noted that for odd angular momentum J12, the
pair must consist of one proton and one neutron. For even J12,
one third of the pairs consists of two protons, one third of two
neutrons, and one third of one neutron and one proton. We
start with the no-interaction result in column F. Since there are
six pairs and eight J12’s, if there were an equal distribution,
then we could assign 0.75 pairs to each angular momentum.
This serves us as a good basis for comparison. We find that
even in the no-interaction case, the results depend on J12. The
minimum number of pairs comes with the (J12 = 1, T12 = 0)
case and is only 0.432. This is of interest because there has
been a lot of discussion in recent times about (J12 = 1, T12 =
0) pairing. We start out at least with a bias against it. The
maximum number of pairs in the no-interaction case is for
(J12 = 5, T12 = 0), a mode that has largely been ignored.

However, of greater relevance is what happens to the
ground-state wave function when the interaction is turned on.
Therefore, we compare the no-interaction case with case E,
the Spectrum of 42Sc interaction. We see striking differences.
Relative to the no-interaction case, case E has an increase in
the following number of pairs: (a) J12 = 0 from 0.75 to 1.8617;
(b) J12 = 2 from 0.861 to 0.9458; (c) J12 = 1 from 0.432 to
0.6752; and (d) J12 = 7 from 0.667 to 1.8945. Since the sum
of all pairs in both cases is 6, there must be a decrease in the
number of pairs with the other angular momenta, and there
is. For example, the number of J12 = 6 pairs decreases from
0.639 to 0.0457, and the number of J12 = 5 pairs from 1.00 to
0.1587. There is also a large decrease in the number of pairs
for J12 = 4 and J12 = 3.

The results with the Q · Q interaction concerning the pairs
distribution with odd angular momenta are qualitatively similar
to the correct spectrum of 42Sc. It is remarkable that the number
of pairs with J12 = 0 is almost equal to that of pairs with
J12 = 2. The number of pairs of other angular momenta is
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almost negligible. Thus the total number of J = 0, 2 pairs is
2.91 out of the total of 3 even pairs.

Looking at the wave functions for Q · Q (case D) and the
realistic interaction (case E) in Table I, we see the dominance
of J = 0 and 2 couplings for neutrons and protons. The
percentages of the higher angular momentum couplings (J =
4 and 6) are only 2.9% for Q · Q and 6.4% for the realistic
case E. This is in accord with the interacting boson model
IBM2 [5] where only s and d bosons are considered. With the
simpler schematic interactions A and B, the percentages are
much higher.

We next look at the schematic interactions A–C in the first
three columns of Table III. For the (J = 0, T = 1) pairing
interaction, there are a lot of J12 = 0 pairs (2.25) but very few
J12 = 1 pairs (0.250). The number of J12 = 7 pairs is fairly
large (1.250).

For case B, the (J = 1, T = 0) pairing interaction, there
are, as expected, a lot of J12 = 1 pairs (1.297) and relatively
few J12 = 0 pairs (0.433). But still there is a substantial number
of J12 = 7 pairs (1.311). However, if we examine the wave
function for this case it is very different from that of the correct
spectrum of 42Sc, and this case represents a rather unrealistic
ground-state wave function.

For case C, corresponding to equal (J = 0, T = 1) and
(J = 1, T = 0) pairing, we get much better agreement in the
wave function compared with case E. The number of J12 = 0
pairs is 2.043 as compared with 1.862 for case E. For J12 = 1
the values are 0.618 and 0.675, and for J12 = 7 they are 1.654
and 1.895. Amusingly, when we lower the J = 0 and 1 matrix
elements together we get more J12 = 7 pairs than we do when
we lower each one separately (1.250 and 1.311). There is one
main deficiency in the (J = 0 + J = 1) case: the number of
(J = 2, T = 0) pairs is only 0.492 as compared with 0.9458
for the spectrum of 42Sc case. The enhancement is undoubtedly
due to the quadrupole correlations in the nucleus, an important
ingredient that is sometimes forgotten when all the emphasis is
on (J = 0, T = 1) and (J = 1, T = 0) pairing. However, if
one restricts oneself to (J = 0, T = 1) and (J = 1, T = 0),
then equal admixtures in the interaction yield much more
realistic results than either of them yields singly.

For the T = 2 state of 44Ti, the double analog of 44Ca (a
system of particles of one kind), the number of J = 6 pairs
is the largest. This suggests that the more deformed the state
(and the T = 0 ground state of 44Ti is certainly more deformed
than the ground state of 44Ca), the lower the number
of high angular momentum pairs with the exception of
J (maximum) = 7. Or to put it in another way, the more
spherical the state, the higher the number of high angular
momentum pairs. It is interesting that for the T = 2 excited
state, only the T = 1 pairs can contribute to excite the system.
Therefore, the six pairs distributed in the ground state among
eight angular momenta (J12 = 0, 1, 2, 3, 4, 5, 6, 7) are dis-
tributed in the excited state among four even angular momenta
(J12 = 0, 2, 4, 6). Note that they are not distributed uniformly
but with weights depending on the angular momentum carried
by the pair. Thus, the number of pairs in the states of angular
momenta equal to 0 and 4 increases by a factor of 2 when
compared with those corresponding to the no-interaction case,
while for J12 = 6 the factor is 3.391. Note that the number

of pairs with angular momentum equal to 2 is decreased. For
the T = 2 case, the number of pairs is independent of the
interaction in the single j shell.

From a previous study of two-to-one relationships between
the excitation energies for double and simple analog states
in the shell f7/2 [2,3,6], it is noted that if we write the wave
function for 43Ti (43Sc) as

ψI =
∑
JP

C(JP )[(j 2)JP jν]I ,

then the C(JP )’s for the I = j states are identical to the
D(JP JP )’s for corresponding I = 0 states in 44Ti and the
eigenvalues are one half of those. From this it follows that
the number of pairs of a given J12 for 43Ti in a single-j-shell
calculation is one half of those in Table III.

III. NUMBER OF J12 = 0 PAIRS IN 44Ti, 46Ti, AND 48Ti

In this section we show that with further development, we
can obtain the number of (J12 = 0, T12 = 1) pairs not only in
44Ti, but also in 46Ti and 48Ti.

A. np pairs

We let n be the number of valence neutrons in a given Ti
isotope. For 44Ti, 46Ti, and 48Ti, n = 2, 4, and 6, respectively.
Of course, the number of valence nucleons is A = n + 2.

The wave function for a state with total angular momentum
I = 0 is

ψI=0 =
∑

D(J Jv)[(j 2)J (jn)Jv]I=0. (3.1)

Here v is the seniority quantum number. In the Ca isotopes
there is only one state for each Jv pair. In 42Ca we have Jv

pairs (00), (22), (42), and (62). In 44Ca they are (00), (22),
(42), (62), (24), (44), (54), and (84). In 46Ca they are (00),
(22), (42), and (62).

For states with total angular momentum I = 0 in the
even-even Ti isotopes, the possible isospins in the single-j-
shell model space are Tmin = |N − Z|/2 and Tmax = Tmin + 2.
There are no I = 0 states with T = Tmin + 1.

Thus, for 44Ti we have three I = 0 states with isospin T = 0
and one with isospin T = 2; for 46Ti, five with isospin
T = 1 and one with isospin T = 3; for 48Ti, three with isospin
T = 2 and one with isospin T = 4.

The formula for the number of np pairs with angular
momentum J12 in a state of total angular momentum I = 0 is

Nnp(J12) = 2n

∣∣∣∣∣
∑

J

D(JJv)[jn−1(J0)j |}jnJv]

×
√

(2J + 1)(2J12 + 1)

{
j j J

j J0 J12

} ∣∣∣∣∣
2

. (3.2)

In (3.2), we have a coefficient of fractional parentage (cfp)
which is needed to separate one neutron from the others. The
six-j symbol is needed, of course, to combine this neutron with
a proton in order to form an np pair with angular momentum
J12. For 44Ti the cfp is unity, so the expression is simpler.

034317-4



EXPRESSIONS FOR THE NUMBER OF J = 0 PAIRS IN . . . PHYSICAL REVIEW C 71, 034317 (2005)

Note that for each of the even-even Ti isotopes that we are
considering, there is only one state with isospin Tmax = Tmin +
2. Because such a state is a double analog of a corresponding
state for a system of identical particles, i.e., neutrons only in the
Ca isotopes, the amplitudes D(JJv) of the Tmax column vector
are known. They are two-particle coefficients of fractional
parentage

DI=0,Tmax (JJv) = [jnJj 2J |}jn+20]. (3.3)

The two-particle cfp for the Ca isotope separates a system
of (n + 2) neutrons into one of two neutrons and one of n
neutrons. In the Ti isotopes, we separate (n + 2) nucleons into
two protons and n neutrons.

We have also found in the past an identity that relates the
above two-particle cfp to a one-particle cfp

[jn(J )j |}jn+1j ] = [jnJj 2J |}jn+20]. (3.4)

Now the Tmin states must be orthogonal to the Tmax states.
Thus, we get two conditions:

Orthogonality:
∑

J

DI=0,Tmin (JJ )[jn(J )j |}jn+1j ] = 0,

(3.5)

Normalization:
∑

J

DI=0,Tmax (JJ )[jn(J )j |}jn+1j ] = 1.

(3.6)

We can use these conditions to get the number of (J12 = 0,
T12 = 1) pairs in one of the above Ti isopotes. To do so, we
find useful the following explicit formulas for cfp from de
Shalit and Talmi [7] and Talmi [4]:

[jn−1(jv = 1)j |}jnJ = 0v = 0] = 1, (3.7)

[jn−1(jv = 1)j |}jnJv = 2] =
√

2(2j + 1 − n)

n(2j − 1)
, (3.8)

[jn(J = 0v = 0)j |}jn+1jv = 1] =
√

(2j + 1 − n)

(n + 1)(2j + 1)
, (3.9)

[jn(Jv = 2)j |}jn+1jv = 1] = −
√

2n(2J + 1)

(n + 1)(2j + 1)(2j − 1)
.

(3.10)

Alternatively we can use explicit expressions for two-particle
cfp’s given by Lawson (his A5.57 and A5.58 equations in [8]).
They are

[jn(J = 0, v = 0)j 20|}jn+20v = 0]

=
{

2j + 1 − n

(n + 1)(2j + 1)

}1/2

, (3.11)

[jn(J, v = 2)j 2J |}jn+2Jv = 0]

= −
{

2n(2J + 1)

(n + 1)(2j + 1)(2j − 1)

}1/2 {
1 + (−1)J

2

}
.

(3.12)

We define M = ∑
J�2 D(JJ )

√
(2J + 1). From Eqs. (3.5),

(3.6), (3.9), and (3.10) we find√
(2j + 1 − n)

(n + 1)(2j + 1)
D(00) − M

√
2n

(n + 1)(2j + 1)(2j − 1)

= 0, T = Tmin,

= 1, T = Tmax. (3.13)

We find D(00) = M/3 for 44Ti, M/
√

3 for 46Ti, and M for 48Ti.
Now the number of pairs with angular momentum J12 = 0 can
be obtained from Eq. (3.2).

Number of pairs (J12 = 0) = 2n

(2j + 1)2

×
∣∣∣∣∣
∑

J

D(JJv)[jn−1(jv = 1)j |}jnJv]
√

(2J + 1)

∣∣∣∣∣
2

. (3.14)

By using the explicit form of the cfp’s in Eqs. (3.9) and (3.10),
we can obtain the following relation from Eq. (3.13). For T =
Tmin,

D(00) = n

(2j + 1)

∑
J

D(JJv)[jn−1(jv = 1)j |}jnJ ]

×
√

(2J + 1). (3.15)

This fits in very nicely into Eq. (3.2) to give us one of our main
results,

Case 1: T = Tmin number of np pairs (J12 = 0)

= 2|D(00)|2
n

, (3.16)

i.e., |D(00)|2, |D(00)|2/2, and |D(00)|2/3 for 44Ti, 46Ti, and
48Ti, respectively. For T = Tmax, we use the second part of
Eq. (3.13) to obtain

Case 2: T = Tmax number of np pairs (J12 = 0)

= 2n|D(00)|2 = 2n(2j + 1 − n)

(2j + 1)(n + 1)
. (3.17)

Note that for 48Ti (T = 4), the number of all (nn, pp,

and np) J = 0 pairs is 1, the same as for 48Ca. A similar
problem of counting the pairs in a single j shell was earlier
addressed in Ref. [9]. Before closing this section, we would
like to compare the results obtained in the present paper with
those in [9].

In 1996 Engel, Langanke, and Vogel [9] worked out the
number of JA pairs in a single j shell for an isovector (JA =
0, T = 1) pairing interaction. Their main results for nuclei
with ground state with isospin T = |T3| = |(N − Z)/2| are

〈Nnp〉 = N − T3

2T3 + 3

(
1 − N − T3 − 3

2�

)
,

〈Npp〉 = (T3 + 1)〈Nnp〉, (3.18)

〈Nnn〉 = 〈Npp〉 + T3

(
1 − N − 1

�

)
.

In (3.18), N is half of the total number of particles [in our
notation, N = (n + 2)/2] and � = (2j + 1)/2. Their result
[9] is exact for the (J12 = 0, T = 1) pairing interactions, and
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the formulas clearly show what whould happen if we dropped
terms in 1/�. However, we obtain results for any isospin
conserving interaction. For 44Ti we obtain simple results for
any even-J12 pair, not just for J12 = 0. For 46Ti and 48Ti,
we obtain simple results for J12 = 0 only. We can show that
our results, where they overlap, agree with those of Engel
et al. [9]. Indeed, as can be seen in our Table I, the value
of D(J12 J12) for J12 = 0 is 0.866 for the isovector pairing
interaction. This number is more precisely

√
3/4. Thus we

claim that the number of J12 = 0 pairs with this interaction
is 3/4. This is what their formula for 〈Nnp〉 yields for N =
Z, T = 0, and � = 2j+1

2 = 4. For T = 2 the number of even-
JA pairs that we get is 1.5 for J12 = 0 and (2J12 + 1)/6 for
J12 = 2, 4, and 6. However, Ref. [9] does not give formulas
for the T = T3 + 2 case.

B. nn pairs

For the case of 46,48Ti, the number of nn pairs with angular
momentum JB can be obtained by means of the following
expression:

∑
JA vA

∑
Jvv′

D0(JJv)D0(JJv′)
n(n − 1)

2
[jn−2JA vAj 2JB |}jnJv]

× [jn−2JAvAj 2JB |}jnJv′]. (3.19)

For JB = 0, we can get a simpler formula with the help of an
equality that we can find in de Shalit and Talmi [7],

[jn−2Jvj 20|}jnJv]2 = (n − v)(2j + 3 − n − v)

n(n − 1)(2j + 1)
, (3.20)

with 2j + 1 − v � n � v + 2. Thus,

number of nn pairs (JB = 0) = 1

2(2j + 1)

×
∑
Jv

|D0(JJv)|2(n − v)

× (2j + 3 − n − v). (3.21)

So, for 46Ti, we get

number of nn pairs = 1

2

{
3|D0(00)|2

+
∑

J=2,4,6

|D0(J Jv = 2)|2
}

. (3.22)

For 48Ti, because of the normalization of the wave function,
we get a simpler expression:

number of nn pairs = |D0(00)|2 + 0.5. (3.23)

And for 44Ti, we already know the number of nn pairs
coupled to J = 0 from Eq. (2.8):

number of nn pairs = |DI=0(00)|2. (3.24)

C. pp pairs

For all three cases (44,46,48Ti), the expression for the number
of pp pairs coupled to angular momentum JB is the same:
|DI=0(JBJB)|2. Thus, for J = 0 pairs, we have

number of pp pairs (J = 0) = |DI=0(00)|2. (3.25)

IV. UNIFYING THE APPROACHES OF SEC. II,
SEC. III, AND OTHER WORKS

In Sec. II we have in Eq. (2.4) an eigenvalue equation for
the D(JJ )’s where the linear operator is a nine-j symbol
(or actually a six-j symbol), whereas in Sec. III we have
somewhat similar-looking equations derived from the fact that
Tmin and Tmax states are orthogonal, but the linear operator is
a coefficient of fractional parentage.

We can unify these two approaches by using a recursion
relation for cfp’s derived by Redmond [10]:

m[jm−1(α0J0)j |}jmJ ][jm−1(αJ )j |}jmJ ]

= δαα0δJJ0 + (m − 1)
√

(2J0 + 1)(2J + 1)

×
∑
J2α2

{
J2 j J1

J j J0

}
(−1)J0+J1 [jm−2(α2J2)j |}jm−1α0J0]

× [jm−2(α2J2)j |}jm−1α1J1]. (4.1)

In particular, for m = 3 we obtain the following expression for
the unitary six-j symbol:√

(2J + 1)(2J ′ + 1)

{
j j J ′
j j J

}

= −δJJ ′

2
+ 3

2
[j 2(J )j |}j 3jv = 1]

× [j 2(J ′)j |}j 3jv = 1]. (4.2)

From the fact that the eigenvalues obtained from the orthogo-
nality of Tmin and Tmax states and the orthonormality of Tmax

states as seen in Eqs. (3.5) and (3.6) are 0 and 1, we see that
the eigenvalues of the unitary six-j symbol are −1/2 and 1.
The latter results were, of course, shown in Sec. II.

It is very interesting to note that Rosensteel and Rowe [11]
also found the need to diagonalize the above unitary six-j
symbol [left-hand side of Eq. (4.2)]. They were addressing a
problem different from ours. Whereas we are dealing with a
system of both neutrons and protons, they were considering
only particles of one kind, i.e., only neutrons. Whereas we
are addressing the number of np pairs of a given angular
momentum, they were addressing the problem of the number
of seniority conserving interactions in a single j shell. But the
diagonalization of the same unitary six-j comes into play in
both problems.

V. CLOSING REMARKS

In this work, we studied the effects of the nucleon-
nucleon interaction on the number of pairs of a given angular
momentum in 44Ti. We found that, as expected, the more
attractive the nucleon-nucleon interaction is in a state with
angular momentum J, the more pairs of that given J will
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be found in 44Ti. As a basis of comparison, we defined the
no-interaction case in which we averaged over all three T = 0
states (in the single-j-shell approximation) in 44Ti. Even in this
case, the number of J pairs is not independent of J, and there
are, for example, less J = 1 pairs than the average (0.432 vs.
6/8 = 0.75). When the realistic interaction is turned on, one
gets, relative to this no-interaction case, an increase in the
number of J = 0, 1, 2, and 7 pairs and a decrease in the
others. This is in accord with the fact that in 42Sc the states
with angular momentum J = 0, 1, 2, and 7 are lower than the
others.

The number of pairs obviously is relevant to two-nucleon
transfer experiments, and we plan to address this more explic-
itly in the near future. For example, the pickup of an np pair in
44Ti to the J = 1 state in 42Sc will be enhanced, relative to the
no-interaction case, by a factor of (0.675/0.432)2. Although
44Ti is radioactive, such experiments, as well as transfer
reactions, are feasible. Indeed, there are approved proposals
by a Berkeley group to perform the reaction 3He(44Ti, p)46V.

In the course of performing this work, we found a
relationship between the wave function coefficients D(J Jv)
for the even-even Ti isotopes by exploiting the fact that, in the
single j shell, the unique state with isospin Tmax is orthogonal
to all the states with isospin Tmin [Eqs. (3.5) and (3.6)]. This
enabled us to greatly simplify the expression for the number
of np pairs with angular momentum J12 = 0 in the even-even
Ti isotopes.

In the near future, we intend to extend this analysis for a
single shell with large angular momentum and an arbitrary
number Z = N of protons and neutrons. This would allow
us to study the competition between the T = 1 and 0 pairing
interactions in the structure of the ground state in the medium
mass nuclei.

The competition betwen T = 0 and 1 pairs in the ground
state might be best studied with a particle and isospin projected
generalized BCS function derived by two of us (A.A.R. and
E.M.G.) in Ref. [12]. This project is under way, and we hope to
have then a more fair comparison between various approaches.
However, based on the present results, we may say that while
in the ground state the number of T = 1 and 0 pairs are equal
to each other, in the T = 2 state the number of T = 1 pairs
prevails over that of the T = 0 pairs, which is equal to zero.
Thus, in the present case the change in the wave function from
a mixed state of T = 0 and 1 pairs to a pure state of T = 1
pairs is achieved by exciting the system from a T = 0 ground
state to a T = 2 state.
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I. APPENDIX: THE NUMBER OF PAIRS OF
A GIVEN ANGULAR MOMENTUM IN

THE SINGLE- j SHELL IN 44Ti

In the single-j shell, there are eight two-body interaction
matrix elements

E(J ) = 〈
(f7/2)2

J

∣∣V ∣∣(f7/2)2
J

〉
, (A1)

J = 0, 1, . . . , 7. For even J, the isospin is T = 1; for odd
J, T = 0. The energy of a 44Ti state can be written as 〈ψHψ〉.
This can also be written as a linear combination of the eight
two-body matrix elements E(J )

E(44Ti) =
7∑

J=0

CJ E(J ). (A2)

We can identify CJ as the number of pairs in 44Ti with a given
angular momentum J,

〈ψHψ〉 =
∑

D(J ′
P J ′

N )D(JP JN )〈[J ′
P J ′

N ]IH [JP JN ]I 〉,
(A3)〈[J ′

P J ′
N ]IH [JP JN ]I 〉
= [E (JP ) + E (JN )] δJP J ′

P
δJN J ′

N

+ 4
∑
JAJB

〈(j 2)J ′
P (j 2)J ′

N |(j 2)JA(j 2)JB〉I

×〈(j 2)JP (j 2)JN |(j 2)JA(j 2)JB〉IE(JB). (A4)

In the above, the first two terms are the pp and nn interactions
and the last one is the np interaction. The factor of 4 is
used because there are 4 np pairs. The unitary nine-j symbol
recombines a proton and a neutron. Note that JP and JN are
even, but JA and JB can be even or odd.

By identifying the coefficient of E(JB) as the number of
pairs with angular momentum JB , we get the expression for
I = 0 (for which JP = JN )

CJB
= number of JB pairs

= 2[D(JBJB)]2δJB, even

+ 4
∑
JP JN

D(JP JN )〈(j 2)JP (j 2)JN |(j 2)JB(j 2)JB〉0

×
∑
J ′

P J ′
N

D(J ′
P J ′

N )〈(j 2)J ′
P (j 2)J ′

N |(j 2)JB(j 2)JB〉0. (A5)

We can rewrite this as

number of JB pairs = 2 [D(JBJB)]2 δJB, even + |f (JB)|2 ,

(A6)

with

f (JB) = 2
∑
JP JN

D(JP JN )〈(j 2)JP (j 2)JN |(j 2)JB(j 2)JB〉0,

(A7)

and

〈(j1j2)JP (j3j4)JN |(j1j3)JA(j2j4)JB〉I
=

√
(2JP + 1)(2JN + 1)(2JA + 1)(2JB + 1)

×
{

j1 j2 JP

j3 j4 JN

JA JB I

}
. (A8)
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We can get the number of pairs for a given total isospin T
by using a simple interaction a + bt(1) · t(2), where a and b
are constants. The value of this interaction for two particles is

a − 3b/4 for T12 = 0, and
(A9)

a + b/4 for T12 = 1.

For A valence nucleons (A = n + 2 for the Ti isotopes), we
have∑

i<j

(a + bt(i) · t(j )) = a

2
A(A − 1) + b

2

∑
i,j

t(i) · t(j )

− b

2

∑
i

t(i)2

= a

2
A(A − 1) + b

2
T (T + 1) − 3

8
Ab.

(A10)

We can write this as

A0(a − 3b/4) + A1(a + b/4), (A11)

and identify AT12 as the number of pairs with isospin T12. We
then get the result of Sec. II:

A0 = A2

8
+ A

4
− T (T + 1)

2
, (A12)

A1 = 3A2

8
− 3A

4
+ T (T + 1)

2
. (A13)
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