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A new alternative method for evaluating linear response theory is formally developed, and results are presented.
This method involves the time evolution of the system using the time-dependent Hartree-Fock calculation and
is constructed directly on top of a static Hartree-Fock calculation. By Fourier transforming the time-dependent
result, the method extracts the response function and the total probability amplitude. This method allows for
a coherent description of static properties of nuclei, such as binding energies and deformations, while also
providing a method for calculating collective modes and reaction rates. A full three-dimensional cartesian
basis-spline collocation representation is used with several Skyrme interactions. Sample results are presented for
the giant multipole resonances of 16O, 40Ca, and 32S and compared to other calculations.
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I. INTRODUCTION

Typically, linear response theory equations are derived by
adding a specific time-dependent perturbing function to the
Hamiltonian, which is usually harmonic in time, resulting in
a set of random-phase-approximation (RPA)-like equations.
These equations are then solved for a given energy using
several methods (see, for example, Refs. [1–4]) to give the
response of the system to a specific collective excitation mode.

In this paper, a new alternative method is presented to
calculate response theory. A specific time-dependent per-
turbing external piece is added to the static Hamiltonian
to give a time-dependent total Hamiltonian Htot(t). A static
Hartree-Fock (HF) solution is then time evolved using this
Htot(t) in a time-dependent Hartree-Fock (TDHF) calculation.
The time-dependent result is then Fourier transformed to give
the response of the system for all energies. This scheme
recovers both the response spectrum and the total transition
probability amplitude corresponding to a given specific col-
lective mode. Similar analyses of the long-time evolution
of TDHF equations to study collective vibrations have been
utilized in the past [5–9], as have extensions to study the
damping of giant resonances [10,11]. The main advantage
of this approach is that the dynamic response calculation is
constructed directly on top of a static Hartree-Fock calculation,
and hence the static and dynamic calculations are performed
using the same Hamiltonian description. Therefore, there is a
complete consistency between the static ground state of the
system and the response calculations. One can then provide
a coherent description of static properties of nuclei and of
dynamic properties. This is important, for example, in β-decay
calculations of exotic nuclei, where reliable predictions are
very sensitive to the deformation properties of the nucleus [12].
Hence, in this formalism consistent predictions of both the
deformation and reaction-rate properties are possible.

The static and dynamic Hartree-Fock calculations are
performed using a three-dimensional cartesian basis-spline
collocation expansion [13,14]. Basis splines offer the practi-
cality associated with coordinate-space lattice grids while also
providing accurate representations of the gradient operator and
a good description of the continuum.

In Sec. II, the time-dependent evaluation of the response
theory is discussed and shown to give the total transition
probability. Numerical details and sample results are presented
in Sec. III.

II. TIME-DEPENDENT RESPONSE THEORY

The response equations can be derived from a specific time-
dependent perturbation function of the TDHF equations [15].
To begin the proof, a solution to the static Schrödinger equation
is written as

Ĥ |ψs(0)〉 = E|ψs(0)〉. (1)

A time-dependent perturbing function is added to the static
Hamiltonian

Ĥtot = Ĥ + Ĥex(t). (2)

The external piece is defined as

Ĥex(t) = F̂ f (t)

=
[ ∫

d3x n̂(x, t)F (x)

]
f (t), (3)

where n̂(x, t) is the number density operator and F (x)
corresponds to a one-body operator to excite a particular
collective mode. The functions F (x) and f (t) will be chosen
later.

At some time t = t0 the external piece of the Hamiltonian is
turned on such that |ψ̄s(t)〉 is the solution to the time-dependent
Schrödinger equation:

ıh̄
∂

∂t
|ψ̄s(t)〉 = [Ĥ + Ĥex(t)]|ψ̄s(t)〉. (4)

Here the subscript s refers to the Schrödinger picture. A
solution in the following form is then constructed:

|ψ̄s(t)〉 = e−ıĤ t/h̄Â(t)|ψs(0)〉, (5)

where for t � t0, Â(t) = 1. Using Eq. (4), the function Â(t) can
be shown to be a solution to

ıh̄
∂

∂t
Â(t) = Ĥ I

ex(t)Â(t), (6)
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where the superscript I refers to the interaction picture, which
reduces to the Heisenberg picture when Ĥex(t) = 0. The
solution to Eq. (6) can be written iteratively as

Â(t) = 1 − ı

h̄

∫ t

t0

dt ′Ĥ I
ex(t ′) + · · · , (7)

where the state vector is then given by

|ψ̄s(t)〉 = e−ıĤ t/h̄|ψs(0)〉 − ı

h̄
e−ıĤ t/h̄

×
∫ t

t0

dt ′Ĥ I
ex(t ′)|ψs(0)〉 + · · · . (8)

The expectation value of any operator Ô(t) is equal to

〈ψ̄s(t)|ÔS(t)|ψ̄s(t)〉 = 〈ψs(0)|ÔI (t)|ψs(0)〉 + 〈ψs(0)| ı
h̄

×
∫ t

t0

dt ′
[
Ĥ I

ex(t ′), ÔI (t)
] |ψs(0)〉 + · · · . (9)

The linear approximation neglects terms beyond first order in
Ĥ I

ex. The first term in the expansion is trivially the unperturbed
expectation value of the operator in the Schrödinger picture. If
we choose the operator Ô(t) to be the number density operator,
then using Eq. (3), the fluctuation in the density can be defined
as

δ〈̂n(x, t)〉 = 〈ψ̄s(t)|̂nS(t)|ψ̄s(t)〉 − 〈ψs(0)|̂nS(0)|ψs(0)〉
= 〈ψs(0)| ı

h̄

∫ t

t0

dt ′
∫

d3x ′F (x′)f (t ′)

× [̂nI (x′, t ′), n̂I (x, t)]|ψs(0)〉. (10)

The retarded density correlation function is defined as

ıDR(x, t ; x′, t ′) = θ (t − t ′)
〈ψ0|[̃nH (x), ñH (x′)]|ψ0〉

〈ψ0|ψ0〉 , (11)

where ñH = n̂H − 〈̂nH 〉 is the deviation of the number
operator in the Heisenberg picture. The density fluctuation
can be written as

δ〈̂n(x, t)〉 = 1

h̄

∫ ∞

−∞
dt ′

∫
d3x ′DR(x, t ; x′, t ′)F (x′)f (t ′).

(12)
Using the Fourier representation of θ (t − t ′), the Fourier
transform of the density correlation function is

ıDR(x, x′; ω) =
∫ ∞

−∞
d(t − t ′)eıω(t−t ′)ıDR(x, t ; x′, t ′)

=
∑

n

{
〈ψ0 |̃nS(x)|ψn〉〈ψn |̃nS(x′)|ψ0〉

ω − En−E0
h̄

+ ıη

− 〈ψ0 |̃nS(x′)|ψn〉〈ψn |̃nS(x)|ψ0〉
ω + En−E0

h̄
+ ıη

}
, (13)

where |ψn〉 represents the full spectrum of the excited many-
body states of Ĥ . The Fourier transform of the density
fluctuation then becomes

δ〈̂n(x, ω)〉 =
∫ ∞

−∞
dteıωt δ〈n(x, t)〉

= 1

h̄

∫
d3x ′DR(x, x′; ω)F (x′)f (ω), (14)

where

f (ω) =
∫ ∞

−∞
dt ′eıωt ′f (t ′). (15)

The linear response structure function S(ω) is derived to be

f (ω)S(ω) =
∫

d3xδ〈F †(x)n(x, ω)〉

= 1

h̄

∫
d3x

∫
d3x ′F †(x)DR(x, x′; ω)F (x′)f (ω).

(16)

Combining Eqs. (13) and (16), the imaginary part of the
structure function then gives the total transition probability
associated with F (x) as

Im [S(ω)] = −π

h̄

∑
n

∣∣∣∣∫ d3x ′〈ψn |̃nx(x′)|ψ0〉F (x′)
∣∣∣∣2

× δ

(
ω − En − E0

h̄

)
, En � E0. (17)

Note that this quantity is negative definite; this feature can be
used as a measure of the convergence of the solution.

At this point, instead of using the standard route of letting
f (t) → 0 to recover the linear response equations, we choose
an alternative technique to calculate the response. In this case,
we evolve the system in time and then Fourier transform the
result, where Hex(t) is a perturbing function. We choose f (t)
to be a Gaussian of the form

f (t) = εe− α
2 t2

, t � t0,

f (ω) = ε

√
2π

α
e− ω2

2α , (18)

where ε is some small number (∼10−6), chosen such that
we are in the linear regime. The parameter α is set to be
1.0 c2/fm2, which allows for a reasonable perturbation of
collective energies up to ≈150 MeV, and the time t0 is when
the external field is turned on.

In practice, our numerical calculations proceed as follows:
First, we generate highly accurate static HF wave functions
on the three-dimensional lattice. Then the external time-
dependent perturbation, Eq. (3), is set up by choosing a
particular form for F (x) and using Eq. (18) for f (t). Next, we
solve the TDHF equations utilizing the time-evolution operator

U (t, t0) = T
[
e
− ı

h̄

∫ t

t0
dt ′Ĥtot(t ′)], (19)

where T [...] denotes time ordering. Using infinitesimal time
increments, the time-evolution operator is approximated by

U (tn+1, tn) = e− ı
h̄

∫ tn+1
tn

dt ′Ĥtot(t ′)

≈ e− ı
h̄
�tĤtot(tn+ �t

2 )

≈ 1 +
N∑

k=1

[(− ı
h̄
�tĤtot

)k

k!

]
, (20)

where the quantity Ĥ k
tot is evaluated by repeated operations of

Ĥtot upon the wave functions.
From the numerical solution of the TDHF equations, we

obtain the density fluctuation as a function of time, Eq. (12).
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After Fourier transforming this quantity and folding with the
function F (x), we obtain f (ω)S(ω) in Eq. (16), from which the
linear response structure function of the system is extracted.

III. NUMERICAL DETAILS AND RESULTS

The static and time-dependent Hartree-Fock calculations
are performed using a collocation spline basis in a three-
dimensional lattice configuration. Basis splines allow the use
of a lattice grid representation of the nucleus, which is much
easier to use than alternative basis techniques, such as multi-
dimensional harmonic oscillators. Also, for studies of exotic
nuclei, because of weak binding, the density distributions tend
to extend to large distances; hence, one finds a large sensitivity
to a harmonic oscillator basis due to the unphysical description
of continuum states. Whereas for a lattice grid representation,
one needs to simply increase the size of the box. Traditional
grid representations typically use finite difference techniques
to represent the gradient operator. Collocation basis splines
allow for the gradient operator to be represented by its action
upon a basis function in a matrix form. Thus the collocation
method gives a much more accurate representation of the
gradient, while maintaining the convenience of a lattice grid;
hence, it provides a much more accurate calculation in the
end [14].

We performed the usual tests for ensuring convergence
with respect to the numerical box size and the number of
collocation points. Typically a seventh-order basis spline is
used in a (−12,+12 fm)3 box with 203–243 grid points. The
calculation can be performed with or without assuming time-
reversal symmetry. The collective linear response may involve
particle-hole interactions which are spin dependent and not
time-reversal symmetric. Therefore, for the correct collective
content to be included, one should not impose time-reversal
symmetry in the linear response calculations [2]. In the results
presented in this paper, time-reversal symmetry is not imposed.
A comparison revealed that imposing time-reversal symmetry
causes small shifts in the position of the collective modes on
the order of ≈0.3 MeV.

Calculations of isovector dipole, isovector and isoscalar
octupole, and isoscalar quadrupole collective modes were per-
formed for 16O, 32S, and 40Ca using several parametrizations
of the Skyrme interaction. Here the parametrizations known as
SkII [16], SkM∗ [17], and SgII [4] are used for comparisons.
The exponent of the density in the density-dependent term
in SkII is α = 1, while for SkM∗ and SgII this exponent is
α = 1

6 . This causes the SkII force to produce a rather large
nuclear matter incompressibility, while the SkM∗ and SgII
forces produce more realistic compression properties. Also the
SkM∗ and SgII forces allow for more stable static Hartree-Fock
and TDHF computations. The static Hartree-Fock calculations
converge more easily and rapidly for SkM∗ and SgII than for
SkI, SkII, or SkIII. A time step of �t = 0.4 fm/c was used
for the calculation. It was found that one can perform the
time evolution for up to 32 768 time steps without appreciable
dissipation. The results shown here use 16 384 time steps for
a maximum time of ≈6554 fm/c.

Reasonable results are obtained if the parameter ε in
Eq. (18) is chosen to fall in the range 2.0 × 10−4 � ε � 2 ×
10−7. By varying the value of ε, the amplitude of the time-
dependent density fluctuation then scales proportionally to ε,
thus indicating that we are well within the linear regime of the
theory.

The linear response calculations require well-converged
initial static HF solutions. To test for the convergence of
the static HF calculation, the energy fluctuation, which is the
variance of Ĥ , is minimized. The energy fluctuation is defined
as √

|〈Ĥ 2〉 − 〈Ĥ 〉2|, (21)

which measures how close the wave functions are to being
eigenstates of Ĥ . This measure of convergence is very sensitive
to the eigensolutions and is independent of the iteration
step size. For 16O it was found that static HF solutions
with energy fluctuation less than about 1.0 × 10−5 provided
adequate starting points for the dynamic calculation, although
the smaller the energy fluctuation the better.

The dynamic calculations involve using Eq. (20) to evolve
the system. Since U (t, t ′) is a unitary operator, the or-
thonormality of the system is preserved; therefore, it is not
necessary to reorthogonalize the solutions after every time
step. The stability of the calculation is checked by testing the
preservation of the norm of each wave function. The number of
terms in the expansion of the exponent in Eq. (20) is determined
by requiring the norm to be preserved to a certain accuracy
(typically �1.0 × 10−8 to 5.0 × 10−10).

The time-dependent perturbing part of the Hamiltonian is
evaluated when the exponential term in Eq. (18) is greater than
some small number εcut. Since it is not difficult to evaluate the
action of the external part of the Hamiltonian on the wave
function, εcut is chosen to be very small (1.0 × 10−10). The
function f (t) is a sharply peaked Gaussian about t = 0. For
the Fourier transform in Eq. (18) to hold we need the entire
Gaussian to be included in our time evolution. Choosing the
starting time t0 to be

t0 = −
(

2�t +
√∣∣∣∣2 loge εcut

α

∣∣∣∣
)

(22)

fulfills this condition as well as the restriction on the amplitude
to be less than εcut.

A. Quadrupole excitation modes

For the study of the isoscalar quadrupole moment, the
perturbing function F (x), introduced in Eq. (3), is chosen to be
the mass quadrupole moment Q20 = 2z2 − (x2 + y2). It turns
out that other even multipole modes are also excited at the same
time (i.e., Q40,Q60, . . .). One can therefore study the effect
of the coupling between the different excitation modes. The
same holds true for the odd multipoles because of the nonlinear
response effects present in the TDHF time evolution [9].

The quadrupole collective resonances are calculated for
16O using three different Skyrme force parametrizations for
comparisons. Two different size grids (223, 243) were used
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FIG. 1. Fluctuations in the isoscalar axial quadrupole moment as
a function of time for 16O, 32S, and 40Ca using the SkM∗ interaction.
The size of the time step is 0.4 fm/c. A grid of 243 with a cartesian
box dimensioned (−12, +12 fm)3 is used.

inside a (−12,+12 fm)3 cartesian box along with periodic
boundary conditions.

In Fig. 1, the time-dependent evolution of the multipole
moment defined as

〈Q̂20(t)〉 =
∫

d3xδ〈̂n(x, t)〉Q20(x) (23)

is shown for 16O, 32S, and 40Ca using the SkM∗ interaction.
This figure illustrates the periodic character of the calculations
with almost no damping. In this case the smallest oscillation
is about 65 fm/c.

A fast Fourier transform (FFT) is used to calculate the
Fourier transform of 〈Q̂20(t)〉 to give 〈Q̂20(ω)〉 = f (ω)S20(ω).
In all cases we used all 16 384 points directly in the
FFT with no averaging or damping. The time-dependent
perturbation function f (ω) can then be easily factored
out using Eq. (16). One can use the analytic expression for
f (ω) or use a numerical FFT calculation, where the difference
between the two methods ends up being negligible.

In Fig. 2, the quadrupole responses for 16O are shown for the
three different Skyrme cases. The imaginary part of Eq. (23) is
Fourier transformed and divided by f (ω). Recalling Eq. (17),
this quantity is derived to be a negative-definite quantity. The
SkM∗ results for 16O reflect this property very well in Fig. 2.
We observe a sharp peak at about 20 MeV and a response which
is almost purely negative. The side peaks, which are much less
prominent, may not represent physical effects but rather may
be due to the construction of the continuum. In performing FFT
transformations, we find it is important to have the number of
points be a power of 2. In Fig. 3, we demonstrate this by
plotting the response function for three different choices for
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FIG. 2. Imaginary part of the response function corresponding to
the isoscalar quadrupole moment shown for 16O using three different
Skyrme force parametrizations. The experimentally measured giant
quadrupole resonance is around 20.7 MeV.

the total number of time steps which differ from each other
by only 20 points each. As one can see, the case for 32 768
points results in almost no positive values, indicating good
convergence. The three cases give similar pole structures,
which are near the experimental isoscalar quadrupole giant
resonance. The experimental peak is centered at an energy
of 20.7 MeV with a width of about 7.5 ± 1 MeV [18]. The
resonance calculated with the SgII Skyrme parametrization is
closest to the experimental result, although SkM∗ is also fairly
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FIG. 3. FFT results for 16O using three different numbers of time
steps. The case when the number of time steps equals an exact power
of two (32 768) is clearly the better converged result, showing almost
no positive values.
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close. The SkII parametrization poorly represents the data, but
this force is known to give a bad representation of the collective
nuclear properties. However, for the SkII parametrization we
were able to compare our results for 16O to the continuum RPA
calculations of [2]. We find that the difference between the two
calculations is less than 2%, and may be due to the omission
of the spin-orbit term in the continuum RPA calculations.
We find the closest agreement for the hexadecupole mode,
where both calculations give a peak energy of 28.2 MeV.
The widths of resonances are not accurately reproduced,
because the continuum is included, in the calculation in an
approximate fashion and higher order correlations are missing
in the TDHF approach. Since the calculations are performed
in a box, the continuum is represented in terms of discrete
pseudocontinuum states, whose density is sensitive to the size
of the box. A larger box size is expected to better represent the
continuum with a higher density of pseudocontinuum states.

The property of being purely negative represented in
Eq. (17) is not strictly reflected in the SgII or SkII results.
One can see that this property is approximately reflected, but
clearly the convergence of the solution for these two cases is
not nearly as good as for the SkM∗ case.

An alternative check of the calculation is the energy-
weighted sum rule (EWSR). This provides a stringent test of
the normalization and is derivable from the static Hamiltonian.
The SkM∗ result gives 92% of the EWSR, indicating excellent
convergence. For SgII and SkII, the linear response results give
66% and 36% of the EWSR, respectively, indicating a lack of
convergence for these results.

The result for the SgII calculation is particular puzzling,
since it is expected that the SkM∗ and SgII interactions should
be similar in behavior. The violations of the two convergence
tests may be due to coupling to other collective modes or
may be due to numerical inconsistencies. We investigated the
SgII result by varying the size of the box while keeping the

10 15 20 25

E [MeV]

-150000

-100000

-50000

0

-150000

-100000

-50000

0

40
Ca

Im
[S

20
(ω

)]
Im

[S
20

(ω
)]

SkM
*

SgII

FIG. 4. Imaginary part of the response function corresponding to
the isoscalar quadrupole moment shown for 40Ca using two different
Skyrme force parametrizations, SkM∗ and SgII.
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FIG. 5. Imaginary part of the response function corresponding
to the isoscalar quadrupole moment shown for 32S using the SkM∗

force.

grid spacing the same. We found that a slightly larger box,
(−14, +14) fm, seems closer to being purely negative.

In Fig. 4, we show the quadrupole strength function for
40Ca using two different Skyrme parametrizations. In this case,
SkM∗ and SgII show a peak at about 17 MeV. We also note the
strength of the peak. In this case, the resonance consumes all of
the EWSR. In Fig. 5, we show the same quantity for 32S using
the SkM∗ force. In this case, we observe multiple structures
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FIG. 6. Imaginary part of the response function corresponding to
the isoscalar and isovector octupole and the isovector dipole shown
for 16O using the SkM∗ force.
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in the giant quadrupole resonance; the energy splitting arises
from the prolate quadrupole deformation of the nuclear ground
state in this system.

The resonant structure of the hexadecupole moment Q40

can also be calculated at the same time as the quadrupole
moment. This corresponds to the coupling between the
quadrupole and the hexadecupole collective modes. In this
case, if one were to include both Q20 and Q40 into the external
time-perturbing piece of the total Hamiltonian, then this result
corresponds to the coupling term

f (ω)S(ω) = 1

h̄

∫
d3x

∫
d3x ′F †

1 (x)DR(x, x′; ω)F2(x′)f (ω).

(24)

Here F1(x) ≡ Q40(x) and F2(x′) ≡ Q20(x′). For the pure
hexadecupole giant resonance, both F1 and F2 must be made
equal to Q40. In general, mixed mode analysis produces
strength functions with less pronounced peaks and can be used
when computational time saving is necessary.

B. Octupole and dipole modes

The octupole and dipole giant resonances are not symmetric
about the z = 0 plane, and hence these nodes do not couple
with the symmetric quadrupole and hexadecupole modes. The
isovector octupole moment is defined as

Q30 = 1
2 (1 + τ(3))

[
z3 − 3

2z(x2 + y2)
]
. (25)

In Fig. 6, the isovector dipole, isovector octupole, and
isoscalar octupole responses are shown for 16O using the
SkM∗ interaction. In Fig. 7, the same quantities are again
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FIG. 7. Imaginary part of the response function corresponding to
the isoscalar and isovector octupole and isovector dipole shown for
16O using the SgII force.

plotted using the SgII force. The isoscalar octupole mode
shows three sharp resonance structures at about 6–7, 13–
14, and 18 MeV for the SkM∗ force, whereas the SgII
resonances are at slightly higher energies. These three peaks
are also found in a spherical RPA calculation using the same
effective interactions [19]. The spherical calculation finds an
additional broad peak for SkM∗ and SgII centered at an energy
of about 27–28 MeV. This peak is weaker than the three
peaks at lower energies and is not observed in the three-
dimensional linear response calculation. In Fig. 6, the response
is almost purely negative, but there are some violations of this
feature.

The isovector octupole response is less clear than the other
collective modes. It is possible that resonances seen in the
isoscalar octupole response may also appear in the isovector
response because of couplings. In this case, the strength of the
peak is expected to be most prominent in its primary channel.
This is most easily observed in Fig. 7 for the SgII force. In
this case, the lowest resonances at about 8–9 and 14 MeV are
very close to the lowest peaks in the isoscalar case but with
substantially reduced strength, whereas the most prominent
isovector peak is near 20 MeV. The sorting of the isoscalar
versus isovector mode is more complicated for the SkM∗
force.

The isovector dipole response resulting from the linear
response calculations is not as prominent as the higher
multipole responses and carries very little strength. This is
most likely due to the absence of a strong collective dipole
resonance for this nucleus. The violations of the strength
function from being negative definite appear to be large due to
the small scale of the plots. For the SkM∗ case, there are some
peaks centered around 17–18 MeV, while for SgII the peaks
range about 18–21 MeV.

IV. SUMMARY AND CONCLUSIONS

A method for evaluating the linear response theory using
TDHF is formally developed and implemented. This method
allows one to construct the dynamic calculation directly on
top of the static Hartree-Fock calculation. Therefore, by
performing a sophisticated and accurate three-dimensional
static Hartree-Fock calculation, we have a correspondingly
accurate and consistent dynamic calculation. A coherent
description of static ground state properties, such as binding
energies and deformations, is given along with a description
of the collective modes of nuclei.

A three-dimensional collocation basis-spline lattice repre-
sentation is used, which allows for a much more accurate
representation of the gradient operator and hence a corre-
spondingly accurate overall calculation. Example calculations
of two spherical systems (16O, 40Ca) and a system with prolate
quadrupole deformation (32S) are presented for the response
functions corresponding to various isoscalar and isovector
multipole moments. The SkM∗ case for the axial isoscalar
quadrupole mode gives excellent results, obeying expecta-
tions from the theory and satisfying the energy-weighted
sum rule.
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