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Nilsson parameters κ and µ have been studied in the framework of relativistic mean field (RMF) models. They
are used to investigate the reason why RMF models give a relatively good prediction of the spin-orbit splitting
but fail to reproduce the placement of the states with different orbital angular momenta. Instead of the relatively
small effective mass M∗, the independence of M∗ from the angular momentum l is found to be the reason.
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I. INTRODUCTION

The finite-range (FR) (see Refs. [1–4] for a review) and
point-coupling (PC) (see Refs. [5–7] for a review) types of
relativistic mean field (RMF) models have been successful in
describing the bulk properties as well as the deformation in
a wide mass spectrum of nuclei. The interconnection of the
models and their relations to nonrelativistic models, like the
Skyrme-Hartree-Fock (SHF) ones, have been established [8].
The role of the exchange in RMF-FR [9–13] and RMF-PC [14]
models for finite nuclei has also been explored.

Significant attention has been paid to exploring the role
of the spin-orbit potential (VL-S) in RMF models for vari-
ous problems and applications connected to single-particle
spectra predictions (see, for example, Refs. [2,13,15–21]).
The standard parameter set of the Nilsson model has also
been quite successful in reproducing single-particle spectra
of stable nuclei [22]. New parameter sets were proposed to
improve the predictability of the model for neutron-rich [23]
and proton-rich [24] nuclei. Single-particle levels of these
parameter sets are compared in Refs. [23,24] with those
obtained by SHF and RMF models. We also note that the origin
of the prolate dominance shapes over the oblate ones can be
explained in the framework of a Nilsson model as an effect
of the strong interference between spin-orbit and orbit-orbit
terms of the Nilsson potential [25]. So far, however, except
for the pseudo-spin symmetry study in finite nuclei [26], there
have been no other investigations of the role of the orbit-orbit
potential (VLL) which is directly derived from RMF models.

Odd nuclei and single-particle spectra in an RMF-FR
model using different levels of approximation (spherical and
deformed) were computed and compared in Ref. [27]. In
Ref. [13], single-particle splitting energies between spin-orbit
partners along some isotonic chain (O, Ca, Sn) were also
examined in the framework of RMF, SHF, and relativistic
Hartree-Fock models. Furthermore, another method studies
spin-orbit potential by exploring the high-spin data [28]. With
this method one can avoid the scarce and uncertain data
available on spin-orbit splittings and their isotopic as well as
isotonic dependences. Here we quote from Ref. [28], for ex-
ample, that the most recent experimental data evaluations [29]
give �εd3/2−d5/2 ≈ 6 MeV for 40Ca and �εd3/2−d5/2 ≈ 5 MeV for
48Ca, while older works give �εd3/2−d5/2 ≈ 6.8 [30], 7.3 [31],
and 7.7 [32] MeV for 40Ca and �εd3/2−d5/2 ≈ 5.3 MeV [32] for

48Ca. More detailed information on single-particle levels can
be found in Ref. [33]. Since the method is based on a direct
comparison of the excitation energies of terminating states, the
correlations beyond the mean field can be strongly suppressed.
Nevertheless, this method is still constrained by the limited
knowledge of the time-odd component of the nonrelativistic
mean field [28].

In this paper, we will revisit and study the single-particle
spectra (SPS) of 208Pb,132 Sn, and 40Ca in the RMF models in
order to understand the origin of their predictive powers for
spin-orbit splitting and the reason why the relative placements
of the states with different orbital angular momenta l are
not well reproduced [27]. Afterward, we will try to find the
connection between their SPS predictions and their effective
masses M∗ through their VL-S and VLL potentials in 208Pb.
Spherically symmetric calculations are used because of the
robustness of the spectral differences against polarization
effects [27].

We choose NL-Z, NL-Z2, NL-VT1 (RMF-FR) [2,15,34],
and PC-F1 (RMF-PC) [7] because they have nearly the
same procedure to adjust their coupling constants, hence the
prediction bias due to the different fitting procedure can be
minimized.

II. SPS PREDICTIONS OF RMF MODELS

In this section, we will study the 208Pb,132 Sn, and 40Ca SPS
predictions of RMF models. The experimental single-particle
data are taken from [33]. The 208Pb neutron (2f7/2 and 1h9/2)
and proton (2d5/2 and 1g7/2) data as well as the 40Ca neutron
(1d5/2) and proton (1d5/2) data are obtained by averaging over
the spectroscopic factors [33]. To analyze the relative position
between two different levels with different angular momenta
α we use the formulas [20]

Ēl =
j=l+1/2∑
j=l−1/2

(2j + 1)Ej

2(2l + 1)
,

αlk = Ēl − Ēk, (1)

where Ēl is the average energy of the spin-orbit partner with
angular momentum l. The relative position between k and l
levels αlk can be determined from the difference between Ēl

and Ēk .
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FIG. 1. Single-particle spectra (SPS) for 208Pb (top): left and right panels are for a proton and neutron, respectively. Spin-orbit splitting δ

and relative position between two different levels with different angular momenta α of 208Pb are shown in the left- and right-bottom panels.
Experimental data (EXP) are taken from Ref. [33]. RMF models with NL-Z, NL-Z2, NL-VT1, and PC-F1 parametrizations are shown.

Figure 1 shows the SPS for 208Pb. In the top panels, it
can be seen that all models have a similar trend in placing
and ordering the proton and neutron single-particle energies.
The gap between occupied and unoccupied levels is relatively
well reproduced for the proton but quite poorly for the
neutron case. Compared with experimental data, the SPS
lines do not coincide. The deviations show up significantly
in the 1g7/2, 3p3/2, and 3p1/2 proton states and in the 1h9/2

neutron state. For the neutron spectrum, similar to Ref. [27],
the ordering is reversed among the 1i13/2, 3p3/2, and 2f5/2

states. There are quite significant discrepancies in the spacing
between the 1i11/2 and 3d5/2 states, as well as between the
1h9/2 and 2f7/2 states, with experimental data. For the proton
spectrum, discrepancies occur between the 1h9/2 and 2f7/2

states and between the 2d5/2 and 2g7/2 states.
The trends of the spin-orbit splitting (see the lower-left

panel of Fig. 1) and the relative position of SPS (lower-right
panel of Fig. 1) of NL-Z are similar to those of NL-Z2 but
different from those of NL-VT1 and PC-F1. For the proton,
except for the splitting in 3p states of PC-F1, all parameter
sets have only 15% deviation from their experimental values.
Nevertheless, since the positions of 3p states are quite far from
the Fermi surface, we can say that all parameter sets give a
good prediction of the proton spin-orbit splitting. In the case
of the neutron, only the splitting of 2f states deviates by less

than 10% from the experimental value. NL-VT1 has four gaps
with deviations in splitting less than 20%. Unfortunately, it has
a gap (1i states) with a more than 20% deviation, and the gap is
larger than the corresponding experimental data. The position
of these states is above the Fermi surface. NL-Z2 and NL-Z
have more or less 20% deviation in the splitting of 3p states
(the position of these states is around the Fermi surface), and
for PC-F1 the deviation of that splitting is larger than 20%. A
quite large deviation appears in the splitting of 3d and 2g states
(the positions of both spin-orbit partners are above the Fermi
surface). It seems that all parameter sets are unable to give
good predictions in the neutron spin-orbit splitting. The SPS
relative position of the proton has a better prediction than that
of the neutron. The proton has two α values with deviations
less than 30% and one α above the Fermi level (αpf ). We
also note that αpf has 60% deviation. The neutron has three
α with deviations from experimental data between 30% and
50%, and it has even one α (αpf ) that deviates by about 100%
from experimental data. The positions of those states (3p and
2f ) are around the Fermi surface.

Figure 2 shows the SPS for 132Sn. In the top panels, all
models have similar trends in level placing and ordering. Their
SPS lines do not coincide with experimental data. For the
neutron spectrum, the reversed ordering between 2d3/2 and
the 3s1/2 and 2h11/2 states occurs. A significant difference in
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FIG. 2. Same as Fig. 1, but for 132Sn.

spacing with experimental data occurs between the 2d5/2 and
1g7/2 states of the proton. The bottom panels show that all
parameter sets predict acceptable spin-orbit splittings for the
proton but not for the neutron. The relative position between
2d and 2f levels for neutron (αn

df ) deviates by almost 40%
from experimental data. The trends of the spin-orbit splitting
(see the lower-left panel of Fig. 2) and the relative position of
the SPS (lower-right panel) of NL-Z are similar to those of
NL-Z2 but different from those of NL-VT1 and PC-F1.

Figure 3 shows the SPS for 40Ca. The upper-left panel
(proton) shows that NL-VT1 reproduces experimental values
of every single-particle energy. PC-F1 has a too narrow spacing
between the 1d3/2 and 2s1/2 states. The reversed ordering of the
2f5/2 and 2p1/2 states occurs in the case of NL-Z and NL-Z2.
In the upper-right panel (neutron), the models do not really
have a similar trend in level placing and ordering. Similar to
the case of the proton, PC-F1 again has a too narrow spacing
between the 1d3/2 and 2s1/2 states. The lower panels show
that in contrast to 208Pb and 132Sn, 40Ca has a better spin-orbit
splitting for the neutron rather than for the proton. The relative
positions between 1d and 1f levels for the neutron and proton
(αn

df ) deviate by less than 20% from experimental data.
These results confirm the findings of Ref. [27] that the

relative placement and ordering of the states in RMF models
are not well reproduced. In addition, we note that RMF-FR
(NL-Z, NL-Z2, and NL-VT1) has a better prediction than
RMF-PC (PC-F1), and the presence of the tensor terms

(NL-VT1) enhances the improvements in placing and ordering
of single-particle states, particularly in lighter nuclei (e.g.,
40Ca). However, these improvements are still not adequate to
overcome the problem.

III. NILSSON PARAMETERS κ AND µ OF RMF MODELS

It has been known that all models presented here have
M∗/m ≈ 0.6. Unlike the non-self-consistent calculations
(models using Wood-Saxon or Nilsson potentials), where the
SPS has a direct connection with the potential parameters, the
connection is not so obvious in the RMF models because it
is hidden by the self-consistency condition. Therefore, it is
natural to translate M∗/m of RMF models into Vc, VLL, and
VL-S by taking a nonrelativistic limit, where they resemble
a Wood-Saxon or Nilsson potential. The interpretation of the
results of this section will be given in the next section by
varying M∗/m in one model and studying its SPS prediction
for 208Pb.

The Hamiltonian of the RMF model in spherical systems is

H = �α · ( �p + iγ0 �T ) + γ0(m + S) + V0, (2)

where H�±
k = ε±

k �±
k is fulfilled. Using the general conven-

tion for �+
k , i.e.,

�+
k =

(
gkχ

mj

k

ifkχ
mj

−k

)
,
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FIG. 3. Same as Fig. 1, but for 40Ca.

the positive energy equation for the upper component becomes[
∂2
r + 2

r
∂r −

�L2

r2
−

(
(∂r�)(

2m + ε+′
k − �

) − 2Tr

)
�σ · �L

r

+ (∂r�)(
2m + ε+′

k − �
)∂r +

(
2Tr

r
− T 2

r + (∂rTr )

+ (Tr∂r�)(
2m + ε+′

k − �
))

+ (
ε+′
k − �

)(
2m + ε+′

k − �
)]

gk = 0,

(3)

with � = S + V0,� = V0 − S, and ε+′
k = ε+

k − m, while
S, V0, and �T indicate the scalar, time-component of the vector,
and tensor potentials, respectively. The nonrelativistic form
of Eq. (3) can be derived. The Darwin term ( (∂r�)

(2m+ε+′
k −�)

∂r )

in Eq. (3) can be absorbed by transforming the gk wave
function into a new one, G+

k [16]. This leads to a Schrödinger
form, i.e.,(

p2
r

2m
+ L2

2mr2
+Vc(r, ε+′) +VL-S(r, ε+′)

σ · L
r

)
G+

k = εNRG+
k ,

(4)

where εNR = ε+′(1 + ε+′
2m

) [16]. In finite nuclei, the second
term in εNR is smaller than 1, and

VL-S(r, ε+′) = 1

2m

[
(∂r�)

(2m + ε+′ − �)
− 2Tr

]
, (5)

Vc(r, ε+′)

= � − ��

2m
+ (� + �)ε+′

2m
+ 3

8

(∂r�)2

m(2m + ε+′ − �)2

+ 1

2

(∂r�)

m(2m + ε+′ − �)r
+ 1

4

(
∂2
r �

)
m(2m + ε+′ − �)

+ 1

2m

[−2Tr

r
+ T 2

r − ∂rTr − (Tr∂r�)

(2m + ε+′ − �)

]
. (6)

In heavy nuclei, the mean field central potential Vc and the
spin-orbit potential VL-S are closer to the nonrelativistic results
obtained by using the Wood-Saxon potential [35]. Unlike the
Wood-Saxon results, the RMF model has a strong energy-
dependent Vc and a weak energy-dependent VL-S (Fig. 4). In
208Pb, V n

c is deeper than V
p
c because more neutrons are present

than protons. VL-S of the RMF model (NL-VT1) is deeper than
the Wood-Saxon prediction [35]. The tensor term gives only a
minor additional contribution to spin-orbit potential near the
Fermi surface. There is no significant difference between the
neutron and proton VL-S of 208Pb in the RMF model (NL-VT1).

The study of nonrelativistic potentials of RMF models
has been done in many places with different intentions
and different methods to obtain Vc and VL-S [2,13,15–20].
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shown in the left and right panels, respectively. R =
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However, a nonrelativistic form of the RMF model like the
Nilsson has not yet been explored, especially in analyzing
the SPS. The advantage of using the Nilsson model is that
VLL could be employed to analyze the relation between states
of different l and their orderings. Reference [26] calculates
VLS and VLL from several RMF models by using some
different approximations to study the origin of the pseudo-spin
symmetry. We note that the maximum value of ε+′ has the
same order of magnitude as the difference value between the
scalar and time components of vector potentials (�); e.g., in
the 208Pb neutron, the corresponding value is around 50 MeV.
On the other hand, � is a summation of the scalar and time
components of the vector potential, and the corresponding
maximum value for the 208Pb neutron is more or less 400 MeV.
It is also known that the nucleon mass is around 1000 MeV
[2]. Therefore, to obtain a “Nilsson form” we can assume
that ε+′ < � < m, so that εNR = ε+′(1 + ε+′

2m
) ≈ ε+′ and

(2m + ε+′ − �)−1 ≈ (2m − �)−1. After that, Eq. (4) can be
written as(

p2
r

2m
+ L2

2mr2
+ V eff

c (r) + V eff
LL(r)L2 + V eff

L-S(r)s · L
)

G+
k

≈ ε+′G+
k , (7)

where s = 1
2σ and

V eff
c (r) =

[
1 + � + �

{2m − (� + �)}
]

lim
ε+′→0

Vc(r, ε+′)

− 1

2m

[
(� + �)

{2m − (� + �)}
]
p2

r ,

V eff
LL(r) = 1

2mr2

[
(� + �)

{2m − (� + �)}
]
,

V eff
L-S(r) = 2

[
1 + � + �

{2m − (� + �)}
]

lim
ε+′→0

VL-S(r, ε+′)
r

. (8)

As another consequence, the energy-dependent Vc transforms
into energy-independent Vc plus a small nonlocal term (pr

dependent). Equation (7) can be considered as the Nilsson
form of the RMF model. Both potentials can be compared
with their partners from the Nilsson model through Nilsson
parameters κ and µ [36].

The dominant parts of V eff
c and V eff

L-S are taken merely
to compare the predictions among the presented models
(parameter sets). They have similar V eff

c and V eff
L-S predictions

not only for the proton but also for the neutron, especially
near the Fermi surface. Small differences appear in the region
around the center of nuclei, and a small V eff

c deviation also
appears in the unoccupied region of PC-F1. Thus, the forms
of V eff

c and V eff
L-S are essentially almost model independent

(see Fig. 5).
In the Fermi surface, all parameter sets have similar κ and

µ for the proton and neutron. On the contrary, the Nilsson
model has different µ for proton and neutron (see Fig. 6).
Compared with the Nilsson model (shaded regions), RMF
ones have larger κ but smaller µ. The differences among
all parameter sets (models) in κ appear only in the region
close to the center of nuclei. It means that κ and µ of
RMF models can be considered as model (parameter set)
independent. Unlike in the Nilsson model, where κ and µ are
independent of the position r, in RMF models both quantities
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FIG. 5. Dominant part of the effective central
potential V eff

c (top) and spin-orbit potential rV eff
L-S

(bottom). Proton and neutron parts are shown in left
and right panels, respectively. R= 1.1 A1/3 fm is the
Fermi surface radius. Here, RMF models with NL-Z,
NL-Z2, NL-VT1, and PC-F1 parametrizations are
employed.

depend on r. The spatial dependence of V eff
L-S originates mainly

from the energy-dependent potential Vc. It should be noted that
the nonrelativistic model, like SHF, does not have such depen-
dence. Therefore, we can consider this spatial dependence as
a genuine feature of self-consistent RMF models.

IV. INTERPRETATION

We prepared two variations of parameter sets to properly
interpret the results. First, we varied the scalar coupling
constant gs of NL-Z until we obtained the desired M∗/m,
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P-0.75, and P-0.80 are fitted parameter sets. The
fitting procedure is the same as in the case of NL-Z.
�-0.65, �-0.70, �-0.75, and �-0.77 are unfitted
parameter sets (obtained only by adjusting the value
of coupling constant gs).

while the four parameter sets were kept constant. Second, we
fitted the four parameter sets with varied M∗/m. The parameter
sets in the second procedure were obtained by fitting the four
parameter sets into the same observable used in obtaining the
NL-Z parameter set until they could reproduce nuclear matter
properties. As in Ref. [2], the χ2 became worse when M∗/m

was larger than 0.6. The fitted parameter sets are tabulated in
Table I, whereas their nuclear matter properties can be seen in
Table II.

For the unfitted parameter sets (see the top-right panel
of Fig. 7), the depth of V eff

c and its trend around the Fermi
surface drastically change. On the other hand, for the fitted
parameter sets (top-left panel, Fig. 7), the depth and trend
around the Fermi surface do not significantly change when
M∗/m is varied. It means that the nuclear observable requires

TABLE I. Numerical values of coupling constants used in the
parameter sets. Except for the NL-Z parametrization [34], these
values are adjusted with respect to M∗/m.

Parameter NL-Z P-0.67 P-0.70 P-0.75 P-0.80

gS 10.06 8.91 8.45 7.58 7.22
gV 12.91 11.02 10.26 8.73 7.94
gR 9.69 9.69 9.69 9.69 9.69
b2 −13.51 −13.44 −13.41 −13.06 −13.49
b3 −40.22 −29.74 −24.48 −3.69 30.07
mS 488.67 488.67 488.67 488.67 488.67
mV 780 780 780 780 780
mR 763 763 763 763 763

a cancellation between scalar and vector potentials. The scalar
and vector potentials tend to weaken if M∗/m becomes larger
than 0.6, but the V eff

L-S is sensitive to the variation of M∗/m

(lower panels, Fig. 7). V eff
L-S decreases when M∗/m increases.

The weakening of V eff
L-S is due to the smallness of the spin-orbit

splitting (upper-left panel, Fig. 9). Fitting the parameters to
the nuclear observable does not help in this case. Therefore,
only appropriate values of scalar and vector potentials can
yield a correct V eff

c and V eff
L-S simultaneously. These potentials

correspond to an M∗/m of about 0.6.
As can be seen in Fig. 8, the Nilsson parameter κ depends

on M∗/m. The value of κ at the Fermi surface decreases
when M∗/m increases, and the major effects are found
for the fitted parameter sets. For these parameter sets, if
M∗ = 0.77m, it coincides with the prediction from the Nilsson
model (shaded area). On the other hand, µ from the fitted
parameter sets is almost independent of the M∗/m variation,
while µ of the unfitted parameter sets depends on M∗/m.
For the RMF models, therefore, a constant value of µ is the
requirement for the correct nuclear bulk properties. The value

TABLE II. Nuclear matter properties predicted by NL-Z, P-067,
P-0.70, P-0.75, and P-0.80 parametrizations.

Parameter NL-Z P-0.67 P-0.70 P-0.75 P-0.80

E/A (MeV) −16.18 −16.30 −16.38 −16.34 −15.85
ρnm (fm−3) 0.15 0.16 0.16 0.17 0.16
M∗/m 0.58 0.67 0.70 0.75 0.80
a4 (MeV) 41.7 41.1 42.0 42.8 39.7
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of µ of the RMF models around the Fermi surface is smaller
than that of the Nilsson model. In the RMF models, κ and µ

depend on each other. As M∗/m increases, κ decreases and
the spin-orbit potential becomes smaller in order to keep µ

constant.
The variation of the neutron and proton SPS with respect

to the variation of M∗/m is shown in Fig. 9. Some states are
shifted up and others are shifted down as M∗/m increases. This
combination does not improve the SPS relative position. The
reason is mainly that the spin-orbit splitting becomes narrower
when M∗/m increases. In the relative position between two
different spin-orbit partners α, a couple of states are closer
to experimental data, but the majority of states deviate more
when M∗/m increases. The value of αdg is negative for P-070
because there is an exchange of ordering in 3d states (the value
of the gap is negative). Except for αdg , all α values change quite
drastically. This effect depends on M∗/m, but the pattern of
changing is not the same for every level. It seems that the
relative position α can be reproduced if M∗/m depends on
the states. This dependence can be generated only if we take
into account the exchange and/or other correlations (effects)
beyond mean fields. It would be interesting to see whether the
exchange effect can remedy this problem. Future calculations
should address this question.

V. CONCLUSION

The 208Pb,132 Sn, and 40Ca SPS of RMF models have been
revisited and studied. Qualitatively, all RMF models presented
here have a similar trend in SPS. Quantitatively, however, the
SPS trends are different for each model. The comparison with

new experimental data [33] shows not only that the position
of the state is poorly reproduced, but also that some level
positions in the neutron spectra are reversed.

The nonrelativistic limit of the RMF model has been
derived in which the potentials resemble Wood-Saxon and
Nilsson forms. The energy-dependent potentials Vc and VLS

(in Wood-Saxon type) of RMF models can be transformed
into energy-independent potentials V eff

c and V eff
LS (in Nilsson

type) but with an additional angular-momentum-dependent
potential V eff

LL L2. These potentials are used to analyze the
208Pb SPS predictions from several RMF models. First we
found that the behavior of κ and µ of the RMF mod-
els is different from that of the Nilsson model. Second,
due to the interdependence of parameters κ and µ in the
RMF models, the acceptable parameter sets (M∗/m ≈ 0.6)
at the Fermi surface need a relatively large V eff

LL in order to
maintain a correct spin-orbit splitting.

Since the effect of tensor terms in the RMF model is too
small in the VLS of heavy nuclei (208Pb), the effect is marginal
on giving correct level spacings and placement ordering. The
suspicion that a relatively small V eff

LL (large M∗/m) yields a
relatively better placement of states is found to be wrong. The
208Pb case demonstrated that when V eff

LL is decreasing, only
two placements of the states are improving, whereas the rest
are getting worse. Therefore, the problem of RMF models in
reproducing experimental data on the relative placement of
the states seems to originate in the independence of M∗ from
l (state).
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