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Configuration mixing in 188Pb: Band structure and electromagnetic properties
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In the present paper, we carry out a detailed analysis of the presence and mixing of various families of collective
bands in 188Pb. Making use of the interacting boson model, we construct a particular intermediate basis that can be
associated with the unperturbed bands used in more phenomenological studies. We use the E2 decay to construct
a set of collective bands and discuss in detail the B(E2) values. Monopole transition ρ2 values are calculated. We
also perform an analysis of these theoretical results [Q,B(E2)] to deduce an intrinsic quadrupole moment and
the associated quadrupole deformation parameter, using an axially deformed rotor model.
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I. INTRODUCTION

Lead isotopes provide a unique laboratory to study the
phenomenon of shape coexistence in nuclei [1–4] and have
very recently been the subject of much experimental and
theoretical interest [5–16]. The combined effect of the proton
shell gap at Z = 82 for the Pb nuclei and the large number of
valence nucleons outside the closed N = 126 core (in this case,
neutron holes) results in an important lowering of the energy of
proton particle-hole excitations [17]. More specifically, near
neutron midshell (at N = 104), the proton 2p-2h and 4p-4h
excitations descend to very low excitation energy because of
the very large proton-neutron binding energy that results from
the interactions between the core-excited protons across the
Z = 82 shell closure and the large number of valence neutrons
outside the N = 126 shell closure. As a consequence, mixing
can result among various families of configurations having
approximately the same excitation energy. In particular, the
lowest lying 0+ and 2+ states can become strongly mixed such
that it is very difficult to assign a “configuration label” to them.
In Sec. II, we succinctly describe the essentials of configuration
mixing using the interacting boson model (IBM) [18–20].
In Sec. III we seek to obtain a better understanding of the
low-spin collective states and to construct particular bands by
following the calculated E2 decay starting at the high-spin
states in the particular case of 188Pb. In Sec. IV we use the
derived wave functions to calculate E0 properties. Finally,
in Sec. V, we make use of the quadrupole moments and
B(E2) values calculated within the framework of the IBM
to extract collective model parameters (intrinsic quadrupole
moments and quadrupole deformation β0). Hereby we aim to
highlight the equivalence between the IBM approach, used as
a highly truncated shell-model calculation, and a geometrical
rotational model, as can be derived from mean-field methods
[6,8,10,16,21,22].

II. CONFIGURATION MIXING

In a recent study that concentrated on describing intruder
bands and configuration mixing in neutron-deficient Pb
isotopes, a three-configuration mixing calculation has been
performed in the context of the IBM [23]. We refer to that

paper for more details but present succinctly the main points.
One can approximate the regular and intruder states as 0p-0h,
2p-2h, and 4p-4h excitations across the Z = 82 proton closed
shell that interact with the large number of valence neutrons
outside of the N = 126 neutron closed shell. Within the IBM
the Hamiltonian then takes the form

Ĥ = Ĥreg + Ĥ2p−2h + Ĥ4p−4h + V̂mix, (1)

with

Ĥreg = εregn̂d + κregQ̂reg · Q̂reg, (2)

Ĥi = εi n̂d + κiQ̂i · Q̂i + �i, (3)

and

V̂mix = V̂mix,1 + V̂mix,2, (4)

V̂mix,i = αi(s
† · s† + s · s) + βi(d

† · d† + d̃ · d̃) (5)

The quadrupole operator Q̂i is defined as

Q̂i = (s†d̃ + d†s̃)(2) + χi(d
†d̃)(2). (6)

For details on the notation we refer to Fossion et al. [23]. The
diagonalization of the energy matrices, corresponding to the
Hamiltonian (1), is carried out in the U(5) basis, expressing
the eigenvectors in the [N] ⊕ [N + 2] ⊕ [N + 4] model space.
Unfortunately, using this method, one has no clear insight into
the interaction matrix elements coupling the unperturbed states
that result from a diagonalization in the separate subspaces
[N ], [N + 2], and [N + 4], respectively.

So instead of a complete diagonalization of the Hamiltonian
matrix, we first rotate into an intermediate basis in which only
the separate parts of the Hamiltonian (1) (i.e., Ĥreg, Ĥ2p−2h,
and Ĥ4p−4h) become diagonal. We thus have three different
bases:

• the U(5) basis |J, k〉N , where J is the angular momentum,
N is the number of bosons, and k is the rank number;

• the basis in which the full Hamiltonian (1) is diagonal |J, i〉;
and

• the intermediate bases in which the Hamiltonian (1),
excluding V̂mix, is diagonal in the three different subspaces
[N], [N + 2], and [N + 4]; respectively, they are denoted as
|J, l〉′N, |J, l〉′N+2, and |J, l〉′N+4, with l as a rank number.
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FIG. 1. Low-energy part of the IBM spectrum for 188Pb. The first
three configurations taken from the left show the absolute energies for
the lowest unperturbed bands. At the extreme right, the IBM spectrum
after diagonalization of the full Hamiltonian (1) is shown.

These bases are connected in the following way. The basis
in which the full Hamiltonian is diagonal [expressed in the
U(5) basis] reads

|J, i〉 =
dimN∑
k=1

aN
k,i(J )|J, k〉N

+
dimN+dimN+2∑

l=dimN+1

aN+2
l,i (J )|J, l〉N+2

+
dimN+dimN+2+dimN+4∑
m=dimN+dimN+2+1

aN+4
m,i (J )|J,m〉N+4, (7)

and the “intermediate” basis becomes

|J, l〉′N =
dimN∑
k=1

bN
k,l(J )|J, k〉N, (8)

(and similarly for N + 2 and N + 4). In these equations dimN ,
dimN+2, and dimN+4 are the dimensions of the corresponding
configuration spaces for a certain angular momentum J
containing N,N + 2, and N + 4, bosons, respectively. The
matrix BN diagonalizes the configuration with N bosons and
the matrix A diagonalizes the full Hamiltonian (1) directly (the
indices N,N + 2, and N + 4 for matrix A are added for the
sake of clearness). We omit the dimensions of the summations
from now on.

Rotation of the Hamiltonian matrix expressed in the U(5)
basis into the “intermediate” basis results in the energy levels
of a set of bands in the 0p-0h, 2p-2h, and 4p-4h subspaces
separately (see also the three spectra in the left part in Fig. 1).
These bands correspond to the unperturbed bands that are
extracted in phenomenological calculations as carried out by
Dracoulis et al. [9], Allatt et al. [24], and Page et al. [25].
From now on we will call the energy levels (bands) resulting
from rotation of the Hamiltonian matrix into the intermediate
basis unperturbed levels (bands) to avoid confusion and we
will denote them as the |J, l〉′N states [see Eq. (8)].

By calculating the mixing matrix elements of V̂mix in this
intermediate basis, we obtain the mixing matrix elements for

TABLE I. IBM parameters used for 188Pb.

α1 = β1 α2 = β2 �1

8.5 keV 23.4 keV 1923 keV

all unperturbed levels. The knowledge of these unperturbed
bands and their mixing matrix elements makes the process
of configuration mixing in a nucleus more transparent than
before. Starting from the experimental level energies, it is
possible to deduce a set of unperturbed experimental bands
using a phenomenological three-state [9,24,25] (or two-state
[26,27]) band-mixing analysis. The comparison between the
IBM unperturbed bands and these unperturbed experimental
bands, together with the knowledge of the full energy spec-
trum and the B(E2) values, forms an extensive test for the
parameters that describe a certain isotope chain.

Starting from IBM parameters for the Pb isotopes as
determined by Fossion et al. [23], a slightly different fit
was performed. The parameters for Ĥreg, Ĥ2p-2h, and Ĥ4p-4h

remain unchanged, except for εreg, which was taken as
0.92 MeV instead of 0.90 MeV. The mixing parameters αi and
βi were fixed in 196Pb. The value for �1 was obtained as the
result of a fitting procedure for the Pb isotopes (A = 186–196).
Basically �1 was fitted for 186Pb and 196Pb and the �1 for the
other isotopes was chosen following a linear variation between
�1(186Pb) and �1(196Pb). Then, the difference between the
experimental 0+

2 and the IBM 0+
2 was taken for all isotopes

considered and added to the corresponding �1. This method
gives a better description of the slope of the energy levels
through the isotope chain.

Moreover, the �1(188Pb) obtained in this way is in good
agreement with the theoretical prediction that makes use of
experimental separation energies [17]. Since �2 is associated
with the unperturbed energy needed to excite 4p-4h configu-
rations, the value was taken as 2·�1 [28]. The parameters for
188Pb are listed in Table I. The low-energy part of the resulting
IBM spectrum for 188Pb is presented in Fig. 1. Comparison
with the experiment will be discussed in the next section.

By inspecting the unperturbed lowest bands (see left part
of Fig. 1) one notices that mixing modifies the structure of the
2p-2h and 4p-4h 0+ states and of the three 2+ states because of
the small energy differences between these unperturbed states
(see Fig. 1). The mixing matrix elements between the first 0+
state in each of the three unperturbed bands and between the
first 2+ state in each of the three unperturbed bands are given
in Table II. The spin dependence of the absolute value of the
mixing matrix elements can be seen from Fig. 2. The mixing
matrix elements between the J+

i (N ) and the J+
i (N + 4)

unperturbed states vanish because of the precise structure of
the IBM mixing Hamiltonian [see Eqs. (4) and (5)]. For the
sake of clearness, we stress that these mixing matrix elements
can be compared with the mixing matrix elements used in
more phenomenological calculations.

One can verify that a simple two-level mixing approxi-
mation for the unperturbed 0+

1 (N + 2) and the unperturbed
0+

1 (N + 4) states accurately reproduces the energies resulting
from a full diagonalization of the Hamiltonian matrix (which
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TABLE II. Mixing matrix elements between the first 0+

and between the 2+ state in each of the three unperturbed
bands [see also Eq. (8)]. The matrix elements are expressed
in MeV.

0+
1 (N ) 0+

1 (N + 2) 0+
1 (N + 4)

0+
1 (N ) 0 −0.0768 0

0+
1 (N + 2) −0.0768 0 0.1908

0+
1 (N + 4) 0 0.1908 0

2+
1 (N ) 2+

1 (N + 2) 2+
1 (N + 4)

2+
1 (N ) 0 0.0711 0

2+
1 (N + 2) 0.0711 0 0.1349

2+
1 (N + 4) 0 0.1349 0

takes into account the interaction with the other 55 0+ levels).
This can also be seen in Table III, which gives the coefficients
for the wave functions of the 0+ (and 2+) states resulting from
the full diagonalization expressed in the unperturbed basis (8).
Only the coefficients of the lowest three unperturbed 0+ (and
2+) states are shown. We point out that this severe two-level
mixing approximation cannot reproduce the correct phase.

III. B(E2) VALUES AND CONSTRUCTION OF
COLLECTIVE BANDS

In the process of diagonalization of the full Hamiltonian
(1) (excluding V̂mix) in the three subspaces separately, we have
also made an “intermediate” calculation concerning B(E2)
values. The knowledge of the basis states (7) and (8) gives rise
to two interesting expressions for the reduced matrix element
of a transition between the initial Ji(i) and final Jf (f ) state,
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FIG. 2. Absolute value of the mixing matrix elements for the
lowest J states in the three unperturbed bands [see also Eq. (8)].
The full line shows the absolute value of the mixing matrix elements
between the J +

1 (N ) and the J +
1 (N + 2) states. The dot-dashed line

shows the absolute value of the mixing matrix elements between the
J +

1 (N + 2) and the J +
1 (N + 4) states (extended up to J = 14).

TABLE III. Coefficients for the wave functions of the 0+ (and
2+) states resulting from the full diagonalization expressed in the
unperturbed basis (8). Only the coefficients of the lowest three
unperturbed states |0+

1 〉′
ν and |2+

1 〉′
ν (ν = N, N + 2, N + 4) are

given.

|0+
1 〉′

N |0+
1 〉′

N+2 |0+
1 〉′

N+4

|0+
1 〉 −0.9897 −0.1310 0.0309

|0+
2 〉 0.1216 −0.7624 0.6148

|0+
3 〉 −0.0611 0.5893 0.7655

|2+
1 〉′

N |2+
1 〉′

N+2 |2+
1 〉′

N+4

|2+
1 〉 0.1907 −0.6379 0.7091

|2+
2 〉 0.5964 −0.4906 −0.5664

|2+
3 〉 0.7696 0.5114 0.2187

that is,

〈Jf , f ||T (E2)||Ji, i〉
=

∑
k

∑
p

aν
k,i(Ji)a

ν
p,f (Jf ) ν〈Jf , p||T (E2)||Ji, k〉ν |ν=N

+
∑

l

∑
q

aν
l,i(Ji)a

ν
q,f (Jf ) ν〈Jf , q||T (E2)||Ji, l〉ν |ν=N+2

+
∑
m

∑
r

aν
m,i(Ji)a

ν
r,f (Jf ) ν〈Jf , r||T (E2)||Ji,m〉ν |ν=N+4

(9)

and

〈Jf , f ||T (E2)||Ji, i〉
=

∑
k,p,s,s ′

aν
k,i(Ji)a

ν
p,f (Jf )b̃ν

s,k(Ji)b̃
ν
s ′,p(Jf )

× ′
ν〈Jf , s ′||T (E2)||Ji, s〉′ν |ν=N

+
∑

l,q,t,t ′
aν

l,i(Ji)a
ν
q,f (Jf )b̃ν

t,l(Ji)b̃
ν
t ′,q(Jf )

× ′
ν〈Jf , t ′||T (E2)||Ji, t〉′ν |ν=N+2

+
∑

m,r,u,u′
aν

m,i(Ji)a
ν
r,f (Jf )b̃ν

u,m(Ji)b̃
ν
u′,r (Jf )

× ′
ν〈Jf , u′||T (E2)||Ji, u〉′ν |ν=N+4, (10)

where the b̃s,k are the components of transposed matrix B̃
of Eq. (8). Expression (10) is most interesting because it
allows us to check which transitions in the unperturbed bands
make up for an important contribution to a certain transition
Ji(i) → Jf (f ). We now apply the aforementioned method to
the particular case of 188Pb.

For 188Pb, only two experimental B(E2) values are known
[11]:

B
(
E2; 2+

1 → 0+
1

) = 5(3) W.u. (11)

and

B
(
E2; 4+

1 → 2+
1

) = 160(80) W.u. (12)

In the calculation of the E2 transition rates, we use the
consistent-Q procedure [29] to determine the E2 transition
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TABLE IV. Parameters for E2 transitions in 188Pb. The effective
charges are expressed in e · b, the χ are dimensionless.

χreg χ2p−2h χ4p−4h ereg e2p−2h = e4p−4h

0 0.515 −0.680 0.110 0.132

operator as

T (E2) =
3∑

i=1

ei[(s
†d̃ + d†s̃)(2) + χi(d

†d̃)(2)]. (13)

So we choose the values for χ2p-2h and χ4p-4h as obtained
in [23] and fit the effective charges to those two known data.
We took e2p-2h and e4p-4h to be 1.2 times ereg. Table IV lists the
parameters used. We point out that we have chosen χreg = 0.
We made this choice because there are no data available for
transitions within the regular band; hence we are unable to
fit χreg to known experimental values. Evidently, the ground
state is regular and we know the B(E2) value for the 2+

1 → 0+
1

transition, but as χreg has no influence on 2+ → 0+ transitions
in the U(5) limit, we cannot make use of this transition in
determining χreg.

For this choice of parameters the IBM fit yields the
following results:

B
(
E2; 2+

1 → g.s.
) = 0.0195 (e b)2 or 3 W.u. (14)

and

B
(
E2; 4+

1 → 2+
1

) = 0.9747 (e b)2 or 152 W.u. (15)

In the remaining part of the discussion, we use the fitted
effective charges to make further theoretical predictions.

We now come to the question of labeling the mixed states,
resulting from diagonalization of the full Hamiltonian (1),

TABLE V. Interband transitions involving the 2+
3 state.

Transition B(E2) value (W.u.)

4+
2 → 2+

3 44

2+
3 → 2+

1 36

2+
3 → 2+

2 2

in a meaningful way into a given band. As a criterion, we
start from the calculated high-spin members of the two bands
and follow the E2 decay. The particular E2 decay sequence
down to low spin, for which the intraband B(E2) values are
bigger than the interband B(E2) values, are placed in a given
collective band. The results are shown in Fig. 3. The IBM
2+

3 level at 969 keV is not shown in Fig. 3 and all interband
transitions involving this state can be found in Table V. The
transitions between Bands II and III in Fig. 3 that are not
shown are less than 1 W.u. The 725-keV 0+ state [30] in Fig. 3
is indicated with a dashed line and tentative energy. The 0+

3
level was identified in two experimental studies [24,30], but
recently performed experiments [9,12] do not yield conclusive
evidence for this state and its energy. In Table VI, we present
the magnitudes (given in percentage) of the three different
configurations within the three bands (I, II, and III). From
inspecting Table VI, it becomes clear that a good separation
in different subspaces N,N + 2, and N + 4 ceases to hold on
the basis of the mixing percentages for the low-spin 0+ and 2+
members. Using the reduced E2 matrix elements as a guiding
principle, as discussed before, one arrives at the results shown
in Fig. 3. So one needs both the mixing percentages and the
B(E2) values to obtain a good understanding of the nature of
the bands.
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FIG. 3. Experimental and theoretical
level scheme in 188Pb. The arrows denote
the B(E2) values for a given transition,
expressed in Weisskopf units. The experi-
mental data were taken from [9,11,13,30].
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TABLE VI. The magnitudes (given in percentages) of the three
different configurations (N,N + 2, and N + 4) in the constructed
bands.

Band I Band II Band III

N N+2 N+4 N N+2 N+4 N N+2 N+4

0+
1 98 2 0 0+

2 2 59 40 0+
3 0 38 62

2+
3 59 32 8 2+

1 4 44 52 2+
2 36 30 35

4+
1 0 30 70 4+

2 1 71 28

6+
1 0 23 77 6+

2 0 78 22

8+
1 0 20 80 8+

2 0 80 20

10+
1 0 21 79 10+

2 0 79 21

12+
1 0 26 74 12+

2 0 74 26

14+
1 0 40 60 14+

2 0 61 39

Comparing the IBM results with the experimental bands, we
notice that the structure of the collective bands is reproduced
rather well. The energy levels that constitute the more
collective Band II are in good agreement with the experimental
results. The structure of Band III is also described rather well,
although the value of �2p−2h seems a bit too small and the
mixing parameter between the two intruder configurations
seems slightly too large.

When we take a closer look at the E2 transitions between
the low-lying levels, something interesting occurs. Using
expression (10), one can single out those contributions of the
reduced matrix elements for the transitions in the unperturbed
bands that make up the major contribution to a given
transition Ji(i) → Jf (f ) with the condition that their sum
may not deviate more than 10% from the total value with
all contributions taken into account. In the case of 188Pb, it
turns out that, for the so-constructed Bands II and III, the
main contribution to intraband transitions always consists of
the term with the corresponding lowest rank transition in the
unperturbed 2p-2h band and the one in the unperturbed 4p-4h
band. Thus

〈Jf , f ||T (E2)||Ji, i〉
∼=

∑
l,q

aN+2
l,i (Ji)a

N+2
q,f (Jf )b̃N+2

1,l (Ji)b̃
N+2
1,q (Jf )

× ′
N+2〈Jf , 1||T (E2)||Ji, 1〉′N+2

+
∑
m,r

aN+4
m,i (Ji)a

N+4
r,f (Jf )b̃N+4

1,m (Ji)b̃
N+4
1,r (Jf )

× ′
N+4〈Jf , 1||T (E2)||Ji, 1〉′N+4

= R(N + 2)〈Jf , f ||T (E2)||Ji, i〉 + R(N + 4)

×〈Jf , f ||T (E2)||Ji, i〉 (16)

where |Ji, i〉 and |Jf , f 〉 are both states in Band II or both
states in Band III. This fact is as expected. More interesting is
the ratio R of those two main contributions to the total value
of the reduced matrix element, because they are related to the
“purity” of a certain transition. These results are depicted in
Fig. 4.

Notice that the ratio R(N + 4) becomes larger than the
ratio R(N + 2) for the 2+

2 → 0+
3 transition in Band III. This

very large ratio R(N + 4) for the 2+
2 → 0+

3 transition in Band
III is due to the combined effect of the large mixing and the
relative magnitudes of the two contributing reduced matrix
elements (16).

IV. E0 TRANSITIONS

Within the IBM, a reduced form of the E0 operator [i.e.,
ρ̂(E0) ≡ T̂ (E0)/eR2

0] can be defined as

ρ̂(E0) = [α1N̂ + β1n̂d ]reg + [α2N̂ + β2n̂d ]intr, (17)

where we have chosen, similarly as for the E2 values, equal
parameters for the two intruder configurations. With this
definition, the αi and βi are dimensionless. If one wants to
relate them to the equivalent parameters expressed in e·fm2, as
used in [31], one has to multiply them by eR2

0.
Because a least-square fit of these parameters to the known

ρ2 values in 188Pb [9] does not impose enough constraints on
the problem, we also include the isotopic shifts �〈r2〉A,208,
recently determined by De Witte et al. [32] for the Pb isotopes
in the fit. Therefore, we rewrite the expression for the nuclear
radius within the IBM [18,33] as

r2 = r2
c + eR2

0〈ρ̂(E0)〉. (18)

Performing a fit to the combination of the values �〈r2〉A,208

(for A = 186–196) and the ρ2 values for the 8+
2 → 8+

1 , 6+
2 →

6+
1 , 4+

2 → 4+
1 , and 2+

2 → 4+
1 E0 transitions results in the

following parameter values:

α1 = −0.0020, β1 = 0.800,

α2 = −0.0086, β2 = 0.183.

The corresponding values for ρ2 are given in Table VII. The
values for the transitions between the 0+ states, which were not
included in the fitting procedure, deviate considerably from
the experimental values, in contrast to the good agreement
obtained for the other ρ2 values and for the �〈r2〉A,208

isotopic shifts. The large ρ2 value for the 0+
3 → 0+

2 transition
seems to suggest that the mixing between the 2p-2h and
the 4p-4h configurations resulting from our present study
is still somewhat too large compared with the experimental
results [9]. We aim at a more thorough study of E0 properties
(isotopic and isomeric shifts, E0 transitions, etc.) in the whole
Pb region to gain a better understanding of the mixing and of
the deduced parameters.

V. COMPARISON WITH THE COLLECTIVE
ROTATIONAL MODEL

Having constructed two different collective bands starting
from the IBM and using the prescription to define bands on the
basis of the calculated B(E2) values, we now need to check
for consistency with the results of other theoretical approaches.
First, we concentrate on the quadrupole moments.

Within the IBM, the quadrupole moments are calculated as

Q(J ) =
√

16π

5
〈JJ |T (E2, 0)|JJ 〉. (19)

From the point of view of the collective rotational model
[34–36], the electric quadrupole moment is defined as
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FIG. 4. (Color online) The top part shows the ratios
R(N + 2) and R(N + 4) [see Eq. (16)] for the intraband
transitions in Band II; the bottom part shows the ratios
R(N + 2) and R(N + 4) for the intraband transition in
Band III.

Q =
√

16π

5
〈J,K,M = J |M(E2, 0)|J,K,M = J 〉.

(20)
For K = 0 bands this reduces to

Q = −J (J + 1)

(J + 1)(2J + 3)
Q0

0, (21)

TABLE VII. Comparison between the experimental and calcu-
lated monopole transition ρ2 values. The experimental values were
taken from [9]. In Ref. [9] a ρ2 value of approximately 0.025 is given
for the E0 decay from the 0+

3 state.

Transition ρ2 (IBM) ρ2 (exp.)

8+
2 → 8+

1 0.0107 0.012
6+

2 → 6+
1 0.0150 0.016

4+
2 → 4+

1 0.0214 0.027
2+

2 → 2+
1 0.0118 0.010

0+
2 → 0+

1 2.4×10−4 0.007
0+

3 → 0+
1 8.1×10−5 —

0+
3 → 0+

2 0.0623 —

with the intrinsic quadrupole moment Q0
0 defined as

Q0
0 =

√
16π

5
〈K = 0|M(E2, 0)|K = 0〉. (22)

Equating the quadrupole moments of Eqs. (19) and (21)
allows us to extract an equivalent intrinsic quadrupole moment
Q0

0 assuming K = 0 bands. Likewise one can use the IBM
B(E2) values to extract an equivalent intrinsic quadrupole
moment Q0

0 using the collective rotational model B(E2)
expression

B(E2; J + 2,K = 0 → J,K = 0)

= 5

16π
(2J + 1)

(
J + 2 2 J

0 0 0

)2 (
Q0

0

)2
.

(23)

Having extracted an intrinsic quadrupole moment, one can
deduce a deformation parameter β0 using the expression

Q0 = 3ZR2
0√

5π
β0. (24)
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FIG. 5. The upper plot shows the comparison between the
magnitudes of the intrinsic quadrupole moments extracted from the
theoretical B(E2) values (•) and the magnitudes of the intrinsic
quadrupole moments extracted from the diagonal matrix elements
(�), both for the unperturbed 2p-2h band. The lower plot shows the
same comparison for the unperturbed 4p-4h band.

If one wants to extract collective model parameters starting
from the bands constructed within the IBM, one needs to test
the assumption to treat them as K = 0 collective bands. If
the interpretation of a K = 0 band characterized by a single
Q0

0 value is to make sense, one expects that values of Q0
0

extracted using these two procedures [equating IBM results
with the collective rotational model results, given in Eqs. (21)
and (23)] will not differ much. Moreover, one expects only
a moderate variation of Q0

0 as a function of J along the
band. In Fig. 5 we show the comparison between the intrinsic
quadrupole moments extracted from the B(E2) values (23)
and the absolute values of the intrinsic quadrupole moments
extracted using Eq. (21). This comparison is presented for the
unperturbed 2p-2h band (upper part) and for the unperturbed
4p-4h band (lower part). One notices that the unperturbed
4p-4h band exhibits a K = 0 rotational-like behavior to a large
extent and can be characterized by a single intrinsic structure.
For the 2p-2h band there are distinct differences between
the intrinsic quadrupole moments extracted using the two
methods. Because the parameters for the unperturbed 4p-4h
band were fixed using I-spin symmetry [23], we can explain
the K = 0 rotational behavior of this band by comparing with
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FIG. 6. Intrinsic quadrupole moment extracted from transition
matrix elements, calculated within the IBM. The intrinsic quadrupole
moment is expressed in e · b. Results for the 2p-2h unperturbed
band are represented with •; results for the 4p-4h unperturbed
band with �. Bands II and III are represented, respectively, by ∗
and �.

the ground state band in 180W, which is recognized as a K = 0
rotational band [37]. Moreover, one notices that the intrinsic
quadrupole moments stay approximately constant for the
unperturbed bands. This is also reflected in the approximately
constant behavior of the intraband B(E2) values as a funcion
of spin for the higher spin states in Fig. 3.

We can also extract the sign of the intrinsic quadrupole
moment and the deformation parameter. Therefore we have
plotted in Fig. 6 the intrinsic quadrupole moment Q0

0 derived
from the E2 diagonal matrix elements (21). The intrinsic
quadrupole moments of the unperturbed 4p-4h band are
positive, indicating a prolate deformation of the nucleus,
whereas the negative sign of the intrinsic quadrupole moments
in the unperturbed 2p-2h band is consistent with an oblate
deformation. The extracted values are in good agreement
with the magnitudes of the quadrupole moments reported by
Dracoulis et al. [9].

Using Eq. (24), we obtain the deformation parameter β0.
For the unperturbed 2p-2h band, β0 varies between −0.11
and −0.12, whereas for the unperturbed 4p-4h band, β0 varies
between 0.19 and 0.22. These values are smaller than the
deformation parameters calculated by Bender et al. [10] using
self-consistent mean-field methods.

VI. CONCLUSION

In the present paper we have carried out a detailed analysis
of the presence of various families of collective bands,
in particular for 188Pb. We have started from an algebraic
model approach (the interacting boson model) to truncate the
extended shell-model space that incorporates the presence of
proton particle-hole excitations across the Z = 82 closed shell.
Moreover, making use of a concept called intruder symmetry,
we have been able to reduce the number of parameters in
the present description. A first calculation has been carried
out by Fossion et al. [23], accentuating the presence of three
different families. Here, we have defined an intermediate
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basis that defines three separate systems by diagonalizing the
Hamiltonian in the 0p-0h, 2p-2h, and 4p-4h configuration
spaces separately. This basis allows us to understand the
mixing between the unperturbed bands in a transparent way.
Moreover, we have used the E2 decay, starting at high
spin, to define “physical” bands also progressing to low-spin
members. Here the conclusion points toward an important
mixing between the 0+

2 , 0+
3 and the 2+

1 , 2+
2 , and 2+

3 band
members, still allowing the separation into two collective
band structures. A simple reanalysis of these two bands
within the collective rotational model is consistent with prolate
and oblate band characteristics for the unperturbed 4p-4h
and 2p-2h bands, respectively. Extracted magnitudes of the
intrinsic quadrupole and the deformation parameters are in
good agreement with calculations starting from mean-field
approaches. We have also calculated monopole transition ρ2

values. The fitted parameters give a good description of the
�〈r2〉A,208 values for the A = 186–196 Pb isotopes and of the
experimental ρ2 values. Deviations of the calculated ρ2 values
from the experimental ones for the 0+ states point out that two
constructed bands are still somewhat overmixed.

It is our aim to carry out a similar analysis for the other
Pb nuclei near the neutron midshell region and follow the
mixing patterns between the two bands when moving away
from the midshell region (at N = 104) and to incorporate
an extensive study of electromagnetic properties (E2 and E0
transitions) and the study of isotopic and isomeric shifts as
well.
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