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We use the canonical Hartree-Fock-Bogoliubov basis to implement a self-consistent quasiparticle-random-
phase approximation (QRPA) with arbitrary Skyrme energy density functionals and density-dependent pairing
functionals. The point of the approach is to accurately describe multipole strength functions in spherical even-even
nuclei, including weakly bound drip-line systems. We describe the method and carefully test its accuracy,
particularly in handling spurious modes. To illustrate our approach, we calculate isoscalar and isovector monopole,
dipole, and quadrupole strength functions in several Sn isotopes, both in the stable region and at the drip lines.
We also investigate the consequences of neglecting the spin-orbit or Coulomb residual interactions in the QRPA.
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I. INTRODUCTION

The study of nuclei far from stability is an increasingly
important part of nuclear physics [1,2]. As radioactive beams
allow more experiments on these nuclei, theoretical modeling
is changing in significant ways. New ideas and progress
in computer technology have allowed nuclear theorists to
understand bits and pieces of nuclear structure quantitatively
[3]. Short-lived exotic nuclei offer unique tests of those aspects
of our developing many-body theories that depend on neutron
excess [4]. The major challenge is to predict or describe in
detail exotic new properties of nuclei far from the stability
valley and to understand the origins of these properties.

For medium-mass and heavy nuclei, an important goal
is obtaining a universal energy-density functional, which
will be able to describe static and dynamic properties of
finite nuclei and extended nucleonic matter with arbitrary
neutron-to-proton ratio. Self-consistent methods based on
density-functional theory are already sophisticated enough
to allow precise analysis of ground-state properties (e.g.,
binding energies) in heavy nuclei [5–7]. They can also help
describe nuclear decays and excited states. Their predictions
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for collective excitations as we approach the neutron drip
line are especially interesting. But what happens to low- and
high-frequency multipole modes when the neutron excess is
unusually large?

To address these questions we use the quasiparticle
random-phase approximation (QRPA), a powerful tool for
understanding both low-lying vibrational states and giant
resonances [8]. The QRPA is a microscopic approach that is
nevertheless simple enough to allow “no-core” calculations.
The approximation, which should be good for collective
vibrations as long as their amplitudes are small, is especially
effective in conjunction with Skyrme energy functionals.
Our work is part of a broad program to test and improve
these functionals, which thus far have been fitted mainly
to ground-state observables, by applying them to collective
excitations, particularly near the drip line. This paper lays out
our approach and evaluates its accuracy. For these purposes
we restrict ourselves to a single Skyrme functional, SkM∗. A
forthcoming study will examine the performance of Skyrme
functionals more generally.

The QRPA is a standard method for describing collective
excitations in open-shell superconducting nuclei with stable
mean-field solutions, either spherical or deformed. What is
not standard, and at the same time is extremely important
for weakly bound nuclei, is the treatment of the parti-
cle continuum. Continuum extensions of the random-phase
approximation (RPA) or QRPA are usually carried out in
coordinate space, facilitating treatment of decay channels and
guaranteeing correct asymptotics. Surprisingly, as we discuss
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in the following, the rich literature on the RPA and QRPA,
which includes many coordinate-space calculations, contains
few treatments of the continuum that exploit the entire Skyrme
functional in a fully self-consistent way.

To avoid confusion, we state what we mean by a fully
self-consistent RPA or QRPA calculation. First, the underlying
mean-field calculation must be self-consistent in the usual
sense. Next, the residual interaction used in the RPA or
QRPA must be derived from the same force or energy
functional that determines the mean field. An important
consequence of this condition, and of other more detailed
technical conditions discussed later, is that spurious excitations
arising from symmetry breaking by the mean field have zero
or nearly zero energy, leaving the physical intrinsic excitations
uncontaminated by spurious motion. Finally, energy-weighted
sum rules must be satisfied to high accuracy. We elaborate on
these requirements in the following; Refs. [9–12] discuss ways
in which RPA calculations commonly violate them.

The literature applying RPA or QRPA to nuclear structure is
huge, and a complete review is beyond the scope of our paper.
We do, however, present an overview of the studies that are
related in one way or another to nuclear density functionals,
self-consistency, pairing, and the key issue of the particle
continuum.

The standard version of QRPA, the so-called matrix
formulation, is carried out in the configuration space [13,14] of
single-quasiparticle states. A number of papers treat collective
states in spherical nuclei in the Skyrme-RPA and QRPA matrix
formulation (see Refs. [14,15] and references cited therein),
in which the positive-energy continuum is discretized, for
example, by solving the Hartree-Fock-Bogoliubov (HFB) and
QRPA equations in a harmonic-oscillator single-particle basis.
Within this group, the first fully self-consistent calculations
that properly account for continuum effects are those of Refs.
[16,17], in which the localized canonical basis of coordinate-
space HFB is used to calculate β-decay rates of neutron-rich
r-process nuclei and Gamow-Teller strength distributions.
Recently, fully self-consistent HFB+QRPA calculations have
also been carried out with the finite-range Gogny force [18].
Unlike many previous Gogny+HFB studies that employed a
harmonic-oscillator basis, Ref. [18] solves the HFB equations
in the eigenbasis of a Woods-Saxon potential, the particle
continuum of which is discretized by enclosing the system
in a box.

Coordinate-space Green’s functions as a method of imple-
menting the RPA through linear response were first used in
Ref. [19] and subsequently applied to the description of low-
and high-energy nuclear modes (see, e.g., Refs. [9,20–29]).
Many of those calculations are not realistic enough, however,
because they ignore the spin-orbit and Coulomb residual
interactions in the RPA [10,11]. Coordinate-space Green’s-
function QRPA was studied in Ref. [30], in the BCS ap-
proximation, with a phenomenological Woods-Saxon average
potential. Coordinate-space HFB+QRPA for spherical nuclei
was formulated in Refs. [31–34] and applied to excitations
of neutron-rich nuclei. As in [30], the Hartree-Fock (HF)
field in Refs. [31,32] was approximated by a Woods-Saxon
potential. Although the calculations of Refs. [33,34] are
based on Skyrme-HFB fields, they violate full self-consistency

by replacing the residual velocity-dependent terms of the
Skyrme force by the Landau-Migdal force in the QRPA,1

and by neglecting spin-spin, spin-orbit, and Coulomb residual
interactions entirely. Within this approach, extensive Skyrme-
HF+BCS QRPA calculations of E1 strength in neutron-rich
nuclei were carried out in Refs. [36,37].

An alternative coordinate-representation approach, also
based on Green’s functions, was formulated in Refs. [38,39]
within Migdal’s finite-Fermi-systems theory. Most practical
applications of this method, however, involve approximations
that break self-consistency in one way or another, including the
use of highly truncated pairing spaces, different interactions
in HFB and QRPA, and the so-called diagonal pairing approx-
imation [38,40–47]. Properties of excited states and strength
functions have also been investigated within the relativistic
RPA [48–54] or QRPA [55,56]. The QRPA work employs the
matrix formulation and is fully self-consistent, since it uses
the same Lagrangian in the relativistic Hartree-Bogoliubov
calculation of the ground state and in the QRPA matrix
equations, which are solved in the canonical basis.

At present, no fully self-consistent continuum HFB+QRPA
calculations exist in deformed nuclei. References [57,58]
studied giant resonances in deformed nuclei within time-
dependent HF theory, formulated in coordinate space with a
complex absorbing boundary condition imposed. Symmetry-
unrestricted RPA calculations, with no pairing, were carried
out in Ref. [59] in a “mixed representation” [60] on a
Cartesian mesh in a box, whereas Ref. [61] contains examples
of BCS+QRPA calculations in the single-particle basis of a
deformed Woods-Saxon potential.

The work described in this paper is essentially fully self-
consistent: Among other things we use precisely the same
interaction in the HFB and QRPA calculations to preserve the
small-amplitude limit of time-dependent HFB. We formulate
the QRPA in the canonical eigenbasis of the one-body particle-
density matrix [62], which is calculated in the coordinate rep-
resentation in a large spherical box. As already mentioned, the
canonical basis has been used previously to study β decay and
Gamow-Teller strength [16,17]; its use in charge-conserving
modes near the drip line is more challenging, however, because
of the existence of spurious states in the monopole and
dipole channels.2 These zero-energy modes can mix with
physical states unless the QRPA equations are solved with high
accuracy. We violate full self-consistency very slightly, with
negligible consequences for physical states, in our treatment
of the 1− channel (Sec. III B). A less precise implementation
of our approach was used to calculate neutrino-nucleus cross
sections in 208Pb in Ref. [64].

This paper is organized as follows. Section II presents
our approach. In Sec. III we check the QRPA solutions
carefully, focusing on spurious modes, and investigate the
role of the spin-orbit and Coulomb residual interactions in

1The treatment of velocity-dependent terms was improved in a
recent paper [35].

2As far as we know, the only application of the canonical basis to
charge-conserving modes near the drip line is in the relativistic QRPA
(see, e.g., [55,63]).
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the QRPA. Section IV contains the main conclusions of our
work. Mathematical details are in two appendixes, the first of
which is on the QRPA equations and the second on calculating
the derivatives of the Skyrme functionals that enter the
formalism.

II. METHOD

Our first step in the self-consistent treatment of excita-
tions is to solve the spherical HFB equations in coordinate
space (without mixing neutron and proton quasiparticle wave
functions [65]), with the method developed in Ref. [66]
(see also Refs. [62,67,68]). We can use arbitrary Skyrme
functionals in the particle-hole and pairing (particle-particle)
channels.

We modify the code used in Refs. [62,66,67] so that it
solves the HFB equations with higher accuracy, which we
need because the QRPA uses all the single-quasiparticle states
produced by the HFB equations, even those that are essentially
unoccupied. Our modifications are to use (i) quadruple
precision (though in solving the QRPA equations we use
double precision), (ii) a smaller discretization length (0.05 fm),
and (iii) a high-quasiparticle-energy cutoff (200 MeV) and a
maximum angular momentum jmax = 15/2 (N � 82) or 21/2
(N > 82). In a 20-fm box, this cutoff corresponds to 200–300
quasiparticle states for each kind of nucleon. We include all
these quasiparticle states in the HFB calculation because a
very large energy cutoff is essential for accurate self-consistent
QRPA calculations [10]. Hence, the effective pairing window
in our HFB calculations is also very large, with the pairing
functional fitted to experimental pairing gaps extracted as in
Ref. [69] from the measured odd-even mass differences in
several Sn, Ni, and Ca isotopes.

Next, we construct the canonical basis, the eigenstates
of single-particle density matrix ρ. To avoid poor accuracy
(see Ref. [62]) in the wave functions of the nearly empty
canonical particle states, we do not diagonalize ρ directly
in coordinate space. Instead we construct an intermediate
basis by orthonormalizing a set of functions {ϕµ

1 (r) + ϕ
µ

2 (r)},
where ϕ

µ

1 (r) and ϕ
µ

2 (r) are the upper and lower components
of the quasiparticle wave function with energy Eµ [66]. We
use the density matrix in coordinate space to calculate the
matrix in this basis, which we then diagonalize to obtain the
canonical states. The reason for using the sum of ϕ

µ

1 (r) and
ϕ

µ

2 (r) is that solutions of the HFB equations expressed in
the canonical basis (Eqs. (4.14) of Ref. [62]) are, in the new
basis, guaranteed to be numerically consistent with those of
the original HFB problem. This is because the configuration
space is the same in both cases, independent of the pairing
cutoff (see Ref. [70] for a discussion relevant to this point).
Without pairing, when either ϕ

µ

1 (r) or ϕ
µ

2 (r) is equal to zero,
our method is equivalent to taking a certain number of HF
states, including many unoccupied states.

In the canonical basis, the HFB+QRPA equations have a
form almost identical to that of the BCS+QRPA approxima-
tion; the only difference is the presence of off-diagonal terms in
the single-quasiparticle energies. The QRPA+HFB formalism
employs more pairing matrix elements than the QRPA+BCS,
however.

As noted already, full self-consistency requires the use of
the same interaction in the QRPA as in the HFB approximation.
More specifically, this means that the matrix elements that
enter the QRPA equation are related to second derivatives of a
mean-field energy functional. We describe the densities and the
form of the functional carefully in the appendixes. However,
we must meet other conditions as well for QRPA calculation
to be self-consistent. Essentially all the single-particle or
quasiparticle states produced by the HFB calculation must
be used in the space of two-quasiparticle QRPA excitations.
This requirement is rather stringent, so we truncate the two-
quasiparticle space at several levels and check for convergence
of the QRPA solution. First we omit canonical-basis wave
functions that have occupation probabilities v2

i less than some
small v2

crit (or HF energies greater than some εcrit if there is no
pairing). Then we exclude from the QRPA pairs of canonical
states for which the occupation probabilities are both larger
than 1 − v2

crit. This second cut is based on the assumption
that two-particle transfer modes are not strongly coupled to
particle-hole excitations. In addition, if the factors containing
ui and vi in the QRPA equation—see Eqs. (A12) and (A13)—
are very small, in practice smaller than 0.01, then we set the
corresponding matrix elements equal to zero. This does not
affect the size of the QRPA space, but it significantly speeds up
the calculations. For good performance we diagonalize QRPA-
Hamiltonian matrices of order 20 000 × 20 000 in neutron-rich
Sn isotopes.

Having solved the QRPA equations, we can then calculate
the strength function

SJ (E) = 1

π

∑
k

J∑
M=−J

γ (Ek)|〈k|F̂JM |0〉|2
(Ek − E)2 + γ 2(Ek)

(1)

for the multipole operator F̂JM . The smoothing width γ is
supposed to be large enough to remove spurious oscillations
in SJ (E) associated with a finite box radius Rbox [57,71]. A
reasonable form, based on a single-particle estimate, for the
smoothing width (Appendix B of Ref. [71]), is

γ (E) =
{

π
Rbox

√
h̄2(E+λn)

2m
, E � − λn,

0.1 MeV, E < −λn,
(2)

where λn is the neutron Fermi level and m is the nucleon
mass. In deriving Eq. (2) we assumed that the single-proton
continuum is effectively shifted up several MeV by the
Coulomb barrier. In other words, we associate the threshold
energy with the neutron Fermi level. Our prescription is not
designed to correct for the absence of spreading and escape
widths in the QRPA but rather merely to eliminate artificial
peaks associated with the finite box. We do not pretend that
measured widths will be the same as those obtained with
Eq. (2).

In all the tests in the following, we use the Skyrme
functional SkM∗ [72] and a volume pairing functional [73]
[Cρ̃(ρ00), a constant in Eq. (B9)]. The pairing parameter in
Eq. (B19) is V0 = −77.5 MeV fm3. Usually we work in a
box of radius 20 fm, though we vary this radius to see its
effects. In several tests we examine the weakly bound nucleus
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FIG. 1. Neutron quasiparticle energies Echeck
µ for s1/2 states in

174Sn, calculated by diagonalizing the HFB Hamiltonian in the
canonical basis, versus the quasiparticle energies Eµ obtained by
directly solving the HFB equations in coordinate space. Standard
(solid line, diamonds) and improved (dotted line, dots) methods are
used to obtain the canonical states. See text for details.

174Sn, which is very close to the two-neutron drip line. In this
system, the protons are unpaired and the neutrons paired (with
�n = 1.016 MeV) in the HFB ground state.

III. ACCURACY OF SOLUTIONS

Benchmark tests of the HFB part of our calculations are
reported in Ref. [74]. Since the accuracy of the canonical
wave functions, in which the QRPA calculations are carried
out, strongly affects the quality of results (in particular QRPA
self-consistency), we take special care to compute them
precisely. As discussed in Sec. II, we obtain canonical states by
diagonalizing the single-particle density matrix ρ represented
in the orthonormalized set of functions {ϕµ

1 (r) + ϕ
µ

2 (r)}. The
accuracy of this method is illustrated in Fig. 1, which plots
the quasiparticle energies Echeck

µ , obtained by diagonalizing
the HFB Hamiltonian in the canonical basis [Eq. (4.20) of
Ref. [62]], versus the quasiparticle energies Eµ obtained by
solving the HFB differential equations directly in coordinate
space [Eq. (4.10) of Ref. [62]]. Two sets of canonical states
are used: (i) those obtained through the procedure outlined
here (dotted line) and (ii) those obtained in the standard way
by diagonalizing the density matrix ρ(r, r ′) in discretized
coordinate space [Eq. (3.24a) of Ref. [62]; solid line]. If the
canonical basis is precisely determined, Echeck

µ = Eµ and the

TABLE I. The lowest energy excited 0+ states in 174Sn. The
second column shows the excitation energies and the third column
the squared matrix elements of the particle-number operator between
the kth excited state and the ground state (k = 0).

k Ek (MeV) |〈k|N̂ |0〉|2

1 0.171 0.120
2 2.833 0.533 × 10−5

3 3.090 0.877 × 10−7

4 3.810 0.252 × 10−5

5 3.878 0.480 × 10−5

two sets of Echeck
µ coincide. Within the standard approach,

however, the high canonical energies deviate visibly from
their HFB counterparts; that is, the accuracy of the underlying
canonical wave functions is poor. In contrast, the quasiparticle
energies and canonical wave functions calculated within the
modified approach introduced here are as accurate as the
original solutions to the HFB equations, even for high-lying
nearly empty states. (See also Sec. VI D of Ref. [75] for a
discussion relevant to this point.)

Having examined the canonical basis, we turn to the
accuracy of the QRPA part of the calculation. To test it, we
first consider solutions related to symmetries. If a Hamiltonian
is invariant under a symmetry operator P̂ and the HFB state
|	〉 spontaneously breaks the symmetry, then eiαP̂ |	〉, with
α an arbitrary c number, is degenerate with the state |	〉.
The QRPA equations have a spurious solution at zero energy
associated with the symmetry breaking [8,76], whereas all
other solutions are free of the spurious motion. This property is
important for strength functions and gives us a way of testing
the calculations. Since our QRPA equations, which assume
spherical symmetry, are based on mean fields that include
pairing and are localized in space, there appears a spurious
state associated with particle-number nonconservation (proton
and/or neutron; 0+ channel) and a spurious state associated
with center-of-mass motion (1− channel). These two cases are
discussed in Secs. III A and III B.

A. The 0+ isoscalar mode

In addition to the spurious state associated with noncon-
servation of particle number by the HFB, the 0+ channel
contains the important “breathing mode.” In Table I we
display results from a run with v2

crit = 10−12 for neutrons
and εcrit = 150 MeV for protons, resulting in the inclusion
of 310 proton quasiparticle states and the same number of
neutron states, with angular momentum up to j = 21/2. The
table shows the QRPA energies and transition matrix elements
of the particle-number operator. The spurious state is below
200 keV, well separated from the other states, all of which have
negligible “number strength.” The nonzero number strength
in the spurious state, like the nonzero energy of that state,
is a measure of numerical error. (Both Ek and |〈k|N̂ |0〉|2
would be zero for the spurious solution if the calculation were
perfect.) If the space of two-quasiparticle states is smaller, with
εcrit = 100 MeV and v2

crit = 10−8, the energy of the spurious
state and the number strength barely change.
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FIG. 2. Isoscalar 0+ strength function in 174Sn for (i) the single-
proton energy cutoff εcrit = 100 MeV and the neutron-quasiparticle
occupation cutoff v2

crit = 10−8 (thin solid line); (ii) εcrit = 150 MeV
and v2

crit = 10−12 (dotted line); and (iii) εcrit = 200 MeV and v2
crit =

10−16 (thick solid line). Results corresponding to (ii) and (iii)
practically coincide.

Figure 2 shows the strength function SJ (E) for the isoscalar
0+ transition operator (cf. [77])

F̂00 = eZ

A

A∑
i=1

r2
i . (3)

We have plotted three curves with successively more quasi-
particle levels (from 246 proton levels and 203 neutron levels
to 341 proton levels and 374 neutron levels), with cutoff
parameters given in the figure caption. The major structures in
the strength function are stable. The error remaining after the
gentlest truncation is extremely small.

The dependence of the strength function on the box size and
quasiparticle cutoff is shown in Fig. 3. The upper part of the
figure (panels a–c) corresponds to a constant smoothing width

of γ = 0.5 MeV. This relatively small value is insufficient
to eliminate the finite-box effects but it allows us to assess
the stability of the QRPA solutions as a function of Rbox.
The large structure corresponding to the giant monopole reso-
nance (GMR) is independent of box size no matter what the
cutoff, but increasing the number of configurations magnifies
the dependence on box size of local fluctuations in SJ (E). The
curves in the lower part of the figure (panels d–f ) are smoothed
more realistically, as in Eq. (2). It is gratifying to see that
the resulting strength functions are practically identical; that
is, the remaining dependence on Rbox and the cutoff is very
weak.

The energy-weighted sum rule (EWSR) for the isoscalar
0+ mode [77] is given by

∑
k

Ek|〈k|F̂00|0〉|2 = 2
e2h̄2

m

Z2

A
〈r2〉, (4)

where the expectation value is evaluated in the HFB ground
state. This sum rule provides a stringent test of self-consistency
in the QRPA. In 174Sn, the right-hand side of Eq. (4) is
35 215 e2 MeV fm4 and the left-hand side is 34 985 ±
15 e2 MeV fm4 for all of the calculations of Fig. 3; the QRPA
strength essentially exhausts the sum rule. (The QRPA values
of the EWSR in this paper are obtained by summing up to
Ek = 50 MeV.)

B. The isoscalar 1− mode

The 1− channel, home of the giant dipole resonance, the
isoscalar squeezing resonance, and as yet incompletely un-
derstood low-energy peaks in neutron-rich nuclei (sometimes
associated with skin excitations), has a spurious isoscalar
mode associated with center-of-mass motion that can seriously
compromise the low-energy spectrum if not handled with
extreme care. In our implementation of QRPA, the spurious
mode has an energy that is not quite zero because we violate

0

200

400

600

0

100

200

300

400

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
E (MeV)

S 
(e

2
fm

4 /
M

eV
)

(a) (c)

(d) (f)(e)

(b)

174Sn,  0+
 Rbox = 25 fm

 Rbox = 20 fm

FIG. 3. Isoscalar 0+ strength function in 174Sn for the box radii: Rbox = 20 fm (solid line) and Rbox = 25 fm (dotted line). In (a), (b), and
(c) the smoothing-width parameter γ is 0.5 MeV for all energies, whereas in (d), (e), and (f ) γ (E) is given by Eq. (2). We use the same three
sets of cutoff conditions as in Fig. 2, namely (i) in parts (a) and (d), (ii) in parts (b) and (e), and (iii) in parts (c) and (f ).
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FIG. 4. Isoscalar 1− strength function in
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operator in Eq. (5) (dotted line). The cutoff
εcrit is 140 MeV, and v2

crit is 3 × 10−12. The
self-consistency of our calculations makes the
solid and dotted curves coincide nearly exactly
over the whole energy range.

translational invariance slightly in two ways: First, by adopting
the box boundary condition we assume the presence of an
external one-body potential that encloses the system. This
infinite square well is manifestly not translationally invariant
(see, e.g., relevant discussion in Sec. 3.5 of Ref. [12]). Second,
the energy cutoff imposed on the single-quasiparticle spectrum
at the HFB level prevents us—by breaking the closure relation
for canonical states—from exactly expressing what would be
the spurious state in a translationally invariant calculation
(i.e., the momentum operator acting on the HFB ground
state) in terms of our QRPA excitations [12]. As we now
show, however, the effects of the explicit violation are
small, particularly in the physical-state energies and wave
functions.

We examine the properties of the resulting spurious mode
in 100Sn, 120Sn, 174Sn, and 176Sn. (The nuclei 100Sn and 176Sn
are the two-proton and two-neutron drip-line systems pre-
dicted by the HFB calculation with SkM∗. Neither nucleus
has any static pairing; i.e., �n = �p = 0.) In the following
calculations, we take εcrit = 140 MeV for the protons and
v2

crit = 9 × 10−12 for the neutrons. As already discussed,
smoothed strength functions are practically independent of
small changes in the cutoff. They are also independent of the
cutoff in quasiparticle angular momentum provided we include
all states with j � 15/2.

Figure 4 shows the predicted isoscalar dipole strength
function for 100,120,174,176Sn. For the transition operator,
we use

F̂1M = eZ

A

A∑
i=1

r3
i Y1M (�i), (5)

and we use the corrected operator

F̂ cor
1M = eZ

A

A∑
i=1

(
r3
i − ηri

)
Y1M (�i), η = 5

3
〈r2〉,

(6)

to remove as completely as possible residual pieces of the
spurious state from the physical states [10]. The fact that
the strength functions produced by these two operators—
displayed in Fig. 4—coincide so closely shows both the unim-
portance of the explicit violation of translational invariance
and the extreme accuracy of our QRPA solutions; they are
essentially uncontaminated by spurious motion even without
the operator correction. The spurious-state energies Espurious

are 0.964 MeV for 100Sn and 0.713 MeV for 120Sn, and the
energies of the first physical excited states are 7.958 MeV for
100Sn and 7.729 MeV for 120Sn. In 174Sn (176Sn), Espurious

is 0.319 MeV (0.349 MeV) and the first physical state is
at 3.485 MeV (2.710 MeV), lower than in the more stable
isotopes. Pairing correlations do not affect accuracy; the
neutrons in 120Sn and 174Sn are paired, whereas those in 100Sn
and 176Sn are not.

As a final check on the separation of center-of-mass motion,
we calculated the transition density

ρtr(r; k) = r2
∫

d�Y1M (�)〈k|
A∑

i=1

δ(r − r i)|0〉 (7)

for the spurious state, which ideally should be proportional
to r2 dρ(r)

dr
[10], where ρ(r) is the ground-state density in the

HFB approximation. The top half of Fig. 5 shows our QRPA
result, which is indistinguishable from the HFB derviative. To
see the size of deviations, we plotted the difference between
the two curves (with the constant of proportionality fixed at
r = 6.5 fm, an arbitrary point) with a magnified scale in the
bottom half of the figure. The spurious-state transition density
is very accurate.

We display the fine structure of the isoscalar 1− strength
functions in 120Sn and 174Sn in Fig. 6, which also illustrates
the dependence of the results on Rbox. The dependence is
consistent with that of Fig. 3 for the isoscalar 0+ strength;
the low-amplitude fluctuations in SJ (E) that are unstable as a
function of Rbox disappear, and the smoothed strength function
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FIG. 5. Transition density of the spurious 1− state and the
indistinguishable curve cr2 dρ(r)/dr (upper panel), and the dif-
ference between the two curves (lower panel). The line thickness
in the upper panel is about 0.01 fm−1. The constant c is fixed
at r = 6.5 fm.

depends only weakly on Rbox. In 120Sn, the two sharp peaks
below 10 MeV correspond to discrete states, whereas the broad
maxima centered around 15 and 27 MeV are in the continuum,
well above the neutron-emission threshold. A similar three-
peaked structure emerges in 174Sn, though most of the strength
there is concentrated in the low-energy peak at E ≈ 4 MeV.
Figure 4 shows (as we will discuss in our forthcoming paper
[78]) that the appearance of the low-energy isoscalar dipole
strength is a real and dramatic feature of neutron-rich drip-line
nuclei [79,80].
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FIG. 6. Isoscalar 1− strength function in 120Sn (left) and 174Sn
(right) for two box radii: Rbox = 20 fm (solid line) and Rbox = 25 fm
(dotted line). In (a) and (b) the smoothing-width parameter is
constant (γ = 0.5 MeV), whereas in (c) and (d) γ (E) is given
by Eq. (2).

The EWSR for the isoscalar 1− mode [77] is

∑
k

∑
M

Ek

∣∣〈k|F̂ cor
1M |0〉∣∣2 = 3

8π

e2h̄2

m

Z2

A

(
11〈r4〉 − 25

3
〈r2〉2

)
.

(8)

In 174Sn, the right-hand side is 403 310 e2 MeV fm6, whereas
the left-hand side is 400 200 e2 MeV fm6. For 176Sn, the
corresponding numbers are 406 576 e2 MeV fm6 and
407 100 e2 MeV fm6. This level of agreement is very good.

C. The isovector 0+ and isoscalar, isovector 2+ modes

Figure 7 displays strength functions for the 0+ and 2+
channels in 120Sn and 174Sn. (We discussed the isoscalar
0+ mode first to illustrate the accuracy of our solutions,
but we include it here as well for completeness.) The
calculations show the appearance of low-energy 0+ strength—
both isovector and isoscalar—and low-energy isovector 2+
strength in 174Sn, though in none of these instances is
the phenomenon quite as dramatic as in the isoscalar 1−
channel.

The EWSR for the isoscalar 2+ transition operator,

F̂2M = e
Z

A

A∑
i=1

r2
i Y2M (�i), (9)

can be written as [77]

∑
k

∑
M

Ek|〈k|F̂2M |0〉|2 = 25

4π

e2h̄2

m

Z2

A
〈r2〉. (10)

The sum rule is obeyed as well in the 2+ isoscalar channel
as in the 0+ and 1− channels; the only difference is that one
needs to include quasiparticle states with j > 15/2 for 174Sn.
For 120Sn (174Sn) from Fig. 7, the EWSR is 37 222 (34 971)
e2 MeV fm4, whereas the QRPA value is 37 030 (35 010)
e2 MeV fm4.

While on the topic of the sum rule, we display in Table II the
jmax dependence of the EWSR for several channels in 150Sn,
with Rbox = 25 fm. By taking jmax = 19/2 we appear to obtain
essentially the entire strength in all three cases. Finally, we
note that the lowest 2+ state of 120Sn has E = 1.205 MeV and
B(E2; 0+ → 2+) = 3077 e2 fm4 in our calculation, whereas
the experimental data are E = 1.171 MeV and B(E2; 0+ →
2+) = 2020 ± 40 e2 fm4 [81]. We will make more extensive
comparisons in a future paper.

TABLE II. The jmax dependence of isoscalar EWSR for 150Sn.
Rbox is 25 fm.

TJ π Units jmax = 19/2 jmax = 25/2

IS 0+ e2 MeV fm4 35 731 35 633
IS 1− e2 MeV fm6 361 686 353 936
IS 2+ e2 MeV fm4 35 542 35 445
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is 150 MeV and v2
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D. Calculations without the spin-orbit or Coulomb
residual interactions

Since many existing QRPA calculations omit the spin-orbit
and Coulomb interactions, as discussed in the Introduction, we
examine the strength functions with and without these terms
to see how large an error their omission causes. We performed
QRPA calculations in the Jπ = 0+, 1−, and 2+ channels in
120,174Sn, omitting the two interactions in turn while keeping
all terms in the HFB. Figure 8 shows the results in the 0+
channel. When we omit the spin-orbit residual interaction the
peak energy is shifted up about 300 keV and the peak height is
lowered by 15%; the effect of omitting the Coulomb residual
interaction is smaller. The change in the EWSR is less than
1% in either case. The discrepancies in the strength functions
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FIG. 8. Isoscalar 0+ strength functions in 120Sn without the
residual spin-orbit interaction in the QRPA (dashed curve), without
the residual Coulomb interaction (dotted curve), and with all terms
included (solid curve).

of the other modes are similar, though sometimes less. In
any event, the errors induced by omitting such terms are much
larger than the small ones we make by truncating our canonical
basis.

How is the spurious strength affected by the removal of,
for example, the spin-orbit term in the residual interaction?
We found that although 0+ spurious strength remains highly
concentrated in one state, the 1− spurious strength spreads
appreciably near the neutron drip line, as shown by Fig. 9,
which was obtained by omitting the spin-orbit interaction.
The corrected strength function is similar to that of
Fig. 4(c), but the uncorrected function, which was identi-
cal to its corrected counterpart in Fig. 4(c), is now quite
different.
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FIG. 9. Isoscalar 1− strength functions in 174Sn without the spin-
orbit residual interaction, with and without the correction to remove
spurious strength.
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IV. CONCLUSION

In this work we have reported on the development and
detailed testing of a fully self-consistent Skyrme-QRPA frame-
work that employs the canonical HFB basis. The method can
be used to calculate strength distributions in any spin-isospin
channel and in any spherical even-even nucleus. A good
calculation requires a large single-quasiparticle space. Our
results show that our space is large enough in nuclei as heavy
as the Sn isotopes.

We are currently investigating the predictions of a range of
Skyrme functionals across the Ca, Ni, and Sn isotope chains.
The initial results presented here point to increases in low-lying
strength at the neutron drip line, particularly in the isoscalar-
dipole channel. In a forthcoming paper [78] we will report
on the robustness of these effects, on the physics underlying
them, on their variation with atomic mass and number, and on
their implications for the future of Skyrme functionals.
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APPENDIX A: QRPA EQUATION

The QRPA equations are the small-oscillations limit of
the time-dependent Hartree-Fock-Bogoliubov approximation
(see, e.g., [8,14]). In the canonical basis the most general
equations take the form

∑
L < L′

(
AKK ′,LL′ BKK ′,LL′

−B∗
KK ′,LL′ −A∗

KK ′,LL′

) (
Xk

LL′

Y k
LL′

)
= Ek

(
Xk

KK ′

Y k
KK ′

)
,

K < K ′, (A1)

AKK ′,LL′ = EKLδK ′L′ − EK ′LδKL′ − EKL′δK ′L + EK ′L′δKL

− V̄
ph
KL̄K̄ ′L′uL′vLuKvK ′ + V̄

ph
K ′L̄K̄L′uL′vLuK ′vK

+ V̄
ph
KL̄′K̄ ′LuLvL′uKvK ′ − V̄

ph
K ′L̄′K̄L

uLvL′uK ′vK

− V̄
pp
L̄L̄′K̄ ′K̄vLvL′vK ′vK − V̄

pp
KK ′L′LuKuK ′uLuL′

− V̄
3p1h
L̄L̄′KK̄ ′vLvL′uKvK ′ + V̄

3p1h
L̄L̄′K ′K̄vLvL′uK ′vK

− V̄
3p1h
KK ′L̄L′uKuK ′uL′vL + V̄

3p1h
KK ′L̄′LuKuK ′uLvL′

− V̄
1p3h
L̄L′K̄ ′K̄uL′vLvK ′vK + V̄

1p3h
L̄′LK̄ ′K̄uLvL′vK ′vK

− V̄
1p3h
KK̄ ′L′LuKvK ′uLuL′ + V̄

1p3h
K ′K̄L′LuK ′vKuLuL′ ,

(A2)
BKK ′,LL′ = V̄

ph
K ′L′K̄L̄

uL′vLuK ′vK − V̄
ph
KL′K̄ ′L̄uL′vLuKvK ′

− V̄
ph
K ′LK̄L̄′uLvL′uK ′vK + V̄

ph
KLK̄ ′L̄′uLvL′uKvK ′

+ V̄
pp
K ′KL̄L̄′vLvL′uKuK ′ + V̄

pp
L′LK̄K̄ ′vKvK ′uLuL′

+ V̄
3p1h
K ′KL′L̄uL′vLuKuK ′ − V̄

3p1h
K ′KLL̄′uLvL′uKuK ′

+ V̄
3p1h
L′LK ′K̄uK ′vKuLuL′ − V̄

3p1h
L′LKK̄ ′uKvK ′uLuL′

+ V̄
1p3h
K ′K̄L̄L̄′vLvL′uK ′vK − V̄

1p3h
KK̄ ′L̄L̄′vLvL′uKvK ′

+ V̄
1p3h
L′L̄K̄K̄ ′vKvK ′uL′vL − V̄

1p3h
LL̄′K̄K̄ ′vKvK ′uLvL′ ,

(A3)

V̄
ph
KLK ′L′ = δ2E[ρ, κ, κ∗]

δρK ′KδρL′L
, (A4)

V̄
pp
K ′KL′L = δ2E[ρ, κ, κ∗]

δκ∗
K ′KδκL′L

, (A5)

V̄
3p1h
K ′KL′L = δ2E[ρ, κ, κ∗]

δκ∗
K ′KδρLL′

= V̄
1p3h ∗
LL′K ′K, (A6)

where K and L are single-particle indices for the canonical
basis, and the states are assumed to be ordered. The symbol K̄

refers to the conjugate partner of K, uK and vK come from the
BCS transformation associated with the canonical basis, and
the EKL are the one-quasiparticle matrix elements of the HFB
Hamiltonian [cf. Eq. (4.14b) of Ref. [62]]. Xk

LL′ and Y k
LL′ are

the forward and backward amplitudes of the QRPA solution k,
and Ek is the corresponding excitation energy. E[ρ, κ, κ∗]
is the energy functional (see Appendix B for an explicit
definition) and ρ and κ are the density matrix and pairing
tensor, respectively. After taking the functional derivatives, we
replace ρ and κ by their HFB solutions, in complete analogy
with an ordinary Taylor-series expansion.

To write the equations in coupled form, we introduce the
notation

K ≡ (nµlµjµmµ) ≡ (µmµ), L ≡ (νmν), (A7)

where (nljm) denote spherical quantum numbers. Using (i)
rotational, time-reversal, and parity symmetries of the HFB
state, (ii) the conjugate single-particle state3

|K〉 = |µmµ〉 = (−)jµ−mµ |µ − mµ〉, (A8)

3The conjugate state in our HFB code is slightly different:
|µm〉 = (−)j−m+l |µ − m〉. This definition follows from Eq. (3.24b)
of Ref. [62] and the single-particle wave function ψµm(r) =
Rµ(r)

∑
lzσ

Yllz (�)〈llz 1
2 σ |jm〉|σ 〉, where Rµ(r) and |σ = ±1/2〉 are

real radial and spin wave functions, respectively. Thus, we multiply
all HFB vµ by (−)l in the QRPA calculations.
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and (iii) the relations

Xk
KK ′ = 〈jµmµjµ′mµ′ |JkMk〉X̄k

[µµ′]Jk
×

{√
2, µ = µ′,
1, otherwise,

(A9)

Y k
KK ′ = (−)jµ−mµ (−)jµ′−mµ′〈jµ − mµjµ′ − mµ′ |JkMk〉

× Ȳ k
[µµ′]Jk

×
{√

2, µ = µ′,
1, otherwise,

(A10)

with Jk the angular momentum of the state k and the factor
√

2
for convenience [13], one can rewrite the QRPA equation as

∑
ν � ν ′

(
A[µµ′]Jk,[νν ′]Jk

B[µµ′]Jk,[ν̄ν̄ ′]Jk

−B∗
[µµ′]Jk,[ν̄ν̄ ′]Jk

−A∗
[µµ′]Jk,[νν ′]Jk

)(
X̄k

[νν ′]Jk

Ȳ k
[νν ′]Jk

)

= Ek

(
X̄k

[µµ′]Jk

Ȳ k
[µµ′]Jk

)
, µ � µ′, (A11)

A[µµ′]Jk,[νν ′]Jk
= 1√

1 + δµµ′

1√
1 + δνν ′

× {Eµνδµ′ν ′ − Eµ′νδµν ′(−)jµ+jµ′ −Jk

− Eµν ′δµ′ν(−)jµ+jµ′−Jk + Eµ′ν ′δµν

+ G(µµ′νν ′; Jk)(uµ′uµuνuν ′ + vνvν ′vµ′vµ)

+ F (µµ′νν ′; Jk)(uµvν ′uνvµ′ + uµ′vνuν ′vµ)

− (−)jν′ +jν−JkF (µµ′ν ′ν; Jk)(uµvνuν ′vµ′

+ uµ′vν ′uνvµ) − H (µµ′νν ′; Jk)(vνvν ′uµvµ′

+ uµ′vµuνuν ′) + (−)jµ+jµ′−JkH (µ′µνν ′; Jk)

× (vνvν ′uµ′vµ + uµvµ′uνuν ′)

−H ∗(νν ′µµ′; Jk)(uµuµ′uν ′vν + uνvν ′vµ′vµ)

+ (−)jν+jν′ −JkH ∗(ν ′νµµ′; Jk)(uµuµ′uνvν ′

+uν ′vνvµ′vµ)}, (A12)

B[µµ′]Jk,[ν̄ν̄ ′]Jk
= 1√

1 + δµµ′

1√
1 + δνν ′

× {−G(µµ′νν ′; Jk)(uµ′uµvνvν ′

+ uνuν ′vµ′vµ) − (−)jν+jν′ −Jk

× F (µµ′ν ′ν; Jk)(uµuνvµ′vν ′ + uµ′uν ′vνvµ)

+ (−)jν+jν′ +jµ+jµ′ F (µ′µν ′ν; Jk)(uµ′uνvν ′vµ

+ uµuν ′vµ′vν) + H (µµ′νν ′; Jk)

× (vνvν ′uµ′vµ + uµvµ′uνuν ′ )

− (−)jµ+jµ′ −JkH (µ′µνν ′; Jk)(vνvν ′uµvµ′

+ uµ′vµuνuν ′) − H ∗(νν ′µµ′; Jk)

× (vµvµ′uν ′vν + uνvν ′uµuµ′) + (−)jν+jν′ −Jk

×H ∗(ν ′νµµ′; Jk)(vµvµ′uνvν ′ + uν ′vνuµuµ′)},
(A13)

G(µµ′νν ′; Jk) =
∑

mµmµ′mνmν′

〈jµmµjµ′mµ′ |JkMk〉

×〈jνmνjν ′mν ′ |JkMk〉V̄ pp
KK ′LL′

≡ 〈[µµ′]Jk|V̄ pp|[νν ′]Jk〉, (A14)

F (µµ′νν ′; Jk) =
∑

mµmµ′mνmν′

〈jµmµjµ′mµ′ |JkMk〉

×〈jνmνjν ′mν ′ |JkMk〉V̄ ph
KL̄′K̄ ′L

=
∑
J ′

(−)jµ′+jν+J ′
{
jµ jµ′ Jk

jν jν ′ J ′

}
(2J ′ + 1)

×〈[µν ′]Jk|V̄ ph|[µ′ν]Jk〉, (A15)

H (µµ′νν ′; Jk) =
∑

mµmµ′mνmν′

〈jµmµjµ′mµ′ |JM〉

×〈jνmνjν ′mν ′ |JM〉V̄ 3p1h
L̄L̄′KK̄ ′

=
∑
J ′

(−)jµ+jν+1+lν′ −Jk−J ′
{
jµ jµ′ Jk

jν ′ jν J ′

}

× (2J ′ + 1)〈[µν]Jk|V̄ 3p1h|[µ′ν ′]Jk〉.
(A16)

We have represented the second derivatives of the energy
functional E[ρ, κ, κ∗] as matrix elements of effective inter-
actions V̄ pp, V̄ ph, and V̄ 3p1h; only the matrix elements of
the first are antisymmetrized if the interaction is density
dependent. The effective interactions themselves are given in
Appendix B. Although some of the “matrix elements” are
unsymmetrized, the underlying two-quasiparticle states are
of course antisymmetric. As a consequence, A[µµ′]Jk,[νν ′]Jk

=
B[µµ′]Jk,[ν̄ν̄ ′]Jk

= 0 if Jk is odd and either µ = µ′ or ν = ν ′.
The nuclear energy functional E[ρ, κ, κ∗] is usually sep-

arated into particle-hole (ph) and pairing pieces (again, see
Appendix B for explicit expressions). If the pairing functional,
which we will call Epair[ρ, κ, κ∗], depends on ρ then the
derivatives of Epair[ρ, κ, κ∗] with respect to ρKK ′ are called
pairing-rearrangement terms [14]. In the QRPA, two kinds
of pairing-rearrangement terms can arise in general. One has
particle-hole character and is included in V̄

ph
KLK ′L′ ; the other

affects 3-particle-1-hole (3p1h) and 1-particle-3-hole (1p3h)
configurations and is represented by V̄

3p1h
K ′KL′L and V̄

1p3h
K ′KL′L. If

the ρ dependence of Epair[ρ, κ, κ∗] is linear, then the ph-type
pairing-rearrangement term does not appear. Furthermore, the
3p1h and 1p3h pairing-rearrangement terms arise only for
Jπ = 0+ modes if the HFB state has J = 0. Most existing
work uses a pairing functional that is linear in ρ, and so needs
no pairing-rearrangement terms in Jπ 	= 0+ channels.

APPENDIX B: INTERACTION MATRIX ELEMENTS
(SECOND FUNCTIONAL DERIVATIVES)

1. Representation of second derivatives as matrix element of
effective interactions

In this Appendix, we discuss interaction matrix elements
coming from E[ρ, κ, κ∗], which we take to contain separate
Skyrme (i.e., strong-force, κ-independent), Coulomb, and pair-
ing energy functionals:

E[ρ, κ, κ∗] = ESkyrme[ρ] + ECoul[ρp] + Epair[ρ, κ, κ∗],
(B1)
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where ρp is the proton density matrix. The most general
Skyrme energy functional in common use is given by

ESkyrme[ρ] =
∑
t=0,1

∫
d3r

{
C

ρ
t [ρ00] ρ2

t0(r) + C
�ρ
t ρt0(r)�ρt0(r)

+ Cτ
t

[
ρt0(r) τt0(r) − j2

t0(r)
]

+ Cs
t [ρ00] s2

t0(r) + C�s
t st0(r) · �st0(r)

+ CT
t

[
s00(r) · T t0(r) − ↔

J
2
t0(r)

]+ C∇J
t

× [ρt0(r)∇ · J t0(r) + st0(r) · ∇ × j t0(r)]
}
.

(B2)

(See, e.g., [65,82,83] and references therein for a general
discussion.) All densities are labeled by isospin indices t tz,
where t takes values zero and one and tz is always equal
to zero. A more general theory could violate isospin at the
single-quasiparticle level, leading to additional densities ρ1±1

[65]. We do not consider such densities here. The Ci
t are the

coupling constants for the effective interaction. As usual, two
of them are chosen to be density dependent:

C
ρ
t [ρ00] = A

ρ
t + B

ρ
t ρα

00(r),
(B3)

Cs
t [ρ00] = As

t + Bs
t ρ

α
00(r).

Here ρt0, st0, τt0, T t0, j t0,
↔
J t0, and J t0 are local densities and

currents, which are derived from the general density matrices
for protons and neutrons

ρ00(rσ, r ′σ ′) = ρn(rσ, r ′σ ′) + ρp(rσ, r ′σ ′),
(B4)

ρ10(rσ, r ′σ ′) = ρn(rσ, r ′σ ′) − ρp(rσ, r ′σ ′),

where

ρn(rσ, r ′σ ′) =
∑

KK ′,neutron

ψ∗
K ′ (r ′σ ′)ψK (rσ )ρKK ′ ,

(B5)
ρp(rσ, r ′σ ′) =

∑
KK ′,proton

ψ∗
K ′ (r ′σ ′)ψK (rσ )ρKK ′ ,

and σ = ± 1
2 labels the spin components so that, for example,

ψK (rσ ) is a spin component of the single-particle wave
function associated with the state K. Defining

ρt0(r, r ′) =
∑
σ=±

ρt0(rσ, r ′σ ),

(B6)
st0(r, r ′) =

∑
σ,σ ′=±

ρt0(rσ, r ′σ ′) σσ ′σ ,

where σσ ′σ = 〈σ ′|σ |σ 〉 is a matrix element of the vector of
Pauli spin matrices, we write the local densities and currents
as

ρt0(r) = ρt0(r, r),

st0(r) = st0(r, r),

τt0(r) = ∇ · ∇′ρt0(r, r ′)|r=r ′ ,

T t0(r) = ∇ · ∇′st0(r, r ′)|r=r ′ , (B7)

j t0(r) = − i

2
(∇ − ∇′)ρt0(r, r ′)|r=r ′ ,

Jt0,ij (r) = − i

2
(∇ − ∇′)i st0,j (r, r ′)|r=r ′ ,

↔
J

2
t0(r) =

∑
ij=xyz

J 2
t0,ij ,

J t0(r) = − i

2
(∇ − ∇′) × st0(r, r ′)|r=r ′ .

The Coulomb energy functional is given by

ECoul[ρp] = e2

2

∫∫
d3r d3r ′ ρp(r)ρp(r ′)

|r − r ′|

− 3

4
e2

(
3

π

) 1
3
∫

d3r ρ4/3
p (r), (B8)

where we make the usual Slater approximation [84] for the
exchange term.

For the pairing functional we take the quite general form

Epair[ρ, κ, κ∗] = Epair[ρ, ρ̃, ρ̃∗] =
∫

d3r Cρ̃[ρ00(r)]

×
∑

τ=p,n

|ρ̃τ (r)|2, (B9)

where the density-dependent pairing coupling constant
Cρ̃[ρ00(r)] is an arbitrary function of ρ00(r). The quantity
ρ̃τ (r) is defined as [66]

ρ̃τ (r) = −i
∑

σσ ′=±
κτ (rσ, rσ ′)σy

σσ ′, τ = proton or neutron,

(B10)
with

κn(rσ, r ′σ ′) =
∑

KK ′,neutron

ψK ′ (r ′σ ′)ψK (rσ )κKK ′ ,

(B11)
κp(rσ, r ′σ ′) =

∑
KK ′,proton

ψK ′ (r ′σ ′)ψK (rσ )κKK ′ ,

being the standard pairing tensor in the coordinate representa-
tion.

The second derivatives of the energy functional in Eq. (A4),
as the equation indicates and as we have already noted, can
be written as unsymmetrized matrix elements V̄

ph
KLK ′L′ of

an effective interaction between uncoupled pairs of single-
particle states. The particle-hole matrix elements take the form

V̄
ph
KLK ′L′ = 〈KL|V̄ eff

Skyrme + V̄ eff
Coul + V̄ eff ph

pair |K ′L′〉. (B12)

The last term contains the pairing rearrangement discussed at
the end of the previous Appendix.

The effective Skyrme interaction in Eq. (B12) is given by

V̄ eff
Skyrme = (a0 + b0σ · σ ′ + c0 �τ · �τ ′ + d0σ · σ ′ �τ · �τ ′)

× δ(r − r ′) + (a1 + b1σ · σ ′ + c1 �τ · �τ ′

+ d1 σ · σ ′ �τ · �τ ′)(k†2δ(r − r ′) + δ(r − r ′)k2)

+ (a2 + b2 σ · σ ′ + c2 �τ · �τ ′ + d2σ · σ ′ �τ · �τ ′)
× k† · δ(r − r ′) k + (a3 + b3 σ · σ ′

+ c3 �τ · �τ ′ + d3 σ · σ ′ �τ · �τ ′)ρα
00(r)δ(r − r ′)

+ [e3 ρ10(r)(τ (0) + τ ′(0)) + g3 s00(r) · (σ + σ ′)
+ m3 s10(r) · (σ τ (0) + σ ′τ ′(0))] ρα−1

00 (r)δ(r − r ′)

+ [
f3 ρ2

10(r) + h3 s2
00(r) + n3 s2

10(r)
]
ρα−2

00 (r)
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TABLE III. Definitions of ai, bi, ci , di (i = 0, . . . , 3), a4, and c4 in Eq. (B13).

i ai bi ci di

0 2A
ρ

0 2As
0 2A

ρ

1 2As
1

1 1
2 (Cτ

0 − 4C
�ρ

0 ) 1
2 (CT

0 − 4C�s
0 ) 1

2 (Cτ
1 − 4C

�ρ

1 ) 1
2 (CT

1 − 4C�s
1 )

2 3Cτ
0 + 4C

�ρ

0 3CT
0 + 4C�s

0 3Cτ
1 + 4C

�ρ

1 3CT
1 + 4C�s

1

3 B
ρ

0 (α + 2)(α + 1) 2Bs
0 2B

ρ

1 2Bs
1

4 −2iC∇J
0 −2iC∇J

1

× δ(r − r ′) + (a4 + c4 �τ · �τ ′)(σ + σ ′) · k†

× δ(r − r ′)k, (B13)

where �τ = (τ (±1), τ (0)) is the vector of Pauli matrices in isospin
space and

k = − i

2
(∇ − ∇′) acting to the right,

(B14)
k† = i

2
(∇ − ∇′) acting to the left.

The coefficients in Eq. (B13) are defined in Tables III and
IV. Equation (B13) contains the usual Skyrme-interaction
operators, but the energy functional (B2) does not necessarily
correspond to a real (density-dependent) two-body Skyrme in-
teraction because the matrix elements are not antisymmetrized.
Compared to the case usually discussed in the literature, the
more general functional relaxes relations that would otherwise
restrict the spin-isospin structure of the effective interaction
in Eq. (B13); see, for example, [17] for a discussion of the
increased freedom.

The densities and currents that appear in Eq. (B13) come
mostly from rearrangement terms and take the values given
by the HFB ground state. The isoscalar and isovector spin
densities st0(r) vanish when the HFB ground state is time-
reversal invariant or spherical as assumed here. The terms
containing them will therefore not appear in the expressions
for the matrix elements of the effective interaction for such
states given in the following.

The effective Coulomb interaction in Eq. (B12), acting
between protons, is given by

V̄ eff
Coul = e2

|r − r ′| − e2

3

(
3

π

) 1
3

ρ−2/3
p (r)δ(r − r ′). (B15)

Finally, the ph-type pairing-rearrangement terms in Eq. (B12)
come from an effective interaction

V̄ eff ph
pair = d2Cρ̃[ρ00(r)]

dρ2
00(r)

∑
τ=p,n

|ρ̃τ (r)|2 δ(r ′ − r). (B16)

The second derivatives with respect to κ, κ∗ also can be
written as unsymmetrized matrix elements of effective inter-

actions, this time in the particle-particle channel. The particle-
particle effective interaction entering the matrix elements

V̄
pp
KK ′LL′ = 〈KK ′|V̄ eff pp

pair |LL′〉 (B17)

is obtained from Eq. (B9) through Eq. (A5) as

V̄ eff pp
pair = Cρ̃[ρ00(r)](3 − σ · σ ′ − �τ · �τ ′ − σ · σ ′ �τ · �τ ′)

× δ(r − r ′). (B18)

In the numerical calculations of this paper, we use a volume
pairing-energy functional, that is,

Cρ̃ = 1
2V0 = const. (B19)

Last of all are the mixed functional derivatives involving
both ρ and κ (or ρ̃) in Eq. (A6). They also can be written as the
unsymmetrized matrix elements of an effective interaction:

V̄
3p1h
K ′KL′L = 〈L′K ′|V̄ eff 3p1h

pair |LT (K)〉, (B20)

where T (K) denotes the time-reversed state of K, and the 3p1h
effective interaction itself is

V̄ eff 3p1h
pair = dCρ̃[ρ00(r)]

dρ00(r)
[ρ̃p(r)(1 − τ ′

z) + ρ̃n(r)(1 + τ ′
z)]

× δ(r ′ − r), (B21)

where τ ′
z acts on the single-particle states K ′ and T (K) in

Eq. (B20), and the eigenvalues 1 and −1 are assigned to the
neutron and proton, respectively.

2. Calculation of matrix elements

To calculate the coupled matrix elements in Eqs. (A14)–
(A16), we use an intermediate LS scheme:

〈[µµ′]Jk|V̄ |[νν ′]Jk〉

=
∑
LL′S

ĵµĵµ′ ĵν ĵν ′L̂L̂′Ŝ2




lµ lµ′ L

1/2 1/2 S

jµ jµ′ Jk






lν lν ′ L′
1/2 1/2 S

jν jν ′ Jk




×〈(lµlµ′)LS; Jk|V̄ |(lν lν ′)L′S; Jk〉, (B22)

ĵµ ≡ √
2jµ + 1. (B23)

TABLE IV. Definitions of the coefficients appearing in the rearrangement terms in
Eq. (B13).

i ei fi gi hi mi ni

3 2αB
ρ

1 α(α − 1)Bρ

1 2αBs
0 α(α − 1)Bs

0 2αBs
1 α(α − 1)Bs

1
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Equation (B13) gives
(i) proton-proton or neutron-neutron matrix elements:

〈(lµlµ′)LS; Jk|V̄ eff
Skyrme|(lν lν ′)L′S; Jk〉

={a0 + c0 + (2S(S + 1) − 3)(b0 + d0)}〈(lµlµ′)LS; Jk|δ(r − r ′)|(lν lν ′)L′S; Jk〉
+ {a1 + c1 + (2S(S + 1) − 3)(b1 + d1)}〈(lµlµ′)LS; Jk|k†2δ(r − r ′) + δ(r − r ′)k2|(lν lν ′)L′S; Jk〉
+ {a2 + c2 + (2S(S + 1) − 3)(b2 + d2)}〈(lµlµ′)LS; Jk|k† · δ(r − r ′)k|(lν lν ′)L′S; Jk〉
+{a3 + c3 + (2S(S + 1) − 3)(b3 + d3)}〈(lµlµ′)LS; Jk|ρα

00(r)δ(r − r ′)|(lν lν ′)L′S; Jk〉
+ 2e3〈(lµlµ′)LS; Jk|ρ10(r)ρα-1

00 (r)δ(r − r ′)|(lν lν ′)L′S; Jk〉 ×
{

(−1), proton
1, neutron

+ f3〈(lµlµ′)LS; Jk|ρ2
10(r)ρα-2

00 (r)δ(r − r ′)|(lν lν ′)L′S; Jk〉
+ (a4 + c4)〈(lµlµ′)LS; Jk|(σ + σ ′) · k† × δ(r − r ′)k|(lν lν ′)L′S; Jk〉, (B24)

and (ii) proton-neutron matrix elements:

〈(lµlµ′)LS; Jk|V̄ eff
Skyrme|(lν lν ′)L′S; Jk〉

={a0 − c0 + (2S(S + 1) − 3)(b0 − d0)}〈(lµlµ′)LS; Jk|δ(r − r ′)|(lν lν ′ )L′S; Jk〉
+ {a1 − c1 + (2S(S + 1) − 3)(b1 − d1)}〈(lµlµ′)LS; Jk|k†2δ(r − r ′) + δ(r − r ′)k2|(lν lν ′)L′S; Jk〉
+ {a2 − c2 + (2S(S + 1) − 3)(b2 − d2)}〈(lµlµ′)LS; Jk|k† · δ(r − r ′)k|(lν lν ′)L′S; Jk〉
+ {a3 − c3 + (2S(S + 1) − 3)(b3 − d3)}〈(lµlµ′)LS; Jk|ρα

00(r)δ(r − r ′)|(lν lν ′)L′S; Jk〉
+ f3〈(lµlµ′)LS; Jk|ρ2

10(r)ρα-2
00 (r)δ(r − r ′)|(lν lν ′)L′S; Jk〉

+ (a4 − c4)〈(lµlµ′)LS; Jk|(σ + σ ′) · k† × δ(r − r ′)k|(lν lν ′)L′S; Jk〉. (B25)

We use the canonical (and real) radial wave functions Rµ(r),
the angular wave functions Ylµlzµ

(�), and the spin wave
functions to write the nontrivial matrix elements included in
Eqs. (B24) and (B25) as

〈(lµlµ′)LS; Jk|δ(r − r ′)|(lν lν ′)L′S; Jk〉
=

∫
dr r2Rµ(r)Rµ′(r)Rν(r)Rν ′(r)δLL′

∫
d�

[
Ylµ (�)Ylµ′ (�)

]∗
L0

× [
Ylν (�)Ylν′ (�)

]
L0, (B26)∫

d�
[
Ylµ(�)Ylµ′ (�)

]∗
L0

[
Ylν (�)Ylν′ (�)

]
L0

= 1

4π
l̂µl̂µ′ l̂ν l̂ν ′

(
lµ lµ′ L

0 0 0

)(
lν lν ′ L

0 0 0

)
, (B27)

〈(lµlµ′)LS; Jk|δ(r − r ′)k2|(lν lν ′)L′S; Jk〉

= −1

4
δLL′

∫
d�

[
Ylµ(�)Ylµ′ (�)

]∗
L0

[
Ylν (�)Ylν′ (�)

]
L0

×
∫

dr r2Rµ(r)Rµ′(r)

{[(
d2

dr2
+ 2

r

d

dr
− lν(lν + 1)

r2

)

×Rν(r)

]
Rν ′(r) + Rν(r)

[(
d2

dr2
+ 2

r

d

dr
− lν ′(lν ′ + 1)

r2

)

×Rν ′ (r)

]}
−

∑
�lν=0,1

∑
�lν′ =0,1

1

2

√
(lν + �lν)(lν ′ + �lν ′)

×
{
lν ′ − 1 + 2�lν ′ lν − 1 + 2�lν L

lν lν ′ 1

}∫
dr r2Rµ(r)

× Rµ′(r)

{
(lν + 1 − �lν)

Rν(r)

r
+ (−)�lν

dRν(r)

dr

}

×
{

(lν ′ + 1 − �lν ′)
Rν ′(r)

r
+ (−)�lν′ dRν ′ (r)

dr

}

× δLL′

∫
d�

[
Ylµ(�)Ylµ′ (�)

]∗
L0

×[
Ylν′ −1+2�lν′ (�)Ylν−1+2�lν (�)

]
L0, (B28)

〈(lµlµ′)LS; Jk|k† · δ(r − r ′)k|(lν lν ′)L′S; Jk〉

= −
√

3

L̂
δLL′ 〈(lµlµ′)L||(k† · δ(r − r ′)k)0||(lν lν ′)L〉,

(B29)

〈(lµlµ′)LS; Jk|i(σ + σ ′) · k† × δ(r − r ′)k|(lν lν ′)L′S; Jk〉
= (−)1+L′+Jk 4

√
3〈(lµlµ′)L||(k† · δ(r − r ′)k)1||(lν lν ′)L′〉

×
{

1 L′ Jk

L 1 1

}
δS1. (B30)

The square brackets around products of spherical harmonics
and the parentheses surrounding products of operators indicate
angular-momentum coupling.

To evaluate Eqs. (B29) and (B30), one can use

〈(lµlµ′)L||(k† · δ(r − r ′)k)I ||(lν lν ′)L′〉

=
[

1

4

∑
�lµ=0,1

∑
�lν=0,1

∑
lµµ′

∫
drr2

{
(lµ + 1 − �lµ)

Rµ(r)

r

034310-13



J. TERASAKI et al. PHYSICAL REVIEW C 71, 034310 (2005)

+ (−)�lµ
dRµ(r)

dr

}
Rµ′(r)

{
(lν + 1 − �lν)

Rν(r)

r

+ (−)�lν
dRν(r)

dr

}
Rν ′ (r)

√
lµ + �lµ

√
lν + �lν

× √
2lµ + 4�lµ − 1l̂µ′

√
2lν + 4�lν − 1l̂ν ′

× 1

4π
l̂

2
µµ′L̂L̂′Î (−)lµ+lµ′ +L+I+1

{
I L′ L

lµµ′ 1 1

}

×
{
lµµ′ L 1
lµ lµ + 2�lµ − 1 lµ′

}{
lµµ′ L′ 1
lν lν + 2�lν − 1 lν ′

}

×
(

lµ + 2�lµ − 1 lµ′ lµµ′

0 0 0

) (
lν + 2�lν − 1 lν ′ lµµ′

0 0 0

)]

− (−)lν+lν′ +L′
[ν ↔ ν ′] − (−)lµ+lµ′ +L[µ ↔ µ′]

+ [µ ↔ µ′and ν ↔ ν ′], (B31)

where for reduced matrix elements we have used the conven-
tion

〈LLz|Ôlm|L′L′
z〉 = 1

L̂
〈L′L′

zlm|LLz〉〈L||Ôl||L′〉 (B32)

and made the abbreviation

[Aµµ′νν ′ ] − (−)lν+lν′ +L′
[ν ↔ ν ′] − (−)lµ+lµ′+L

× [µ ↔ µ′] + [µ ↔ µ′ and ν ↔ ν ′]
≡ Aµµ′νν ′ − (−)lν+lν′ +L′

Aµµ′ν ′ν

− (−)lµ+lµ′ +LAµ′µνν ′ + Aµ′µν ′ν . (B33)

Equation (B26), modified to include additional factors in the
radial integral, can also be used (together with the subsequent
equations) to evaluate the matrix elements of the terms
involving ρα

00(r) in V̄ eff
Skyrme, the Coulomb-exchange interaction,

and the contributions of the pairing functional to the effective
ph, pp, and 3p1h interactions. The Coulomb-direct term can
be evaluated in a similar but slightly more complicated way,
via a multipole expansion.

In the main part of this paper we used the Skyrme functional
SkM∗, which is usually parametrized as in interaction in terms
of coefficients t0, t1, t2, t3, x0, x1, x2, x3, and W0. The relations
between these coefficients and those used here, if no terms are
neglected, are [65,82]

C
ρ

0 = 3
8 t0 + 3

48 t3 ρα
00, C

ρ

1 = − 1
4 t0

(
1
2 + x0

) − 1
24 t3

(
1
2 + x3

)
ρα

00,

Cs
0 = − 1

4 t0
(

1
2 − x0

) − 1
24 t3

(
1
2 − x3

)
ρα

00, Cs
1 = − 1

8 t0 − 1
48 t3 ρα

00,

Cτ
0 = 3

16 t1 + 1
4 t2

(
5
4 + x2

)
, Cτ

1 = − 1
8 t1

(
1
2 + x1

) + 1
8 t2

(
1
2 + x2

)
,

CT
0 = − 1

8 t1
(

1
2 − x1

) + 1
8 t2

(
1
2 + x2

)
, CT

1 = − 1
16 t1 + 1

16 t2,

C
�ρ

0 = − 9
64 t1 + 1

16 t2
(

5
4 + x2

)
, C

�ρ

1 = 3
32 t1

(
1
2 + x1

) + 1
32 t2

(
1
2 + x2

)
,

C�s
0 = 3

32 t1
(

1
2 − x1

) + 1
32 t2

(
1
2 + x2

)
, C�s

1 = 3
64 t1 + 1

64 t2,

C∇J
0 = − 3

4W0, C∇J
1 = − 1

4W0.

(B34)

In the HF fits that originally determined the SkM∗ parameters,
the effects of CT

t (the “J 2 terms”) were neglected because of
technical difficulties. These terms have often been included

in subsequent RPA calculations. To maintain self-consistency
here, we have set them to zero both in the HFB calculation and
in the QRPA.
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