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In this work we study the contribution of the isoscalar tensor coupling to the realization of pseudospin
symmetry in nuclei. Using realistic values for the tensor coupling strength, we show that this coupling reduces
noticeably the pseudospin splittings, especially for single-particle levels near the Fermi surface. By using an
energy decomposition of the pseudospin energy splittings, we show that the changes in these splittings come
mainly through the changes induced in the lower radial wave function for the low-lying pseudospin partners and
through changes in the expectation value of the pseudospin-orbit coupling term for surface partners. This allows
us to confirm the conclusion already reached in previous studies, namely that the pseudospin symmetry in nuclei
is of a dynamical nature.
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I. INTRODUCTION

Pseudospin symmetry is a concept that appeared in nu-
clear physics more than 30 years ago [1,2] to account for
the observation, in heavy nuclei, of the quasidegeneracy
of orbitals with quantum numbers (n, l, j = l + 1/2) and
(n − 1, l + 2, j = l + 3/2) (for fixed n and l). Such pairs
of single-particle states are known as pseudospin partners.
This doublet structure is related to the pseudo-orbital angular
momentum and pseudospin quantum numbers l̃ = l + 1 and
s̃ = s = 1/2 [3–7], respectively. The former, as noted by
Ginocchio [7], is just the orbital angular momentum of the
lower component of the Dirac spinor. Pseudospin partners
are doublets with the same l̃. For example, for the partners
[ns1/2, (n − 1)d3/2], l̃ = 1, and for [np3/2, (n − 1)f5/2] one
has l̃ = 2.

The existence of degenerate or quasidegenerate pseudospin
partners is connected to a SU(2) symmetry of the Dirac
equation with only scalar S and vector V potentials such
that V = −S, regardless of the particular shapes of these
potentials [8]. It happens that in the relativistic mean-field
theories of nuclei (RMF) [9–11], the sum � = S + V is
small at the nuclear energy scale, so this symmetry, known
as pseudospin symmetry, provides a natural explanation of
the existence of quasidegenerate pseudospin partners in nuclei
referred to previously [7,12–14]. However, because in RMF
theories � acts as binding potential for the nucleons, it is not
possible to have exact pseudospin symmetry in nuclei. Further
works have shown that the particular shape of �, not just its
smallness, can affect the pseudospin energy splittings and also
explain the isospin dependence of these splittings [14–17].
Moreover, using an energy decomposition coming from the
Schrödinger-like equation for the lower component of the
Dirac spinor, it was shown that the observed pseudospin

splitting arises from a cancellation of the several energy
components and not primarily from the pseudospin-orbit
term, which is proportional to the derivative of � [15,16].
Altogether, this led us to conclude that, in nuclei, pseudospin
symmetry is realized in a dynamical way. A similar conclusion
was reached by Marcos et al. [18,19].

The tensor coupling has been used in studies of nuclear
properties with effective Lagrangians, including RMF theories
by Furnstahl et al. in Ref. [20], and in the relativistic Hartree
approach model, studied by Mao in Ref. [21]. Those works
assessed its influence on nuclear observables, namely the
spin-orbit splitting of single-particle levels in nuclei, the result
being that the tensor coupling, a higher order term in a
relativistic expansion, increases significantly the spin-orbit
coupling. This suggests that the tensor coupling could have
a significant contribution to pseudospin splittings in nuclei as
well. This contribution is expected to be particularly relevant
for the levels near the Fermi surface, because the tensor
coupling depends on the derivative of a vector potential, which
has a peak near the Fermi surface for typical nuclear mean-field
vector potentials.

The tensor coupling has also been used as a natural way
to introduce the harmonic oscillator in a relativistic (Dirac)
formalism. In a recent article, it was shown that the harmonic
oscillator with scalar and vector potentials can exhibit an
exact pseudospin symmetry [22,23]. When this symmetry is
broken (� �= 0), the breaking term is quite large, manifesting
its nonperturbative behavior. However, if a tensor coupling is
introduced, the form of harmonic-oscillator potential can still
be maintained with � = 0, but the pseudospin symmetry is
broken perturbatively [24].

The tensor interaction has also been considered to explain
how the spin-orbit term can be small for �-nucleus and large
in the nucleon-nucleus case [25]. It is assumed that in the
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strange sector (case of �) the tensor coupling is large and
the spin-orbit term obtained from this interaction can cancel
in part the contribution coming from the scalar and vector
interactions. This result shows that the tensor interaction can
change strongly the spin-orbit term. In this spirit, we want to
investigate if this interaction can also affect the pseudospin-
orbit term (spin-orbit of the lower component) [5,6,15]. We
address this problem by performing a mean-field calculation
for the neutron levels of 208Pb, using mean-field Lorentz
vector and scalar potentials with a Woods-Saxon shape. These
potentials were used in the previous works that revealed the
dynamical nature of pseudospin symmetry. In this work we will
perform a similar calculation, including now a tensor coupling
term, and using again an energy decomposition similar to the
one used in [15]. We find that the tensor coupling potential has
a noticeable effect on the pseudospin splittings. We study in
particular detail the changes of the radial wave functions for
the pseudospin partners and the differences between low-lying
and near-the-Fermi-surface pseudospin doublets.

This article is organized as follows. In Sec. II A we present
the Lagrangian for Fermion fields coupled to external scalar,
vector, and tensor fields and obtain the corresponding single-
particle Dirac Hamiltonian. The Dirac equations of motion
are obtained in Sec. II B, with emphasis on the second-order
differential equations for the upper and lower components of
the Dirac spinor. In Sec. II C we perform the energy decom-
position based on the second-order differential equation for
the lower component of the spinor, which will allow us to
analyze the contribution of the radial tensor potential U for the
pseudospin energy splittings. The results of the calculation
using mean-fields with Woods-Saxon shape for S and V
radial potentials (thereby also fixing the tensor potential) are
presented in Sec. III, together with a discussion of the effects
of the tensor potential on the neutron pseudospin partners, both
for deep levels and levels near the Fermi surface. The wave
functions for the radial lower components of those levels are
also plotted and their influence on the pseudospin splittings are
discussed. Finally, our conclusions are summarized in Sec. IV.

II. DIRAC EQUATION WITH ISOSCALAR
TENSOR COUPLING

A. Dirac Hamiltonian

Using the conventions of G. Mao [21], the nucleon-meson
Lagrangian density of a nuclear mean-field theory with
nucleons interacting with σ , ω, and ρ mesons, in which a
tensor (derivative) coupling is included, reads (h̄ = c = 1) as
follows:

L = �̄(iγ µ∂µ − M)� − gσ �̄σ� − gω�̄γµ�ωµ − gρ�̄γµ

× �τ
2

· � �ρ µ − fω

4M
�̄σµν�ωµν − fρ

4M
�̄σµν �τ

2
· � �ρµν.

(1)

In this Lagrangian, ωµν = ∂µων − ∂νωµ, �ρµν = ∂µ �ρν −
∂ν �ρµ, and σµν = i/2[γ µ, γ ν]. Here the only vector mesons we
are going to consider are the isoscalar ω mesons. Furthermore,
in a mean-field theory, the meson fields are static and only
the timelike component is considered, that is, we have the

following:

σ = σ (r) ωµ = ω(r)δµ 0.

The Hamiltonian density is then given by the following:

H = ∂L
∂(∂0�)

∂0� − L = �̄γ 0∂0� − L = −i�†α · ∇�

+ �̄M� + gσ �̄σ� + gω�†� ω − i
fω

2M
�†βα · ∇ω �.

(2)

The corresponding single-particle (Dirac) Hamiltonian is as
follows:

H = −iα · ∇ + β(M + gσσ ) + gωω − i
fω

2M
βα · ∇ω.

If we now define the scalar S and vector V potentials as,
respectively, S = gσσ and V = gωω, this last equation reads
as follows:

H = −iα · ∇ + β(M + S) + V − iβα · U , (3)

where U = fω/(2M) ∇ω. Moreover, if the field ω(r) is just a
function of the radial coordinate r, this Hamiltonian becomes
the following:

H = −iα · ∇ + β(M + S) + V − iβα · r̂ U, (4)

where U is the radial function as follows:

U (r) = fω

2M
ω′ = 1

2M

fω

gω

V ′. (5)

In the remainder of the article we use the notation fv ≡ fω/gω

for the sake of simplicity.

B. Equations of motion

The Dirac equation for nucleons with tensor coupling is
written as follows:

H� = E�, (6)

where H is given by Eq. (4).
It is instructive to decompose this equation into two second-

order equations for the upper and lower components of the
spinor � but retaining their spinor structure. To this end, we
use the projectors P± = (I ± β)/2 applied to �, that is, define
the spinors �± = P±�. Applying P± to the left of the Dirac
equation (6) we obtain the following:

α · p�− + (M + S + V )�+ − iα · r̂U�− = E�+, (7)
α · p�+ + (−M − S + V )�− + iα · r̂U�+ = E�−, (8)

or, defining � = V + S, = V − S, and E = E − M ,

(α · p − iα · r̂U )�− = (E − �)�+, (9)

(α · p + iα · r̂U )�+ = (E + 2M − )�−. (10)

Using the formulas in the Appendix we finally obtain the
following:

p2�− +
(

U 2 − U ′ − 2
U

r
− �′U

E − �

)
�−

− �′

E − �

∂�−
∂r

+
(

−4 U + 2
�′

E − �

)
L · S

r
�−

= (E − �)(E + 2M − )�−, (11)
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p2�+ +
(

U 2 + U ′ + 2
U

r
+ ′U

E + 2M − 

)
�+

− ′

E + 2M − 

∂�+
∂r

+
(

4 U + 2
′

E + 2M − 

)

× L · S
r

�+ = (E − �)(E + 2M − )�+. (12)

The terms with L · S for the upper and lower components
are spin-orbit and pseudospin orbit coupling terms, respec-
tively. We can note immediately that the tensor potential
contributes to both. A full analysis is done in the next section.

If S, V , and U are radial functions, then the general solution
of Eq. (6) is as follows:

�κm(r) =


 i

gκ (r)

r
Yκm(r̂)

fκ (r)

r
Y−κm(r̂)


 . (13)

Here κ is the quantum number related to the total angular
momentum j and orbital momentum l by the following:

κ =
{

−(l + 1) = − (j + 1/2), j = l + 1/2,

l = + (j + 1/2), j = l − 1/2 .
(14)

The spinor spherical harmonics Yκm result from the
coupling of the two-dimensional spinors to the eigenstates of
orbital angular momentum and form a complete orthonormal
set. Through the following relations:

j = |κ| − 1
2 , (15)

� = |κ| + 1
2

(
κ

|κ| − 1

)
, (16)

one sees that if the upper component of the spinor in
Eq. (13) has a orbital quantum number l, the lower component
(which has quantum number −κ) must have a orbital angular
momentum l̃ = l − κ/|κ|. This quantum number has been
associated with the pseudospin symmetry [7].

Using the property σ · r̂ Yκm = −Y−κm, Eqs. (9) and (10)
reduce to a set of two coupled first-order ordinary differential
equations for the radial upper and lower components gκ and
fκ , namely

[
d

dr
+ κ

r
− U (r)

]
gκ (r) = [E + 2M − (r)]fκ (r), (17)

[
d

dr
− κ

r
+ U (r)

]
fκ (r) = −[E − �(r)]gκ (r). (18)

Similarly, from Eqs. (11) and (12) we arrive at the following
second-order differential equations for gκ and fκ as follows:{

d2

dr2
− κ(κ + 1)

r2
+ ′

E + 2M − (r)

[
d

dr
+ κ

r
− U (r)

]

+ 2κ
U (r)

r
− U ′(r) − U 2(r)

}
gκ (r)

= −[E − �(r)][E + 2M − (r)]gκ (r), (19)

{
d2

dr2
− κ(κ − 1)

r2
+ �′

E − �(r)

[
d

dr
− κ

r
+ U (r)

]

+ 2κ
U (r)

r
+ U ′(r) − U 2(r)

}
fκ (r)

= −[E − �(r)][E + 2M − (r)]fκ (r). (20)

These two equations show explicitly the new terms that
depend on U (r) and are originated by the tensor interaction. In
particular, the term 2κU (r)/r , which is the same for the upper
and lower component, is the modification in the spin-orbit and
pseudospin-orbit terms, respectively, generated by the tensor
interaction.

C. Energy decomposition and sum rule

The terms in Eq. (11) with denominator E − �, which
have a singularity in E = �, fulfill a sum rule coming from
Eq. (A2). If one divides each member of that equation by
2M∗ = E + 2M − , left multiply them by �

†
− and integrate,

one obtains the following:∫
�

†
−

iα · r̂
2M∗ �′ �+ d3r

= P
∫

�
†
−

�′

E − �

1

2M∗
∂�−
∂r

�− d3r

+ P
∫

�
†
−

�′

E − �

U

2M∗ �− d3r

− P
∫

�
†
−

�′

E − �

1

M∗
L · S

r
�− d3r, (21)

where P stands for the principal value of the integral. In terms
of the radial functions gκ and fκ the sum rule reads as follows:

−
∫ ∞

0
fκ

�′

2M∗ gκ dr = P
∫ ∞

0

�′

E − �

1

2M∗ fκ

(
fκ

r

)′
r dr

+ P
∫ ∞

0

�′

E − �

U

2M∗ f 2
κ dr + P

∫ ∞

0

�′

E − �

1 − κ

2M∗ f 2
κ dr.

(22)

This sum rule can be used to check the numerical results.
The energy decomposition of Eq. (11) can be performed by

dividing it by 2M∗ and computing its expectation value for the
spinor �−, yielding the following:〈

p2

2M∗

〉
+ 〈VU 〉 + 〈V�′U 〉 + 〈VDarwin〉 + 〈VPSO〉 + 〈�〉 = E,

(23)

VU = 1

2M∗

(
U 2 − U ′ − 2

U

r

)
,

V�′U = − 1

2M∗
�′U

E − �
,

VDarwin = − 1

2M∗
�′

E − �

∂

∂r
, (24)
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VPSO = 1

M∗

(
−2U + �′

E − �

)
L · S

r
,

〈O〉 ≡
∫
�

†
−O�−d3r∫

�
†
− �− d3r

.

For the terms with E − � in the denominator the integral is
taken in the principal value sense.

III. TENSOR COUPLING WITH MEAN-FIELD
WOODS-SAXON POTENTIALS

As stated above, the aim of this article is to study the
effect of the tensor coupling on the pseudospin splitting in
nuclei. In previous works, in which we studied pseudospin
symmetry in nuclei [14], we solved numerically the Dirac
equation with central mean-field potentials with Woods-Saxon
shapes. Although these potentials are not full self-consistent
relativistic potentials derived from meson fields, they are
realistic enough to be applied to many nuclei. In this article we
follow the same approach, namely we consider the sum and
difference potentials � and  to be of the following general
form:

P (r) = P0

1 + exp[(r − R)/a]
, (25)

whereas the tensor potential U (r) is obtained by the following:

U (r) = fv

2M
V ′ = fv

2M

�′ + ′

2
. (26)

The depth, P0, the radius (range), R, and the diffusivity, a,
for � and  are fitted to reproduce the single-particle spectrum
of 208Pb [14,15].

0
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E
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FIG. 1. Calculated neutron single-particle energy levels of the
pseudospin partners [2f7/2 − 1h9/2], [2f5/2 − 3p3/2], and [1i11/2 −
2g9/2] in 208Pb. The left-most values are the corresponding values of
the model G1 of Furnsthal et al. [26] and the experimental values [27]
are in the right-most column. In the middle column (WS) is our
calculation with Woods-Saxon potentials for three values of the tensor
coupling strength fv , corresponding to lines of different thickness.
Pseudospin-partner levels with κ < 0 are represented by solid lines,
whereas those with κ > 0 have dashed lines. The Woods-Saxon
parameters used to fit 208Pb neutron energy levels are R = 7 fm,
0 = 650 MeV, �0 = −66 MeV, and a = 0.6 fm.

Using the general Woods-Saxon form in Eq. (25) for �

and , and with U given by Eq. (26), we solved numerically
the coupled first-order Dirac equations [Eqs. (17) and (18)].
The single-particle energy levels are shown in Fig. 1, when fv

varies from 0 to 1.3. This range of values is consistent with

TABLE I. Values of energies and terms in the decomposition (23) for the pseudospin partners [2s1/2 −
1d3/2], [2p3/2 − 1f5/2], [3p3/2 − 2f5/2], and [2g9/2 − 1i11/2] for two values of fv . The energies and expectation
values are given in MeV.

Partners fv 〈p2/2M∗〉 〈VU 〉 〈V�′U 〉 〈VDarwin〉 〈VPSO〉 〈�〉 E

0.0 24.4396 0.0000 0.0000 3.9527 −0.5852 −61.4644 −41.56272s1/2 1.3 23.9037 0.2351 −0.0943 −3.6870 −0.5632 −61.9114 −42.1170

0.0 21.1032 0.0000 0.0000 −0.8106 0.0966 −64.4159 −44.02661d3/2 1.3 20.7075 0.1459 −0.0712 −0.4170 0.1559 −64.6181 −44.1170

0.0 33.2950 0.0000 0.0000 −2.7538 −1.6340 −60.2687 −31.36152p3/2 1.3 32.7195 0.2465 0.1223 −2.7319 −1.5835 −60.8762 −32.1033

0.0 28.5114 0.0000 0.0000 0.7303 0.5384 −64.5165 −34.73651f5/2 1.3 28.2218 0.2598 −0.0021 0.9522 0.6780 −64.6667 −34.5571

0.0 52.9135 0.0000 0.0000 0.8482 −1.6013 −59.8025 −7.64203p3/2 1.3 52.6913 0.5000 0.1669 0.9638 −1.9231 −60.2278 −7.8280

0.0 50.1727 0.0000 0.0000 2.3696 1.0254 −62.2874 −8.71972f5/2 1.3 50.0072 0.6256 0.1427 2.3831 1.3089 −62.3270 −7.8595

0.0 55.7666 0.0000 0.0000 2.8295 −6.4555 −53.3816 −1.24102g9/2 1.3 56.0706 0.5622 0.2855 2.6487 −7.2110 −54.4705 −2.1140

0.0 51.2033 0.0000 0.0000 3.1788 3.3530 −61.0308 −3.29581i11/2 1.3 51.6221 0.8997 0.1529 2.9268 4.1391 −61.2232 −1.4826
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that found in Ref. [20] for fittings of RMF and point coupling
models to nucleon observables.

One sees clearly from Fig. 1 that turning on the tensor
coupling decreases the pseudospin splittings of the levels near
the Fermi surface. For fv = 1.3 the pair [2f5/2 − 3p3/2] be-
comes almost degenerate, whereas the [1i11/2 − 2g9/2] doublet
even reverses its order. Interestingly, the experimental energy
values for these two pairs show this order reversal, which
is not reproduced by the model calculations without tensor
coupling. In Fig. 1, when we increase the tensor coupling
fv , the energy for pseudospin partners with κ < 0 become
deeper and those with κ > 0 become more unbounded. This
systematics indicates that pseudospin symmetry is improved
by the tensor interaction.

To better understand why and how tensor coupling affects
pseudospin splittings, we computed the contributions from the
terms of the energy decomposition in Eq. (23) to the energy
splittings for both low-lying and close-to-the-Fermi-surface
pseudospin partners.

In Table I we can see what is the contribution of all
the terms of that energy decomposition for the two lowest
neutron pseudospin partners ([2s1/2 − 1d3/2] and [2p3/2 −
1f5/2]) and for the two top-most neutron pseudospin partners
([3p3/2 − 2f5/2] and [2g9/2 − 1i11/2]) for two values of the
tensor coupling strength: fv = 0.0 (no tensor coupling) and
fv = 1.3. As expected, because tensor interaction is a higher
order interaction in the Lagrangian (derivative term) scaled
by 1/M , the changes in the energy produced by the potential
terms VU and V�′U are small in comparison with the kinetic
and potential terms, as shown in Table I. This table also shows
that these terms, together with the pseudospin-orbit term, are
significantly bigger for the surface levels than for the lower
levels. This agrees with our expectations, referred before, that
the effect of the tensor coupling is larger for the surface levels,
because the potential U is proportional to the derivative of the
vector potential. Conversely, changes induced by the tensor
coupling in 〈V�′U 〉 and 〈VDarwin〉 for surface levels are smaller.

The smallness of the terms containing the tensor potential
in regard to the kinetic and � potential terms is misleading
concerning the effect in the pseudospin symmetry, because
the changes of these last terms with fv are small, whereas the
corresponding changes in 〈VPSO〉 and 〈VU 〉 can be significant
for the surface levels, especially when compared with the
energies of these levels. Note that the values of 〈VPSO〉 can
have quite different values for different levels. This is because
of the respective values of the κ quantum number, as explained
below.

To have a better understanding of the influence of all these
terms in the pseudospin splittings, we plot in Figs. 2(a) and (b)
the splittings and the differences of the terms in Eq. (23) for
the pseudospin doublets [2s1/2 − 1d3/2] and [2g9/2 − 1i11/2]
as a function of fv . From these figures is clear that the
decrease of the pseudospin energy splitting E is much more
pronounced for the surface doublet than for the low-lying one
and would be even more if we considered the relative energy
variations.

A more detailed analysis of the several contributions to
the pseudospin energy splittings reveals that for the deep
pseudospin doublet the contribution of the pseudospin-orbit

FIG. 2. The contributions from the terms of the energy decom-
position [Eq. (23)] for pseudospin doublets (a) [2s1/2 − 1d3/2] and
(b) [2g9/2 − 1i11/2] when fv varies from 0 to 1.3.

potential VPSO almost does not change with fv , whereas the
contribution of terms such as 〈p2/2M∗〉 and 〈�〉, which do
not depend explicitly on the tensor potential U, is greater.
This means that the main contribution to the change of
pseudospin splitting with the strength of the tensor potential
results mainly via the change of the wave function induced by
U. Furthermore, the energy-splitting results for the most part
from a cancellation of the 〈�〉 and 〈VDarwin〉 contributions
and also from 〈p2/2M∗〉, the contribution from VPSO having
a lesser role. This agrees with previous findings of similar
studies of pseudospin splittings [15,16].

As far as the upper doublet [2g9/2 − 1i11/2] is concerned,
much of the previous analysis still holds, except for the fact
that the pseudospin-orbit potential is much stronger and also
changes sensibly as fv changes, being responsible for most of
the pseudospin splitting. The reason for this, and in particular
the fact that for values of fv greater than 0.95 the splitting
becomes negative, that is, there is a level inversion, must be
found in a more detailed analysis of the contribution of the
tensor potential U for the VPSO potential. From Eq. (24) we see
that, whereas U gives a positive contribution to this potential
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FIG. 3. The potentials �, VU , and −U/(M∗r) and the lower radial
wave functions fκ for the pseudospin partners (a) [2s1/2 − 1d3/2]
and (b) [2g9/2 − 1i11/2] when fv = 1.2. The wave functions were
normalized such that they could be plotted side by side with the
potentials.

[because V ′ < 0, so that, from Eq. (5), −U > 0], the effective
contribution depends on the sign of �′/(E − �) × L · S/r .
Because it changes sign when r > rs , in which rs is the radius
for which � = E, the net change of 〈VPSO〉 depends on how
the wave function fκ (r) behaves near rs for both pseudospin
partners. What we found is that for these surface levels, the
following U contribution for the pseudospin-orbit potential:

V U
PSO = − 2

M∗ U
L · S

r
(27)

is the dominant one. The reason why the contribution of this
potential to VPSO for the pair [2g9/2 − 1i11/2] is so big lies in
the fact that it is proportional to 〈2L · S〉 = −(1 − κ), which
is equal to −6 and 5 for 2g9/2 and 1i11/2 respectively. Because
U is negative, 〈V U

PSO〉(2g9/2) − 〈V U
PSO〉(1i11/2) is negative and

more so as fv increases [see Fig. 2(b)], thus explaining why
pseudospin splitting decreases with the increase of fv .

Note that, from Table I, one is able to see directly the
different effects that the tensor coupling has on 〈VPSO〉
in low-lying ([2p3/2 − 1f5/2]) and surface ([3p3/2 − 2f5/2])

pseudospin partners that have the same κ values. The values
of 〈VPSO〉 and their differences change significantly with fv

for the surface partner.
Figs. 3(a) and (b) show �,VU , the radial part of the V U

PSO
potential [Eq. (27)], given by −U/(M∗ r), which is always
positive, as discussed, and the lower radial wave functions
fκ for the pseudospin partners [2s1/2 − 1d3/2] and [2g9/2 −
1i11/2], respectively, when fv = 1.2. Also plotted is the energy
of the lowest lying level of each doublet for fv = 0, allowing
to have a rough estimate of the value rs mentioned above by the
intersection of its horizontal line with the � potential curve.
From these figures one sees clearly why the tensor potential
U has a much larger effect for a surface pseudospin doublet.
Indeed, the lower radial wave functions for these levels have a
significant strength near the nucleus surface, such that 〈V U

PSO〉
can have a significant value and have a sizeable contribution
to the pseudospin splitting.

IV. CONCLUSIONS

In this article we assessed the importance of the isoscalar
tensor coupling to pseudospin symmetry as is realized in
heavy nuclei, using as an example the neutron pseudospin
partners of 208Pb, calculated within a relativistic theory with
scalar and vector mean fields parametrized with Woods-Saxon
potential forms. By looking into the second-order equation
for the lower component of the Dirac spinor, we obtained
an expression for the pseudospin-orbit potential, showing its
explicit dependence on the radial tensor potential. Because
this potential comes from a derivative coupling (higher order
term in the Lagrangian), the contribution for the energy from
the potentials originated by that interaction are all scaled
by 1/M (M is the nucleon mass) and, because of that, is
very small in comparison with kinetic and potential terms.
However, because the spin-orbit interaction (and pseudospin)
is a term of the same order, the effect of the tensor coupling
can be significant in this case. In fact, we conclude that the
contribution from U to the pseudospin potential VPSO is the
dominant one for the surface levels.

We have shown that the surface pseudospin partners were
the most affected by the tensor coupling, as was expected, and
that this coupling reduces pseudospin splitting. This reduction
can be significative to the point of inverting the level order,
with the states with aligned spin (j = l + 1/2) having higher
energy than the states with antialigned spin.

By analyzing the several contributions to the pseudospin
energy splittings, we were able to confirm a conclusion reached
in previous works, namely that the pseudospin symmetry is
realized dynamically in nuclei, resulting from a cancellation
of the various contributions rather than just the one from the
pseudospin-orbit potential. We also found a systematic change
in the energy for the pseudospin partners when we increase
the tensor coupling fv: states with aligned spin (κ < 0)
become deeper in opposite to antialigned ones that become
more unbounded. This systematics allows us to conclude that
pseudospin symmetry is improved by the tensor interaction.
Finally, we were able to show for a surface pseudospin doublet
the pseudospin-orbit potential, especially through its tensor
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potential part, gives a significant contribution to the change
of the energy splitting. This finding is compatible with the
dynamical character of the pseudospin symmetry.
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APPENDIX

In this Appendix we present the derivation of Eqs. (11) and
(12).

If we define the operator O = α · p + iα · r̂ U , the second-
order differential equations are obtained by applying OO†

and O†O to �− and �+, respectively. For �− we have the
following:

OO†�− = O(E − �)�+
= [α · p (E − �)]�+ + (E − �)O�+
= iα · r̂ �′ �+ + (E − �)(E + 2M − )�−

=
(

p2 + U 2 − U ′ − 2
U

r
− 4 U

L · S
r

)
�−, (A1)

where �,, and U are radial potentials, primes denote
derivatives with respect to r, and S stands for the 4 × 4 spin
matrix. Conversely, from the equation O†�− = (E − �)�+

we obtain the following:

O†�− = (α · p − iα · r̂ U )�−
= α · r̂(r̂ · p + i r̂ × p · � − i U )�−

= −iα · r̂
(

∂�−
∂r

+ U �− − 2
L · S

r
�−

)
= (E − �)�+,

which allows us to write the following:

iα · r̂ �′ �+ = iα · r̂ �′ O†�−
E − �

= �′

E − �

(
∂�−
∂r

+ U �− − 2
L · S

r
�−

)
.

(A2)

In the same way, for �+ we have the following:

O†O�+ = iα · r̂ ′ �− + (E − �)(E + 2M − )�+

=
(

p2 + U 2 + U ′ + 2
U

r
+ 4 U

L · S
r

)
�+, (A3)

and, using equation O�+ = (E + 2M − )�−, we get the
following:

iα · r̂ ′ �− = ′

E + 2M − 

×
(

∂�+
∂r

− U �+ − 2
L · S

r
�+

)
. (A4)

Using Eqs. (A1) and (A2) for �− and Eqs. (A3) and (A4) for
�+, we get finally Eqs. (11) and (12).
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